The previous 255 limit seemed to be not enough to hold all the Samsung stock defined wakelocks that look safe to block
Signed-off-by: engstk <eng.stk@sapo.pt>
[ Upstream commit 2c484419efc09e7234c667aa72698cb79ba8d8ed ]
lz4 compatible decompressor is simple. The format is underspecified and
relies on EOF notification to determine when to stop. Initramfs buffer
format[1] explicitly states that it can have arbitrary number of zero
padding. Thus when operating without a fill function, be extra careful to
ensure that sizes less than 4, or apperantly empty chunksizes are treated
as EOF.
To test this I have created two cpio initrds, first a normal one,
main.cpio. And second one with just a single /test-file with content
"second" second.cpio. Then i compressed both of them with gzip, and with
lz4 -l. Then I created a padding of 4 bytes (dd if=/dev/zero of=pad4 bs=1
count=4). To create four testcase initrds:
1) main.cpio.gzip + extra.cpio.gzip = pad0.gzip
2) main.cpio.lz4 + extra.cpio.lz4 = pad0.lz4
3) main.cpio.gzip + pad4 + extra.cpio.gzip = pad4.gzip
4) main.cpio.lz4 + pad4 + extra.cpio.lz4 = pad4.lz4
The pad4 test-cases replicate the initrd load by grub, as it pads and
aligns every initrd it loads.
All of the above boot, however /test-file was not accessible in the initrd
for the testcase #4, as decoding in lz4 decompressor failed. Also an
error message printed which usually is harmless.
Whith a patched kernel, all of the above testcases now pass, and
/test-file is accessible.
This fixes lz4 initrd decompress warning on every boot with grub. And
more importantly this fixes inability to load multiple lz4 compressed
initrds with grub. This patch has been shipping in Ubuntu kernels since
January 2021.
[1] ./Documentation/driver-api/early-userspace/buffer-format.rst
BugLink: https://bugs.launchpad.net/bugs/1835660
Link: https://lore.kernel.org/lkml/20210114200256.196589-1-xnox@ubuntu.com/ # v0
Link: https://lkml.kernel.org/r/20210513104831.432975-1-dimitri.ledkov@canonical.com
Signed-off-by: Dimitri John Ledkov <dimitri.ledkov@canonical.com>
Cc: Kyungsik Lee <kyungsik.lee@lge.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Bongkyu Kim <bongkyu.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Sven Schmidt <4sschmid@informatik.uni-hamburg.de>
Cc: Rajat Asthana <thisisrast7@gmail.com>
Cc: Nick Terrell <terrelln@fb.com>
Cc: Gao Xiang <hsiangkao@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: engstk <eng.stk@sapo.pt>
This operation was intentional, but tools such as smatch will warn that it
might not have been.
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Yann Collet <cyan@fb.com>
Cc: Vasily Averin <vvs@virtuozzo.com>
Cc: Gao Xiang <hsiangkao@aol.com>
Link: http://lkml.kernel.org/r/3bf931c6ea0cae3e23f3485801986859851b4f04.camel@perches.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Pranav Vashi <neobuddy89@gmail.com>
Signed-off-by: engstk <eng.stk@sapo.pt>
LZ4 final literal copy could be overlapped when doing
in-place decompression, so it's unsafe to just use memcpy()
on an optimized memcpy approach but memmove() instead.
Upstream LZ4 has updated this years ago [1] (and the impact
is non-sensible [2] plus only a few bytes remain), this commit
just synchronizes LZ4 upstream code to the kernel side as well.
It can be observed as EROFS in-place decompression failure
on specific files when X86_FEATURE_ERMS is unsupported,
memcpy() optimization of commit 59daa706fb ("x86, mem:
Optimize memcpy by avoiding memory false dependece") will
be enabled then.
Currently most modern x86-CPUs support ERMS, these CPUs just
use "rep movsb" approach so no problem at all. However, it can
still be verified with forcely disabling ERMS feature...
arch/x86/lib/memcpy_64.S:
ALTERNATIVE_2 "jmp memcpy_orig", "", X86_FEATURE_REP_GOOD, \
- "jmp memcpy_erms", X86_FEATURE_ERMS
+ "jmp memcpy_orig", X86_FEATURE_ERMS
We didn't observe any strange on arm64/arm/x86 platform before
since most memcpy() would behave in an increasing address order
("copy upwards" [3]) and it's the correct order of in-place
decompression but it really needs an update to memmove() for sure
considering it's an undefined behavior according to the standard
and some unique optimization already exists in the kernel.
[1] 33cb8518ac
[2] https://github.com/lz4/lz4/pull/717#issuecomment-497818921
[3] https://sourceware.org/bugzilla/show_bug.cgi?id=12518
Link: https://lkml.kernel.org/r/20201122030749.2698994-1-hsiangkao@redhat.com
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Reviewed-by: Nick Terrell <terrelln@fb.com>
Cc: Yann Collet <yann.collet.73@gmail.com>
Cc: Miao Xie <miaoxie@huawei.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Li Guifu <bluce.liguifu@huawei.com>
Cc: Guo Xuenan <guoxuenan@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Pranav Vashi <neobuddy89@gmail.com>
Signed-off-by: engstk <eng.stk@sapo.pt>
Instead of keeping NULL terminated array switch to use ARRAY_SIZE()
which helps to further clean up.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Link: http://lkml.kernel.org/r/20200508100758.51644-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: engstk <eng.stk@sapo.pt>
zcomp::stream is a per-CPU pointer, pointing to struct zcomp_strm
which contains two pointers. Having struct zcomp_strm allocated
directly as per-CPU memory would avoid one additional memory
allocation and a pointer dereference. This also simplifies the
addition of a local_lock to struct zcomp_strm.
Allocate zcomp::stream directly as per-CPU memory.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20200527201119.1692513-7-bigeasy@linutronix.de
Signed-off-by: engstk <eng.stk@sapo.pt>
The worst-case scenario on finding same element pages is that almost all
elements are same at the first glance but only last few elements are
different.
Since the same element tends to be grouped from the beginning of the
pages, if we check the first element with the last element before
looping through all elements, we might have some chances to quickly
detect non-same element pages.
1. Test is done under LG webOS TV (64-bit arch)
2. Dump the swap-out pages (~819200 pages)
3. Analyze the pages with simple test script which counts the iteration
number and measures the speed at off-line
Under 64-bit arch, the worst iteration count is PAGE_SIZE / 8 bytes =
512. The speed is based on the time to consume page_same_filled()
function only. The result, on average, is listed as below:
Num of Iter Speed(MB/s)
Looping-Forward (Orig) 38 99265
Looping-Backward 36 102725
Last-element-check (This Patch) 33 125072
The result shows that the average iteration count decreases by 13% and
the speed increases by 25% with this patch. This patch does not
increase the overall time complexity, though.
I also ran simpler version which uses backward loop. Just looping
backward also makes some improvement, but less than this patch.
[taejoon.song@lge.com: fix off-by-one]
Link: http://lkml.kernel.org/r/1578642001-11765-1-git-send-email-taejoon.song@lge.com
Link: http://lkml.kernel.org/r/1575424418-16119-1-git-send-email-taejoon.song@lge.com
Signed-off-by: Taejoon Song <taejoon.song@lge.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: engstk <eng.stk@sapo.pt>
If we fail to decompress in zram it's a pretty serious problem. We were
entrusted to be able to decompress the old data but we failed. Either
we've got some crazy bug in the compression code or we've got memory
corruption.
At the moment, when this happens the log looks like this:
ERR kernel: [ 1833.099861] zram: Decompression failed! err=-22, page=336112
ERR kernel: [ 1833.099881] zram: Decompression failed! err=-22, page=336112
ALERT kernel: [ 1833.099886] Read-error on swap-device (253:0:2688896)
It is true that we have an "ALERT" level log in there, but (at least to
me) it feels like even this isn't enough to impart the seriousness of this
error. Let's convert to a WARN_ON. Note that WARN_ON is automatically
"unlikely" so we can simply replace the old annotation with the new one.
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Sonny Rao <sonnyrao@chromium.org>
Cc: Jens Axboe <axboe@kernel.dk>
Link: https://lkml.kernel.org/r/20200917174059.1.If09c882545dbe432268f7a67a4d4cfcb6caace4f@changeid
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Pranav Vashi <neobuddy89@gmail.com>
Signed-off-by: engstk <eng.stk@sapo.pt>
In some rare cases, for input data over 32 KB, lzo-rle could encode two
different inputs to the same compressed representation, so that
decompression is then ambiguous (i.e. data may be corrupted - although
zram is not affected because it operates over 4 KB pages).
This modifies the compressor without changing the decompressor or the
bitstream format, such that:
- there is no change to how data produced by the old compressor is
decompressed
- an old decompressor will correctly decode data from the updated
compressor
- performance and compression ratio are not affected
- we avoid introducing a new bitstream format
In testing over 12.8M real-world files totalling 903 GB, three files
were affected by this bug. I also constructed 37M semi-random 64 KB
files totalling 2.27 TB, and saw no affected files. Finally I tested
over files constructed to contain each of the ~1024 possible bad input
sequences; for all of these cases, updated lzo-rle worked correctly.
There is no significant impact to performance or compression ratio.
Signed-off-by: Dave Rodgman <dave.rodgman@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Dave Rodgman <dave.rodgman@arm.com>
Cc: Willy Tarreau <w@1wt.eu>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Markus F.X.J. Oberhumer <markus@oberhumer.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200507100203.29785-1-dave.rodgman@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: engstk <eng.stk@sapo.pt>
Fix an unaligned access which breaks on platforms where this is not
permitted (e.g., Sparc).
Link: http://lkml.kernel.org/r/20190912145502.35229-1-dave.rodgman@arm.com
Signed-off-by: Dave Rodgman <dave.rodgman@arm.com>
Cc: Dave Rodgman <dave.rodgman@arm.com>
Cc: Markus F.X.J. Oberhumer <markus@oberhumer.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: engstk <eng.stk@sapo.pt>
commit 65de50969a77509452ae590e9449b70a22b923bb upstream.
Clang's static analysis tool reports these double free memory errors.
security/selinux/ss/services.c:2987:4: warning: Attempt to free released memory [unix.Malloc]
kfree(bnames[i]);
^~~~~~~~~~~~~~~~
security/selinux/ss/services.c:2990:2: warning: Attempt to free released memory [unix.Malloc]
kfree(bvalues);
^~~~~~~~~~~~~~
So improve the security_get_bools error handling by freeing these variables
and setting their return pointers to NULL and the return len to 0
Cc: stable@vger.kernel.org
Signed-off-by: Tom Rix <trix@redhat.com>
Acked-by: Stephen Smalley <stephen.smalley.work@gmail.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Binder code is very hot, so checking frequently to see if a debug
message should be printed is a waste of cycles. We're not debugging
binder, so just stub out the debug prints to compile them out entirely.
Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
set bootloader_memory_limit to end of dram, if the memory limit set
in kernel parameters is more than ram size.
Change-Id: I7d23ca84f08dfb4bf7660253db722a1f6456bf85
Signed-off-by: Srinivasarao P <spathi@codeaurora.org>
Signed-off-by: engstk <eng.stk@sapo.pt>
Modify the irq_count print debug level from info to debug.
Change-Id: I1c5677414b2a97fc2697b003620a80d8843589a7
Signed-off-by: zhaochen <zhaochen@codeaurora.org>
Signed-off-by: engstk <eng.stk@sapo.pt>
This patch replaces all memcpy() calls with LZ4_memcpy() which calls
__builtin_memcpy() so the compiler can inline it.
LZ4 relies heavily on memcpy() with a constant size being inlined. In x86
and i386 pre-boot environments memcpy() cannot be inlined because memcpy()
doesn't get defined as __builtin_memcpy().
An equivalent patch has been applied upstream so that the next import
won't lose this change [1].
I've measured the kernel decompression speed using QEMU before and after
this patch for the x86_64 and i386 architectures. The speed-up is about
10x as shown below.
Code Arch Kernel Size Time Speed
v5.8 x86_64 11504832 B 148 ms 79 MB/s
patch x86_64 11503872 B 13 ms 885 MB/s
v5.8 i386 9621216 B 91 ms 106 MB/s
patch i386 9620224 B 10 ms 962 MB/s
I also measured the time to decompress the initramfs on x86_64, i386, and
arm. All three show the same decompression speed before and after, as
expected.
[1] https://github.com/lz4/lz4/pull/890
Signed-off-by: Nick Terrell <terrelln@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Yann Collet <yann.collet.73@gmail.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Sven Schmidt <4sschmid@informatik.uni-hamburg.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Link: http://lkml.kernel.org/r/20200803194022.2966806-1-nickrterrell@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
eng.stk: backport to 4.14 (sunfish)
Signed-off-by: engstk <eng.stk@sapo.pt>
For very short input data (0 - 1 bytes), lzo-rle was not behaving
correctly. Fix this behaviour and update documentation accordingly.
For zero-length input, lzo v0 outputs an end-of-stream marker only,
which was misinterpreted by lzo-rle as a bitstream version number.
Ensure bitstream versions > 0 require a minimum stream length of 5.
Also fixes a bug in handling the tail for very short inputs when a
bitstream version is present.
Link: http://lkml.kernel.org/r/20190326165857.34613-1-dave.rodgman@arm.com
Signed-off-by: Dave Rodgman <dave.rodgman@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: engstk <eng.stk@sapo.pt>