c2379070a4
bug:18722704 Change-Id: Icef9aaa62633b2d86ad250f43d4c8fa5cc0b6842
959 lines
39 KiB
C++
959 lines
39 KiB
C++
/*
|
|
* Copyright (C) 2014 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define ATRACE_TAG ATRACE_TAG_VIEW
|
|
#define LOG_TAG "OpenGLRenderer"
|
|
|
|
#include "RenderNode.h"
|
|
|
|
#include <algorithm>
|
|
#include <string>
|
|
|
|
#include <SkCanvas.h>
|
|
#include <algorithm>
|
|
|
|
|
|
#include "DamageAccumulator.h"
|
|
#include "Debug.h"
|
|
#include "DisplayListOp.h"
|
|
#include "DisplayListLogBuffer.h"
|
|
#include "LayerRenderer.h"
|
|
#include "OpenGLRenderer.h"
|
|
#include "utils/MathUtils.h"
|
|
#include "utils/TraceUtils.h"
|
|
#include "renderthread/CanvasContext.h"
|
|
|
|
namespace android {
|
|
namespace uirenderer {
|
|
|
|
void RenderNode::outputLogBuffer(int fd) {
|
|
DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance();
|
|
if (logBuffer.isEmpty()) {
|
|
return;
|
|
}
|
|
|
|
FILE *file = fdopen(fd, "a");
|
|
|
|
fprintf(file, "\nRecent DisplayList operations\n");
|
|
logBuffer.outputCommands(file);
|
|
|
|
if (Caches::hasInstance()) {
|
|
String8 cachesLog;
|
|
Caches::getInstance().dumpMemoryUsage(cachesLog);
|
|
fprintf(file, "\nCaches:\n%s\n", cachesLog.string());
|
|
} else {
|
|
fprintf(file, "\nNo caches instance.\n");
|
|
}
|
|
|
|
fflush(file);
|
|
}
|
|
|
|
void RenderNode::debugDumpLayers(const char* prefix) {
|
|
if (mLayer) {
|
|
ALOGD("%sNode %p (%s) has layer %p (fbo = %u, wasBuildLayered = %s)",
|
|
prefix, this, getName(), mLayer, mLayer->getFbo(),
|
|
mLayer->wasBuildLayered ? "true" : "false");
|
|
}
|
|
if (mDisplayListData) {
|
|
for (size_t i = 0; i < mDisplayListData->children().size(); i++) {
|
|
mDisplayListData->children()[i]->mRenderNode->debugDumpLayers(prefix);
|
|
}
|
|
}
|
|
}
|
|
|
|
RenderNode::RenderNode()
|
|
: mDirtyPropertyFields(0)
|
|
, mNeedsDisplayListDataSync(false)
|
|
, mDisplayListData(0)
|
|
, mStagingDisplayListData(0)
|
|
, mAnimatorManager(*this)
|
|
, mLayer(0)
|
|
, mParentCount(0) {
|
|
}
|
|
|
|
RenderNode::~RenderNode() {
|
|
deleteDisplayListData();
|
|
delete mStagingDisplayListData;
|
|
if (mLayer) {
|
|
ALOGW("Memory Warning: Layer %p missed its detachment, held on to for far too long!", mLayer);
|
|
mLayer->postDecStrong();
|
|
mLayer = 0;
|
|
}
|
|
}
|
|
|
|
void RenderNode::setStagingDisplayList(DisplayListData* data) {
|
|
mNeedsDisplayListDataSync = true;
|
|
delete mStagingDisplayListData;
|
|
mStagingDisplayListData = data;
|
|
}
|
|
|
|
/**
|
|
* This function is a simplified version of replay(), where we simply retrieve and log the
|
|
* display list. This function should remain in sync with the replay() function.
|
|
*/
|
|
void RenderNode::output(uint32_t level) {
|
|
ALOGD("%*sStart display list (%p, %s%s%s%s)", (level - 1) * 2, "", this,
|
|
getName(),
|
|
(properties().hasShadow() ? ", casting shadow" : ""),
|
|
(isRenderable() ? "" : ", empty"),
|
|
(mLayer != NULL ? ", on HW Layer" : ""));
|
|
ALOGD("%*s%s %d", level * 2, "", "Save",
|
|
SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag);
|
|
|
|
properties().debugOutputProperties(level);
|
|
int flags = DisplayListOp::kOpLogFlag_Recurse;
|
|
if (mDisplayListData) {
|
|
// TODO: consider printing the chunk boundaries here
|
|
for (unsigned int i = 0; i < mDisplayListData->displayListOps.size(); i++) {
|
|
mDisplayListData->displayListOps[i]->output(level, flags);
|
|
}
|
|
}
|
|
|
|
ALOGD("%*sDone (%p, %s)", (level - 1) * 2, "", this, getName());
|
|
}
|
|
|
|
int RenderNode::getDebugSize() {
|
|
int size = sizeof(RenderNode);
|
|
if (mStagingDisplayListData) {
|
|
size += mStagingDisplayListData->getUsedSize();
|
|
}
|
|
if (mDisplayListData && mDisplayListData != mStagingDisplayListData) {
|
|
size += mDisplayListData->getUsedSize();
|
|
}
|
|
return size;
|
|
}
|
|
|
|
void RenderNode::prepareTree(TreeInfo& info) {
|
|
ATRACE_CALL();
|
|
LOG_ALWAYS_FATAL_IF(!info.damageAccumulator, "DamageAccumulator missing");
|
|
|
|
prepareTreeImpl(info);
|
|
}
|
|
|
|
void RenderNode::addAnimator(const sp<BaseRenderNodeAnimator>& animator) {
|
|
mAnimatorManager.addAnimator(animator);
|
|
}
|
|
|
|
void RenderNode::damageSelf(TreeInfo& info) {
|
|
if (isRenderable()) {
|
|
if (properties().getClipDamageToBounds()) {
|
|
info.damageAccumulator->dirty(0, 0, properties().getWidth(), properties().getHeight());
|
|
} else {
|
|
// Hope this is big enough?
|
|
// TODO: Get this from the display list ops or something
|
|
info.damageAccumulator->dirty(INT_MIN, INT_MIN, INT_MAX, INT_MAX);
|
|
}
|
|
}
|
|
}
|
|
|
|
void RenderNode::prepareLayer(TreeInfo& info, uint32_t dirtyMask) {
|
|
LayerType layerType = properties().layerProperties().type();
|
|
if (CC_UNLIKELY(layerType == kLayerTypeRenderLayer)) {
|
|
// Damage applied so far needs to affect our parent, but does not require
|
|
// the layer to be updated. So we pop/push here to clear out the current
|
|
// damage and get a clean state for display list or children updates to
|
|
// affect, which will require the layer to be updated
|
|
info.damageAccumulator->popTransform();
|
|
info.damageAccumulator->pushTransform(this);
|
|
if (dirtyMask & DISPLAY_LIST) {
|
|
damageSelf(info);
|
|
}
|
|
}
|
|
}
|
|
|
|
void RenderNode::pushLayerUpdate(TreeInfo& info) {
|
|
LayerType layerType = properties().layerProperties().type();
|
|
// If we are not a layer OR we cannot be rendered (eg, view was detached)
|
|
// we need to destroy any Layers we may have had previously
|
|
if (CC_LIKELY(layerType != kLayerTypeRenderLayer) || CC_UNLIKELY(!isRenderable())) {
|
|
if (CC_UNLIKELY(mLayer)) {
|
|
LayerRenderer::destroyLayer(mLayer);
|
|
mLayer = NULL;
|
|
}
|
|
return;
|
|
}
|
|
|
|
bool transformUpdateNeeded = false;
|
|
if (!mLayer) {
|
|
mLayer = LayerRenderer::createRenderLayer(info.renderState, getWidth(), getHeight());
|
|
applyLayerPropertiesToLayer(info);
|
|
damageSelf(info);
|
|
transformUpdateNeeded = true;
|
|
} else if (mLayer->layer.getWidth() != getWidth() || mLayer->layer.getHeight() != getHeight()) {
|
|
if (!LayerRenderer::resizeLayer(mLayer, getWidth(), getHeight())) {
|
|
LayerRenderer::destroyLayer(mLayer);
|
|
mLayer = 0;
|
|
}
|
|
damageSelf(info);
|
|
transformUpdateNeeded = true;
|
|
}
|
|
|
|
SkRect dirty;
|
|
info.damageAccumulator->peekAtDirty(&dirty);
|
|
|
|
if (!mLayer) {
|
|
Caches::getInstance().dumpMemoryUsage();
|
|
if (info.errorHandler) {
|
|
std::string msg = "Unable to create layer for ";
|
|
msg += getName();
|
|
info.errorHandler->onError(msg);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (transformUpdateNeeded) {
|
|
// update the transform in window of the layer to reset its origin wrt light source position
|
|
Matrix4 windowTransform;
|
|
info.damageAccumulator->computeCurrentTransform(&windowTransform);
|
|
mLayer->setWindowTransform(windowTransform);
|
|
}
|
|
|
|
if (dirty.intersect(0, 0, getWidth(), getHeight())) {
|
|
dirty.roundOut();
|
|
mLayer->updateDeferred(this, dirty.fLeft, dirty.fTop, dirty.fRight, dirty.fBottom);
|
|
}
|
|
// This is not inside the above if because we may have called
|
|
// updateDeferred on a previous prepare pass that didn't have a renderer
|
|
if (info.renderer && mLayer->deferredUpdateScheduled) {
|
|
info.renderer->pushLayerUpdate(mLayer);
|
|
}
|
|
|
|
if (CC_UNLIKELY(info.canvasContext)) {
|
|
// If canvasContext is not null that means there are prefetched layers
|
|
// that need to be accounted for. That might be us, so tell CanvasContext
|
|
// that this layer is in the tree and should not be destroyed.
|
|
info.canvasContext->markLayerInUse(this);
|
|
}
|
|
}
|
|
|
|
void RenderNode::prepareTreeImpl(TreeInfo& info) {
|
|
info.damageAccumulator->pushTransform(this);
|
|
|
|
if (info.mode == TreeInfo::MODE_FULL) {
|
|
pushStagingPropertiesChanges(info);
|
|
}
|
|
uint32_t animatorDirtyMask = 0;
|
|
if (CC_LIKELY(info.runAnimations)) {
|
|
animatorDirtyMask = mAnimatorManager.animate(info);
|
|
}
|
|
prepareLayer(info, animatorDirtyMask);
|
|
if (info.mode == TreeInfo::MODE_FULL) {
|
|
pushStagingDisplayListChanges(info);
|
|
}
|
|
prepareSubTree(info, mDisplayListData);
|
|
pushLayerUpdate(info);
|
|
|
|
info.damageAccumulator->popTransform();
|
|
}
|
|
|
|
void RenderNode::pushStagingPropertiesChanges(TreeInfo& info) {
|
|
// Push the animators first so that setupStartValueIfNecessary() is called
|
|
// before properties() is trampled by stagingProperties(), as they are
|
|
// required by some animators.
|
|
if (CC_LIKELY(info.runAnimations)) {
|
|
mAnimatorManager.pushStaging();
|
|
}
|
|
if (mDirtyPropertyFields) {
|
|
mDirtyPropertyFields = 0;
|
|
damageSelf(info);
|
|
info.damageAccumulator->popTransform();
|
|
mProperties = mStagingProperties;
|
|
applyLayerPropertiesToLayer(info);
|
|
// We could try to be clever and only re-damage if the matrix changed.
|
|
// However, we don't need to worry about that. The cost of over-damaging
|
|
// here is only going to be a single additional map rect of this node
|
|
// plus a rect join(). The parent's transform (and up) will only be
|
|
// performed once.
|
|
info.damageAccumulator->pushTransform(this);
|
|
damageSelf(info);
|
|
}
|
|
}
|
|
|
|
void RenderNode::applyLayerPropertiesToLayer(TreeInfo& info) {
|
|
if (CC_LIKELY(!mLayer)) return;
|
|
|
|
const LayerProperties& props = properties().layerProperties();
|
|
mLayer->setAlpha(props.alpha(), props.xferMode());
|
|
mLayer->setColorFilter(props.colorFilter());
|
|
mLayer->setBlend(props.needsBlending());
|
|
}
|
|
|
|
void RenderNode::pushStagingDisplayListChanges(TreeInfo& info) {
|
|
if (mNeedsDisplayListDataSync) {
|
|
mNeedsDisplayListDataSync = false;
|
|
// Make sure we inc first so that we don't fluctuate between 0 and 1,
|
|
// which would thrash the layer cache
|
|
if (mStagingDisplayListData) {
|
|
for (size_t i = 0; i < mStagingDisplayListData->children().size(); i++) {
|
|
mStagingDisplayListData->children()[i]->mRenderNode->incParentRefCount();
|
|
}
|
|
}
|
|
// Damage with the old display list first then the new one to catch any
|
|
// changes in isRenderable or, in the future, bounds
|
|
damageSelf(info);
|
|
deleteDisplayListData();
|
|
// TODO: Remove this caches stuff
|
|
if (mStagingDisplayListData && mStagingDisplayListData->functors.size()) {
|
|
Caches::getInstance().registerFunctors(mStagingDisplayListData->functors.size());
|
|
}
|
|
mDisplayListData = mStagingDisplayListData;
|
|
mStagingDisplayListData = NULL;
|
|
if (mDisplayListData) {
|
|
for (size_t i = 0; i < mDisplayListData->functors.size(); i++) {
|
|
(*mDisplayListData->functors[i])(DrawGlInfo::kModeSync, NULL);
|
|
}
|
|
}
|
|
damageSelf(info);
|
|
}
|
|
}
|
|
|
|
void RenderNode::deleteDisplayListData() {
|
|
if (mDisplayListData) {
|
|
for (size_t i = 0; i < mDisplayListData->children().size(); i++) {
|
|
mDisplayListData->children()[i]->mRenderNode->decParentRefCount();
|
|
}
|
|
if (mDisplayListData->functors.size()) {
|
|
Caches::getInstance().unregisterFunctors(mDisplayListData->functors.size());
|
|
}
|
|
}
|
|
delete mDisplayListData;
|
|
mDisplayListData = NULL;
|
|
}
|
|
|
|
void RenderNode::prepareSubTree(TreeInfo& info, DisplayListData* subtree) {
|
|
if (subtree) {
|
|
TextureCache& cache = Caches::getInstance().textureCache;
|
|
info.out.hasFunctors |= subtree->functors.size();
|
|
// TODO: Fix ownedBitmapResources to not require disabling prepareTextures
|
|
// and thus falling out of async drawing path.
|
|
if (subtree->ownedBitmapResources.size()) {
|
|
info.prepareTextures = false;
|
|
}
|
|
for (size_t i = 0; info.prepareTextures && i < subtree->bitmapResources.size(); i++) {
|
|
info.prepareTextures = cache.prefetchAndMarkInUse(subtree->bitmapResources[i]);
|
|
}
|
|
for (size_t i = 0; i < subtree->children().size(); i++) {
|
|
DrawRenderNodeOp* op = subtree->children()[i];
|
|
RenderNode* childNode = op->mRenderNode;
|
|
info.damageAccumulator->pushTransform(&op->mTransformFromParent);
|
|
childNode->prepareTreeImpl(info);
|
|
info.damageAccumulator->popTransform();
|
|
}
|
|
}
|
|
}
|
|
|
|
void RenderNode::destroyHardwareResources() {
|
|
if (mLayer) {
|
|
LayerRenderer::destroyLayer(mLayer);
|
|
mLayer = NULL;
|
|
}
|
|
if (mDisplayListData) {
|
|
for (size_t i = 0; i < mDisplayListData->children().size(); i++) {
|
|
mDisplayListData->children()[i]->mRenderNode->destroyHardwareResources();
|
|
}
|
|
if (mNeedsDisplayListDataSync) {
|
|
// Next prepare tree we are going to push a new display list, so we can
|
|
// drop our current one now
|
|
deleteDisplayListData();
|
|
}
|
|
}
|
|
}
|
|
|
|
void RenderNode::decParentRefCount() {
|
|
LOG_ALWAYS_FATAL_IF(!mParentCount, "already 0!");
|
|
mParentCount--;
|
|
if (!mParentCount) {
|
|
// If a child of ours is being attached to our parent then this will incorrectly
|
|
// destroy its hardware resources. However, this situation is highly unlikely
|
|
// and the failure is "just" that the layer is re-created, so this should
|
|
// be safe enough
|
|
destroyHardwareResources();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For property operations, we pass a savecount of 0, since the operations aren't part of the
|
|
* displaylist, and thus don't have to compensate for the record-time/playback-time discrepancy in
|
|
* base saveCount (i.e., how RestoreToCount uses saveCount + properties().getCount())
|
|
*/
|
|
#define PROPERTY_SAVECOUNT 0
|
|
|
|
template <class T>
|
|
void RenderNode::setViewProperties(OpenGLRenderer& renderer, T& handler) {
|
|
#if DEBUG_DISPLAY_LIST
|
|
properties().debugOutputProperties(handler.level() + 1);
|
|
#endif
|
|
if (properties().getLeft() != 0 || properties().getTop() != 0) {
|
|
renderer.translate(properties().getLeft(), properties().getTop());
|
|
}
|
|
if (properties().getStaticMatrix()) {
|
|
renderer.concatMatrix(*properties().getStaticMatrix());
|
|
} else if (properties().getAnimationMatrix()) {
|
|
renderer.concatMatrix(*properties().getAnimationMatrix());
|
|
}
|
|
if (properties().hasTransformMatrix()) {
|
|
if (properties().isTransformTranslateOnly()) {
|
|
renderer.translate(properties().getTranslationX(), properties().getTranslationY());
|
|
} else {
|
|
renderer.concatMatrix(*properties().getTransformMatrix());
|
|
}
|
|
}
|
|
const bool isLayer = properties().layerProperties().type() != kLayerTypeNone;
|
|
int clipFlags = properties().getClippingFlags();
|
|
if (properties().getAlpha() < 1) {
|
|
if (isLayer) {
|
|
clipFlags &= ~CLIP_TO_BOUNDS; // bounds clipping done by layer
|
|
|
|
renderer.setOverrideLayerAlpha(properties().getAlpha());
|
|
} else if (!properties().getHasOverlappingRendering()) {
|
|
renderer.scaleAlpha(properties().getAlpha());
|
|
} else {
|
|
Rect layerBounds(0, 0, getWidth(), getHeight());
|
|
int saveFlags = SkCanvas::kHasAlphaLayer_SaveFlag;
|
|
if (clipFlags) {
|
|
saveFlags |= SkCanvas::kClipToLayer_SaveFlag;
|
|
properties().getClippingRectForFlags(clipFlags, &layerBounds);
|
|
clipFlags = 0; // all clipping done by saveLayer
|
|
}
|
|
|
|
ATRACE_FORMAT("%s alpha caused %ssaveLayer %dx%d",
|
|
getName(), clipFlags ? "" : "unclipped ",
|
|
(int)layerBounds.getWidth(), (int)layerBounds.getHeight());
|
|
|
|
SaveLayerOp* op = new (handler.allocator()) SaveLayerOp(
|
|
layerBounds.left, layerBounds.top, layerBounds.right, layerBounds.bottom,
|
|
properties().getAlpha() * 255, saveFlags);
|
|
handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds());
|
|
}
|
|
}
|
|
if (clipFlags) {
|
|
Rect clipRect;
|
|
properties().getClippingRectForFlags(clipFlags, &clipRect);
|
|
ClipRectOp* op = new (handler.allocator()) ClipRectOp(
|
|
clipRect.left, clipRect.top, clipRect.right, clipRect.bottom,
|
|
SkRegion::kIntersect_Op);
|
|
handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds());
|
|
}
|
|
|
|
// TODO: support nesting round rect clips
|
|
if (mProperties.getRevealClip().willClip()) {
|
|
Rect bounds;
|
|
mProperties.getRevealClip().getBounds(&bounds);
|
|
renderer.setClippingRoundRect(handler.allocator(), bounds, mProperties.getRevealClip().getRadius());
|
|
} else if (mProperties.getOutline().willClip()) {
|
|
renderer.setClippingOutline(handler.allocator(), &(mProperties.getOutline()));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Apply property-based transformations to input matrix
|
|
*
|
|
* If true3dTransform is set to true, the transform applied to the input matrix will use true 4x4
|
|
* matrix computation instead of the Skia 3x3 matrix + camera hackery.
|
|
*/
|
|
void RenderNode::applyViewPropertyTransforms(mat4& matrix, bool true3dTransform) const {
|
|
if (properties().getLeft() != 0 || properties().getTop() != 0) {
|
|
matrix.translate(properties().getLeft(), properties().getTop());
|
|
}
|
|
if (properties().getStaticMatrix()) {
|
|
mat4 stat(*properties().getStaticMatrix());
|
|
matrix.multiply(stat);
|
|
} else if (properties().getAnimationMatrix()) {
|
|
mat4 anim(*properties().getAnimationMatrix());
|
|
matrix.multiply(anim);
|
|
}
|
|
|
|
bool applyTranslationZ = true3dTransform && !MathUtils::isZero(properties().getZ());
|
|
if (properties().hasTransformMatrix() || applyTranslationZ) {
|
|
if (properties().isTransformTranslateOnly()) {
|
|
matrix.translate(properties().getTranslationX(), properties().getTranslationY(),
|
|
true3dTransform ? properties().getZ() : 0.0f);
|
|
} else {
|
|
if (!true3dTransform) {
|
|
matrix.multiply(*properties().getTransformMatrix());
|
|
} else {
|
|
mat4 true3dMat;
|
|
true3dMat.loadTranslate(
|
|
properties().getPivotX() + properties().getTranslationX(),
|
|
properties().getPivotY() + properties().getTranslationY(),
|
|
properties().getZ());
|
|
true3dMat.rotate(properties().getRotationX(), 1, 0, 0);
|
|
true3dMat.rotate(properties().getRotationY(), 0, 1, 0);
|
|
true3dMat.rotate(properties().getRotation(), 0, 0, 1);
|
|
true3dMat.scale(properties().getScaleX(), properties().getScaleY(), 1);
|
|
true3dMat.translate(-properties().getPivotX(), -properties().getPivotY());
|
|
|
|
matrix.multiply(true3dMat);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Organizes the DisplayList hierarchy to prepare for background projection reordering.
|
|
*
|
|
* This should be called before a call to defer() or drawDisplayList()
|
|
*
|
|
* Each DisplayList that serves as a 3d root builds its list of composited children,
|
|
* which are flagged to not draw in the standard draw loop.
|
|
*/
|
|
void RenderNode::computeOrdering() {
|
|
ATRACE_CALL();
|
|
mProjectedNodes.clear();
|
|
|
|
// TODO: create temporary DDLOp and call computeOrderingImpl on top DisplayList so that
|
|
// transform properties are applied correctly to top level children
|
|
if (mDisplayListData == NULL) return;
|
|
for (unsigned int i = 0; i < mDisplayListData->children().size(); i++) {
|
|
DrawRenderNodeOp* childOp = mDisplayListData->children()[i];
|
|
childOp->mRenderNode->computeOrderingImpl(childOp,
|
|
properties().getOutline().getPath(), &mProjectedNodes, &mat4::identity());
|
|
}
|
|
}
|
|
|
|
void RenderNode::computeOrderingImpl(
|
|
DrawRenderNodeOp* opState,
|
|
const SkPath* outlineOfProjectionSurface,
|
|
Vector<DrawRenderNodeOp*>* compositedChildrenOfProjectionSurface,
|
|
const mat4* transformFromProjectionSurface) {
|
|
mProjectedNodes.clear();
|
|
if (mDisplayListData == NULL || mDisplayListData->isEmpty()) return;
|
|
|
|
// TODO: should avoid this calculation in most cases
|
|
// TODO: just calculate single matrix, down to all leaf composited elements
|
|
Matrix4 localTransformFromProjectionSurface(*transformFromProjectionSurface);
|
|
localTransformFromProjectionSurface.multiply(opState->mTransformFromParent);
|
|
|
|
if (properties().getProjectBackwards()) {
|
|
// composited projectee, flag for out of order draw, save matrix, and store in proj surface
|
|
opState->mSkipInOrderDraw = true;
|
|
opState->mTransformFromCompositingAncestor.load(localTransformFromProjectionSurface);
|
|
compositedChildrenOfProjectionSurface->add(opState);
|
|
} else {
|
|
// standard in order draw
|
|
opState->mSkipInOrderDraw = false;
|
|
}
|
|
|
|
if (mDisplayListData->children().size() > 0) {
|
|
const bool isProjectionReceiver = mDisplayListData->projectionReceiveIndex >= 0;
|
|
bool haveAppliedPropertiesToProjection = false;
|
|
for (unsigned int i = 0; i < mDisplayListData->children().size(); i++) {
|
|
DrawRenderNodeOp* childOp = mDisplayListData->children()[i];
|
|
RenderNode* child = childOp->mRenderNode;
|
|
|
|
const SkPath* projectionOutline = NULL;
|
|
Vector<DrawRenderNodeOp*>* projectionChildren = NULL;
|
|
const mat4* projectionTransform = NULL;
|
|
if (isProjectionReceiver && !child->properties().getProjectBackwards()) {
|
|
// if receiving projections, collect projecting descendent
|
|
|
|
// Note that if a direct descendent is projecting backwards, we pass it's
|
|
// grandparent projection collection, since it shouldn't project onto it's
|
|
// parent, where it will already be drawing.
|
|
projectionOutline = properties().getOutline().getPath();
|
|
projectionChildren = &mProjectedNodes;
|
|
projectionTransform = &mat4::identity();
|
|
} else {
|
|
if (!haveAppliedPropertiesToProjection) {
|
|
applyViewPropertyTransforms(localTransformFromProjectionSurface);
|
|
haveAppliedPropertiesToProjection = true;
|
|
}
|
|
projectionOutline = outlineOfProjectionSurface;
|
|
projectionChildren = compositedChildrenOfProjectionSurface;
|
|
projectionTransform = &localTransformFromProjectionSurface;
|
|
}
|
|
child->computeOrderingImpl(childOp,
|
|
projectionOutline, projectionChildren, projectionTransform);
|
|
}
|
|
}
|
|
}
|
|
|
|
class DeferOperationHandler {
|
|
public:
|
|
DeferOperationHandler(DeferStateStruct& deferStruct, int level)
|
|
: mDeferStruct(deferStruct), mLevel(level) {}
|
|
inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) {
|
|
operation->defer(mDeferStruct, saveCount, mLevel, clipToBounds);
|
|
}
|
|
inline LinearAllocator& allocator() { return *(mDeferStruct.mAllocator); }
|
|
inline void startMark(const char* name) {} // do nothing
|
|
inline void endMark() {}
|
|
inline int level() { return mLevel; }
|
|
inline int replayFlags() { return mDeferStruct.mReplayFlags; }
|
|
inline SkPath* allocPathForFrame() { return mDeferStruct.allocPathForFrame(); }
|
|
|
|
private:
|
|
DeferStateStruct& mDeferStruct;
|
|
const int mLevel;
|
|
};
|
|
|
|
void RenderNode::defer(DeferStateStruct& deferStruct, const int level) {
|
|
DeferOperationHandler handler(deferStruct, level);
|
|
issueOperations<DeferOperationHandler>(deferStruct.mRenderer, handler);
|
|
}
|
|
|
|
class ReplayOperationHandler {
|
|
public:
|
|
ReplayOperationHandler(ReplayStateStruct& replayStruct, int level)
|
|
: mReplayStruct(replayStruct), mLevel(level) {}
|
|
inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) {
|
|
#if DEBUG_DISPLAY_LIST_OPS_AS_EVENTS
|
|
mReplayStruct.mRenderer.eventMark(operation->name());
|
|
#endif
|
|
operation->replay(mReplayStruct, saveCount, mLevel, clipToBounds);
|
|
}
|
|
inline LinearAllocator& allocator() { return *(mReplayStruct.mAllocator); }
|
|
inline void startMark(const char* name) {
|
|
mReplayStruct.mRenderer.startMark(name);
|
|
}
|
|
inline void endMark() {
|
|
mReplayStruct.mRenderer.endMark();
|
|
}
|
|
inline int level() { return mLevel; }
|
|
inline int replayFlags() { return mReplayStruct.mReplayFlags; }
|
|
inline SkPath* allocPathForFrame() { return mReplayStruct.allocPathForFrame(); }
|
|
|
|
private:
|
|
ReplayStateStruct& mReplayStruct;
|
|
const int mLevel;
|
|
};
|
|
|
|
void RenderNode::replay(ReplayStateStruct& replayStruct, const int level) {
|
|
ReplayOperationHandler handler(replayStruct, level);
|
|
issueOperations<ReplayOperationHandler>(replayStruct.mRenderer, handler);
|
|
}
|
|
|
|
void RenderNode::buildZSortedChildList(const DisplayListData::Chunk& chunk,
|
|
Vector<ZDrawRenderNodeOpPair>& zTranslatedNodes) {
|
|
if (chunk.beginChildIndex == chunk.endChildIndex) return;
|
|
|
|
for (unsigned int i = chunk.beginChildIndex; i < chunk.endChildIndex; i++) {
|
|
DrawRenderNodeOp* childOp = mDisplayListData->children()[i];
|
|
RenderNode* child = childOp->mRenderNode;
|
|
float childZ = child->properties().getZ();
|
|
|
|
if (!MathUtils::isZero(childZ) && chunk.reorderChildren) {
|
|
zTranslatedNodes.add(ZDrawRenderNodeOpPair(childZ, childOp));
|
|
childOp->mSkipInOrderDraw = true;
|
|
} else if (!child->properties().getProjectBackwards()) {
|
|
// regular, in order drawing DisplayList
|
|
childOp->mSkipInOrderDraw = false;
|
|
}
|
|
}
|
|
|
|
// Z sort any 3d children (stable-ness makes z compare fall back to standard drawing order)
|
|
std::stable_sort(zTranslatedNodes.begin(), zTranslatedNodes.end());
|
|
}
|
|
|
|
template <class T>
|
|
void RenderNode::issueDrawShadowOperation(const Matrix4& transformFromParent, T& handler) {
|
|
if (properties().getAlpha() <= 0.0f
|
|
|| properties().getOutline().getAlpha() <= 0.0f
|
|
|| !properties().getOutline().getPath()) {
|
|
// no shadow to draw
|
|
return;
|
|
}
|
|
|
|
mat4 shadowMatrixXY(transformFromParent);
|
|
applyViewPropertyTransforms(shadowMatrixXY);
|
|
|
|
// Z matrix needs actual 3d transformation, so mapped z values will be correct
|
|
mat4 shadowMatrixZ(transformFromParent);
|
|
applyViewPropertyTransforms(shadowMatrixZ, true);
|
|
|
|
const SkPath* casterOutlinePath = properties().getOutline().getPath();
|
|
const SkPath* revealClipPath = properties().getRevealClip().getPath();
|
|
if (revealClipPath && revealClipPath->isEmpty()) return;
|
|
|
|
float casterAlpha = properties().getAlpha() * properties().getOutline().getAlpha();
|
|
|
|
|
|
// holds temporary SkPath to store the result of intersections
|
|
SkPath* frameAllocatedPath = NULL;
|
|
const SkPath* outlinePath = casterOutlinePath;
|
|
|
|
// intersect the outline with the reveal clip, if present
|
|
if (revealClipPath) {
|
|
frameAllocatedPath = handler.allocPathForFrame();
|
|
|
|
Op(*outlinePath, *revealClipPath, kIntersect_PathOp, frameAllocatedPath);
|
|
outlinePath = frameAllocatedPath;
|
|
}
|
|
|
|
// intersect the outline with the clipBounds, if present
|
|
if (properties().getClippingFlags() & CLIP_TO_CLIP_BOUNDS) {
|
|
if (!frameAllocatedPath) {
|
|
frameAllocatedPath = handler.allocPathForFrame();
|
|
}
|
|
|
|
Rect clipBounds;
|
|
properties().getClippingRectForFlags(CLIP_TO_CLIP_BOUNDS, &clipBounds);
|
|
SkPath clipBoundsPath;
|
|
clipBoundsPath.addRect(clipBounds.left, clipBounds.top,
|
|
clipBounds.right, clipBounds.bottom);
|
|
|
|
Op(*outlinePath, clipBoundsPath, kIntersect_PathOp, frameAllocatedPath);
|
|
outlinePath = frameAllocatedPath;
|
|
}
|
|
|
|
DisplayListOp* shadowOp = new (handler.allocator()) DrawShadowOp(
|
|
shadowMatrixXY, shadowMatrixZ, casterAlpha, outlinePath);
|
|
handler(shadowOp, PROPERTY_SAVECOUNT, properties().getClipToBounds());
|
|
}
|
|
|
|
#define SHADOW_DELTA 0.1f
|
|
|
|
template <class T>
|
|
void RenderNode::issueOperationsOf3dChildren(ChildrenSelectMode mode,
|
|
const Matrix4& initialTransform, const Vector<ZDrawRenderNodeOpPair>& zTranslatedNodes,
|
|
OpenGLRenderer& renderer, T& handler) {
|
|
const int size = zTranslatedNodes.size();
|
|
if (size == 0
|
|
|| (mode == kNegativeZChildren && zTranslatedNodes[0].key > 0.0f)
|
|
|| (mode == kPositiveZChildren && zTranslatedNodes[size - 1].key < 0.0f)) {
|
|
// no 3d children to draw
|
|
return;
|
|
}
|
|
|
|
// Apply the base transform of the parent of the 3d children. This isolates
|
|
// 3d children of the current chunk from transformations made in previous chunks.
|
|
int rootRestoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag);
|
|
renderer.setMatrix(initialTransform);
|
|
|
|
/**
|
|
* Draw shadows and (potential) casters mostly in order, but allow the shadows of casters
|
|
* with very similar Z heights to draw together.
|
|
*
|
|
* This way, if Views A & B have the same Z height and are both casting shadows, the shadows are
|
|
* underneath both, and neither's shadow is drawn on top of the other.
|
|
*/
|
|
const size_t nonNegativeIndex = findNonNegativeIndex(zTranslatedNodes);
|
|
size_t drawIndex, shadowIndex, endIndex;
|
|
if (mode == kNegativeZChildren) {
|
|
drawIndex = 0;
|
|
endIndex = nonNegativeIndex;
|
|
shadowIndex = endIndex; // draw no shadows
|
|
} else {
|
|
drawIndex = nonNegativeIndex;
|
|
endIndex = size;
|
|
shadowIndex = drawIndex; // potentially draw shadow for each pos Z child
|
|
}
|
|
|
|
DISPLAY_LIST_LOGD("%*s%d %s 3d children:", (handler.level() + 1) * 2, "",
|
|
endIndex - drawIndex, mode == kNegativeZChildren ? "negative" : "positive");
|
|
|
|
float lastCasterZ = 0.0f;
|
|
while (shadowIndex < endIndex || drawIndex < endIndex) {
|
|
if (shadowIndex < endIndex) {
|
|
DrawRenderNodeOp* casterOp = zTranslatedNodes[shadowIndex].value;
|
|
RenderNode* caster = casterOp->mRenderNode;
|
|
const float casterZ = zTranslatedNodes[shadowIndex].key;
|
|
// attempt to render the shadow if the caster about to be drawn is its caster,
|
|
// OR if its caster's Z value is similar to the previous potential caster
|
|
if (shadowIndex == drawIndex || casterZ - lastCasterZ < SHADOW_DELTA) {
|
|
caster->issueDrawShadowOperation(casterOp->mTransformFromParent, handler);
|
|
|
|
lastCasterZ = casterZ; // must do this even if current caster not casting a shadow
|
|
shadowIndex++;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// only the actual child DL draw needs to be in save/restore,
|
|
// since it modifies the renderer's matrix
|
|
int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag);
|
|
|
|
DrawRenderNodeOp* childOp = zTranslatedNodes[drawIndex].value;
|
|
RenderNode* child = childOp->mRenderNode;
|
|
|
|
renderer.concatMatrix(childOp->mTransformFromParent);
|
|
childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone
|
|
handler(childOp, renderer.getSaveCount() - 1, properties().getClipToBounds());
|
|
childOp->mSkipInOrderDraw = true;
|
|
|
|
renderer.restoreToCount(restoreTo);
|
|
drawIndex++;
|
|
}
|
|
renderer.restoreToCount(rootRestoreTo);
|
|
}
|
|
|
|
template <class T>
|
|
void RenderNode::issueOperationsOfProjectedChildren(OpenGLRenderer& renderer, T& handler) {
|
|
DISPLAY_LIST_LOGD("%*s%d projected children:", (handler.level() + 1) * 2, "", mProjectedNodes.size());
|
|
const SkPath* projectionReceiverOutline = properties().getOutline().getPath();
|
|
int restoreTo = renderer.getSaveCount();
|
|
|
|
LinearAllocator& alloc = handler.allocator();
|
|
handler(new (alloc) SaveOp(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag),
|
|
PROPERTY_SAVECOUNT, properties().getClipToBounds());
|
|
|
|
// Transform renderer to match background we're projecting onto
|
|
// (by offsetting canvas by translationX/Y of background rendernode, since only those are set)
|
|
const DisplayListOp* op =
|
|
(mDisplayListData->displayListOps[mDisplayListData->projectionReceiveIndex]);
|
|
const DrawRenderNodeOp* backgroundOp = reinterpret_cast<const DrawRenderNodeOp*>(op);
|
|
const RenderProperties& backgroundProps = backgroundOp->mRenderNode->properties();
|
|
renderer.translate(backgroundProps.getTranslationX(), backgroundProps.getTranslationY());
|
|
|
|
// If the projection reciever has an outline, we mask each of the projected rendernodes to it
|
|
// Either with clipRect, or special saveLayer masking
|
|
if (projectionReceiverOutline != NULL) {
|
|
const SkRect& outlineBounds = projectionReceiverOutline->getBounds();
|
|
if (projectionReceiverOutline->isRect(NULL)) {
|
|
// mask to the rect outline simply with clipRect
|
|
ClipRectOp* clipOp = new (alloc) ClipRectOp(
|
|
outlineBounds.left(), outlineBounds.top(),
|
|
outlineBounds.right(), outlineBounds.bottom(), SkRegion::kIntersect_Op);
|
|
handler(clipOp, PROPERTY_SAVECOUNT, properties().getClipToBounds());
|
|
} else {
|
|
// wrap the projected RenderNodes with a SaveLayer that will mask to the outline
|
|
SaveLayerOp* op = new (alloc) SaveLayerOp(
|
|
outlineBounds.left(), outlineBounds.top(),
|
|
outlineBounds.right(), outlineBounds.bottom(),
|
|
255, SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag | SkCanvas::kARGB_ClipLayer_SaveFlag);
|
|
op->setMask(projectionReceiverOutline);
|
|
handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds());
|
|
|
|
/* TODO: add optimizations here to take advantage of placement/size of projected
|
|
* children (which may shrink saveLayer area significantly). This is dependent on
|
|
* passing actual drawing/dirtying bounds of projected content down to native.
|
|
*/
|
|
}
|
|
}
|
|
|
|
// draw projected nodes
|
|
for (size_t i = 0; i < mProjectedNodes.size(); i++) {
|
|
DrawRenderNodeOp* childOp = mProjectedNodes[i];
|
|
|
|
// matrix save, concat, and restore can be done safely without allocating operations
|
|
int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag);
|
|
renderer.concatMatrix(childOp->mTransformFromCompositingAncestor);
|
|
childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone
|
|
handler(childOp, renderer.getSaveCount() - 1, properties().getClipToBounds());
|
|
childOp->mSkipInOrderDraw = true;
|
|
renderer.restoreToCount(restoreTo);
|
|
}
|
|
|
|
if (projectionReceiverOutline != NULL) {
|
|
handler(new (alloc) RestoreToCountOp(restoreTo),
|
|
PROPERTY_SAVECOUNT, properties().getClipToBounds());
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This function serves both defer and replay modes, and will organize the displayList's component
|
|
* operations for a single frame:
|
|
*
|
|
* Every 'simple' state operation that affects just the matrix and alpha (or other factors of
|
|
* DeferredDisplayState) may be issued directly to the renderer, but complex operations (with custom
|
|
* defer logic) and operations in displayListOps are issued through the 'handler' which handles the
|
|
* defer vs replay logic, per operation
|
|
*/
|
|
template <class T>
|
|
void RenderNode::issueOperations(OpenGLRenderer& renderer, T& handler) {
|
|
const int level = handler.level();
|
|
if (mDisplayListData->isEmpty()) {
|
|
DISPLAY_LIST_LOGD("%*sEmpty display list (%p, %s)", level * 2, "", this, getName());
|
|
return;
|
|
}
|
|
|
|
const bool drawLayer = (mLayer && (&renderer != mLayer->renderer));
|
|
// If we are updating the contents of mLayer, we don't want to apply any of
|
|
// the RenderNode's properties to this issueOperations pass. Those will all
|
|
// be applied when the layer is drawn, aka when this is true.
|
|
const bool useViewProperties = (!mLayer || drawLayer);
|
|
if (useViewProperties) {
|
|
const Outline& outline = properties().getOutline();
|
|
if (properties().getAlpha() <= 0 || (outline.getShouldClip() && outline.isEmpty())) {
|
|
DISPLAY_LIST_LOGD("%*sRejected display list (%p, %s)", level * 2, "", this, getName());
|
|
return;
|
|
}
|
|
}
|
|
|
|
handler.startMark(getName());
|
|
|
|
#if DEBUG_DISPLAY_LIST
|
|
const Rect& clipRect = renderer.getLocalClipBounds();
|
|
DISPLAY_LIST_LOGD("%*sStart display list (%p, %s), localClipBounds: %.0f, %.0f, %.0f, %.0f",
|
|
level * 2, "", this, getName(),
|
|
clipRect.left, clipRect.top, clipRect.right, clipRect.bottom);
|
|
#endif
|
|
|
|
LinearAllocator& alloc = handler.allocator();
|
|
int restoreTo = renderer.getSaveCount();
|
|
handler(new (alloc) SaveOp(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag),
|
|
PROPERTY_SAVECOUNT, properties().getClipToBounds());
|
|
|
|
DISPLAY_LIST_LOGD("%*sSave %d %d", (level + 1) * 2, "",
|
|
SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag, restoreTo);
|
|
|
|
if (useViewProperties) {
|
|
setViewProperties<T>(renderer, handler);
|
|
}
|
|
|
|
bool quickRejected = properties().getClipToBounds()
|
|
&& renderer.quickRejectConservative(0, 0, properties().getWidth(), properties().getHeight());
|
|
if (!quickRejected) {
|
|
Matrix4 initialTransform(*(renderer.currentTransform()));
|
|
|
|
if (drawLayer) {
|
|
handler(new (alloc) DrawLayerOp(mLayer, 0, 0),
|
|
renderer.getSaveCount() - 1, properties().getClipToBounds());
|
|
} else {
|
|
const int saveCountOffset = renderer.getSaveCount() - 1;
|
|
const int projectionReceiveIndex = mDisplayListData->projectionReceiveIndex;
|
|
DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance();
|
|
for (size_t chunkIndex = 0; chunkIndex < mDisplayListData->getChunks().size(); chunkIndex++) {
|
|
const DisplayListData::Chunk& chunk = mDisplayListData->getChunks()[chunkIndex];
|
|
|
|
Vector<ZDrawRenderNodeOpPair> zTranslatedNodes;
|
|
buildZSortedChildList(chunk, zTranslatedNodes);
|
|
|
|
issueOperationsOf3dChildren(kNegativeZChildren,
|
|
initialTransform, zTranslatedNodes, renderer, handler);
|
|
|
|
|
|
for (int opIndex = chunk.beginOpIndex; opIndex < chunk.endOpIndex; opIndex++) {
|
|
DisplayListOp *op = mDisplayListData->displayListOps[opIndex];
|
|
#if DEBUG_DISPLAY_LIST
|
|
op->output(level + 1);
|
|
#endif
|
|
logBuffer.writeCommand(level, op->name());
|
|
handler(op, saveCountOffset, properties().getClipToBounds());
|
|
|
|
if (CC_UNLIKELY(!mProjectedNodes.isEmpty() && opIndex == projectionReceiveIndex)) {
|
|
issueOperationsOfProjectedChildren(renderer, handler);
|
|
}
|
|
}
|
|
|
|
issueOperationsOf3dChildren(kPositiveZChildren,
|
|
initialTransform, zTranslatedNodes, renderer, handler);
|
|
}
|
|
}
|
|
}
|
|
|
|
DISPLAY_LIST_LOGD("%*sRestoreToCount %d", (level + 1) * 2, "", restoreTo);
|
|
handler(new (alloc) RestoreToCountOp(restoreTo),
|
|
PROPERTY_SAVECOUNT, properties().getClipToBounds());
|
|
renderer.setOverrideLayerAlpha(1.0f);
|
|
|
|
DISPLAY_LIST_LOGD("%*sDone (%p, %s)", level * 2, "", this, getName());
|
|
handler.endMark();
|
|
}
|
|
|
|
} /* namespace uirenderer */
|
|
} /* namespace android */
|