Now the theta = 0 should be on +x axis. And cos(theta) should correctly represent x value. Without this fix, the poly theta (from atan2) can be wrongly rotated 90 degrees. Also, make sure the incoming polygon is CW for the shadow system. This fix visual artifacts in recent regression for spot shadows. bug:13553955 Change-Id: I9bbf54db094e7f133326da4dae4610962da849c1
932 lines
32 KiB
C++
932 lines
32 KiB
C++
/*
|
|
* Copyright (C) 2014 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "OpenGLRenderer"
|
|
|
|
#define SHADOW_SHRINK_SCALE 0.1f
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <utils/Log.h>
|
|
|
|
#include "ShadowTessellator.h"
|
|
#include "SpotShadow.h"
|
|
#include "Vertex.h"
|
|
|
|
namespace android {
|
|
namespace uirenderer {
|
|
|
|
static const double EPSILON = 1e-7;
|
|
|
|
/**
|
|
* Calculate the angle between and x and a y coordinate.
|
|
* The atan2 range from -PI to PI.
|
|
*/
|
|
static float angle(const Vector2& point, const Vector2& center) {
|
|
return atan2(point.y - center.y, point.x - center.x);
|
|
}
|
|
|
|
/**
|
|
* Calculate the intersection of a ray with the line segment defined by two points.
|
|
*
|
|
* Returns a negative value in error conditions.
|
|
|
|
* @param rayOrigin The start of the ray
|
|
* @param dx The x vector of the ray
|
|
* @param dy The y vector of the ray
|
|
* @param p1 The first point defining the line segment
|
|
* @param p2 The second point defining the line segment
|
|
* @return The distance along the ray if it intersects with the line segment, negative if otherwise
|
|
*/
|
|
static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy,
|
|
const Vector2& p1, const Vector2& p2) {
|
|
// The math below is derived from solving this formula, basically the
|
|
// intersection point should stay on both the ray and the edge of (p1, p2).
|
|
// solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
|
|
|
|
double divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
|
|
if (divisor == 0) return -1.0f; // error, invalid divisor
|
|
|
|
#if DEBUG_SHADOW
|
|
double interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
|
|
if (interpVal < 0 || interpVal > 1) {
|
|
ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal);
|
|
}
|
|
#endif
|
|
|
|
double distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
|
|
rayOrigin.x * (p2.y - p1.y)) / divisor;
|
|
|
|
return distance; // may be negative in error cases
|
|
}
|
|
|
|
/**
|
|
* Sort points by their X coordinates
|
|
*
|
|
* @param points the points as a Vector2 array.
|
|
* @param pointsLength the number of vertices of the polygon.
|
|
*/
|
|
void SpotShadow::xsort(Vector2* points, int pointsLength) {
|
|
quicksortX(points, 0, pointsLength - 1);
|
|
}
|
|
|
|
/**
|
|
* compute the convex hull of a collection of Points
|
|
*
|
|
* @param points the points as a Vector2 array.
|
|
* @param pointsLength the number of vertices of the polygon.
|
|
* @param retPoly pre allocated array of floats to put the vertices
|
|
* @return the number of points in the polygon 0 if no intersection
|
|
*/
|
|
int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
|
|
xsort(points, pointsLength);
|
|
int n = pointsLength;
|
|
Vector2 lUpper[n];
|
|
lUpper[0] = points[0];
|
|
lUpper[1] = points[1];
|
|
|
|
int lUpperSize = 2;
|
|
|
|
for (int i = 2; i < n; i++) {
|
|
lUpper[lUpperSize] = points[i];
|
|
lUpperSize++;
|
|
|
|
while (lUpperSize > 2 && !ccw(
|
|
lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y,
|
|
lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y,
|
|
lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
|
|
// Remove the middle point of the three last
|
|
lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
|
|
lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
|
|
lUpperSize--;
|
|
}
|
|
}
|
|
|
|
Vector2 lLower[n];
|
|
lLower[0] = points[n - 1];
|
|
lLower[1] = points[n - 2];
|
|
|
|
int lLowerSize = 2;
|
|
|
|
for (int i = n - 3; i >= 0; i--) {
|
|
lLower[lLowerSize] = points[i];
|
|
lLowerSize++;
|
|
|
|
while (lLowerSize > 2 && !ccw(
|
|
lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y,
|
|
lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y,
|
|
lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
|
|
// Remove the middle point of the three last
|
|
lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
|
|
lLowerSize--;
|
|
}
|
|
}
|
|
|
|
// output points in CW ordering
|
|
const int total = lUpperSize + lLowerSize - 2;
|
|
int outIndex = total - 1;
|
|
for (int i = 0; i < lUpperSize; i++) {
|
|
retPoly[outIndex] = lUpper[i];
|
|
outIndex--;
|
|
}
|
|
|
|
for (int i = 1; i < lLowerSize - 1; i++) {
|
|
retPoly[outIndex] = lLower[i];
|
|
outIndex--;
|
|
}
|
|
// TODO: Add test harness which verify that all the points are inside the hull.
|
|
return total;
|
|
}
|
|
|
|
/**
|
|
* Test whether the 3 points form a counter clockwise turn.
|
|
*
|
|
* @return true if a right hand turn
|
|
*/
|
|
bool SpotShadow::ccw(double ax, double ay, double bx, double by,
|
|
double cx, double cy) {
|
|
return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
|
|
}
|
|
|
|
/**
|
|
* Calculates the intersection of poly1 with poly2 and put in poly2.
|
|
* Note that both poly1 and poly2 must be in CW order already!
|
|
*
|
|
* @param poly1 The 1st polygon, as a Vector2 array.
|
|
* @param poly1Length The number of vertices of 1st polygon.
|
|
* @param poly2 The 2nd and output polygon, as a Vector2 array.
|
|
* @param poly2Length The number of vertices of 2nd polygon.
|
|
* @return number of vertices in output polygon as poly2.
|
|
*/
|
|
int SpotShadow::intersection(const Vector2* poly1, int poly1Length,
|
|
Vector2* poly2, int poly2Length) {
|
|
#if DEBUG_SHADOW
|
|
if (!ShadowTessellator::isClockwise(poly1, poly1Length)) {
|
|
ALOGW("Poly1 is not clockwise! Intersection is wrong!");
|
|
}
|
|
if (!ShadowTessellator::isClockwise(poly2, poly2Length)) {
|
|
ALOGW("Poly2 is not clockwise! Intersection is wrong!");
|
|
}
|
|
#endif
|
|
Vector2 poly[poly1Length * poly2Length + 2];
|
|
int count = 0;
|
|
int pcount = 0;
|
|
|
|
// If one vertex from one polygon sits inside another polygon, add it and
|
|
// count them.
|
|
for (int i = 0; i < poly1Length; i++) {
|
|
if (testPointInsidePolygon(poly1[i], poly2, poly2Length)) {
|
|
poly[count] = poly1[i];
|
|
count++;
|
|
pcount++;
|
|
|
|
}
|
|
}
|
|
|
|
int insidePoly2 = pcount;
|
|
for (int i = 0; i < poly2Length; i++) {
|
|
if (testPointInsidePolygon(poly2[i], poly1, poly1Length)) {
|
|
poly[count] = poly2[i];
|
|
count++;
|
|
}
|
|
}
|
|
|
|
int insidePoly1 = count - insidePoly2;
|
|
// If all vertices from poly1 are inside poly2, then just return poly1.
|
|
if (insidePoly2 == poly1Length) {
|
|
memcpy(poly2, poly1, poly1Length * sizeof(Vector2));
|
|
return poly1Length;
|
|
}
|
|
|
|
// If all vertices from poly2 are inside poly1, then just return poly2.
|
|
if (insidePoly1 == poly2Length) {
|
|
return poly2Length;
|
|
}
|
|
|
|
// Since neither polygon fully contain the other one, we need to add all the
|
|
// intersection points.
|
|
Vector2 intersection;
|
|
for (int i = 0; i < poly2Length; i++) {
|
|
for (int j = 0; j < poly1Length; j++) {
|
|
int poly2LineStart = i;
|
|
int poly2LineEnd = ((i + 1) % poly2Length);
|
|
int poly1LineStart = j;
|
|
int poly1LineEnd = ((j + 1) % poly1Length);
|
|
bool found = lineIntersection(
|
|
poly2[poly2LineStart].x, poly2[poly2LineStart].y,
|
|
poly2[poly2LineEnd].x, poly2[poly2LineEnd].y,
|
|
poly1[poly1LineStart].x, poly1[poly1LineStart].y,
|
|
poly1[poly1LineEnd].x, poly1[poly1LineEnd].y,
|
|
intersection);
|
|
if (found) {
|
|
poly[count].x = intersection.x;
|
|
poly[count].y = intersection.y;
|
|
count++;
|
|
} else {
|
|
Vector2 delta = poly2[i] - poly1[j];
|
|
if (delta.lengthSquared() < EPSILON) {
|
|
poly[count] = poly2[i];
|
|
count++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (count == 0) {
|
|
return 0;
|
|
}
|
|
|
|
// Sort the result polygon around the center.
|
|
Vector2 center(0.0f, 0.0f);
|
|
for (int i = 0; i < count; i++) {
|
|
center += poly[i];
|
|
}
|
|
center /= count;
|
|
sort(poly, count, center);
|
|
|
|
#if DEBUG_SHADOW
|
|
// Since poly2 is overwritten as the result, we need to save a copy to do
|
|
// our verification.
|
|
Vector2 oldPoly2[poly2Length];
|
|
int oldPoly2Length = poly2Length;
|
|
memcpy(oldPoly2, poly2, sizeof(Vector2) * poly2Length);
|
|
#endif
|
|
|
|
// Filter the result out from poly and put it into poly2.
|
|
poly2[0] = poly[0];
|
|
int lastOutputIndex = 0;
|
|
for (int i = 1; i < count; i++) {
|
|
Vector2 delta = poly[i] - poly2[lastOutputIndex];
|
|
if (delta.lengthSquared() >= EPSILON) {
|
|
poly2[++lastOutputIndex] = poly[i];
|
|
} else {
|
|
// If the vertices are too close, pick the inner one, because the
|
|
// inner one is more likely to be an intersection point.
|
|
Vector2 delta1 = poly[i] - center;
|
|
Vector2 delta2 = poly2[lastOutputIndex] - center;
|
|
if (delta1.lengthSquared() < delta2.lengthSquared()) {
|
|
poly2[lastOutputIndex] = poly[i];
|
|
}
|
|
}
|
|
}
|
|
int resultLength = lastOutputIndex + 1;
|
|
|
|
#if DEBUG_SHADOW
|
|
testConvex(poly2, resultLength, "intersection");
|
|
testConvex(poly1, poly1Length, "input poly1");
|
|
testConvex(oldPoly2, oldPoly2Length, "input poly2");
|
|
|
|
testIntersection(poly1, poly1Length, oldPoly2, oldPoly2Length, poly2, resultLength);
|
|
#endif
|
|
|
|
return resultLength;
|
|
}
|
|
|
|
/**
|
|
* Sort points about a center point
|
|
*
|
|
* @param poly The in and out polyogon as a Vector2 array.
|
|
* @param polyLength The number of vertices of the polygon.
|
|
* @param center the center ctr[0] = x , ctr[1] = y to sort around.
|
|
*/
|
|
void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
|
|
quicksortCirc(poly, 0, polyLength - 1, center);
|
|
}
|
|
|
|
/**
|
|
* Swap points pointed to by i and j
|
|
*/
|
|
void SpotShadow::swap(Vector2* points, int i, int j) {
|
|
Vector2 temp = points[i];
|
|
points[i] = points[j];
|
|
points[j] = temp;
|
|
}
|
|
|
|
/**
|
|
* quick sort implementation about the center.
|
|
*/
|
|
void SpotShadow::quicksortCirc(Vector2* points, int low, int high,
|
|
const Vector2& center) {
|
|
int i = low, j = high;
|
|
int p = low + (high - low) / 2;
|
|
float pivot = angle(points[p], center);
|
|
while (i <= j) {
|
|
while (angle(points[i], center) > pivot) {
|
|
i++;
|
|
}
|
|
while (angle(points[j], center) < pivot) {
|
|
j--;
|
|
}
|
|
|
|
if (i <= j) {
|
|
swap(points, i, j);
|
|
i++;
|
|
j--;
|
|
}
|
|
}
|
|
if (low < j) quicksortCirc(points, low, j, center);
|
|
if (i < high) quicksortCirc(points, i, high, center);
|
|
}
|
|
|
|
/**
|
|
* Sort points by x axis
|
|
*
|
|
* @param points points to sort
|
|
* @param low start index
|
|
* @param high end index
|
|
*/
|
|
void SpotShadow::quicksortX(Vector2* points, int low, int high) {
|
|
int i = low, j = high;
|
|
int p = low + (high - low) / 2;
|
|
float pivot = points[p].x;
|
|
while (i <= j) {
|
|
while (points[i].x < pivot) {
|
|
i++;
|
|
}
|
|
while (points[j].x > pivot) {
|
|
j--;
|
|
}
|
|
|
|
if (i <= j) {
|
|
swap(points, i, j);
|
|
i++;
|
|
j--;
|
|
}
|
|
}
|
|
if (low < j) quicksortX(points, low, j);
|
|
if (i < high) quicksortX(points, i, high);
|
|
}
|
|
|
|
/**
|
|
* Test whether a point is inside the polygon.
|
|
*
|
|
* @param testPoint the point to test
|
|
* @param poly the polygon
|
|
* @return true if the testPoint is inside the poly.
|
|
*/
|
|
bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint,
|
|
const Vector2* poly, int len) {
|
|
bool c = false;
|
|
double testx = testPoint.x;
|
|
double testy = testPoint.y;
|
|
for (int i = 0, j = len - 1; i < len; j = i++) {
|
|
double startX = poly[j].x;
|
|
double startY = poly[j].y;
|
|
double endX = poly[i].x;
|
|
double endY = poly[i].y;
|
|
|
|
if (((endY > testy) != (startY > testy)) &&
|
|
(testx < (startX - endX) * (testy - endY)
|
|
/ (startY - endY) + endX)) {
|
|
c = !c;
|
|
}
|
|
}
|
|
return c;
|
|
}
|
|
|
|
/**
|
|
* Make the polygon turn clockwise.
|
|
*
|
|
* @param polygon the polygon as a Vector2 array.
|
|
* @param len the number of points of the polygon
|
|
*/
|
|
void SpotShadow::makeClockwise(Vector2* polygon, int len) {
|
|
if (polygon == 0 || len == 0) {
|
|
return;
|
|
}
|
|
if (!ShadowTessellator::isClockwise(polygon, len)) {
|
|
reverse(polygon, len);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Reverse the polygon
|
|
*
|
|
* @param polygon the polygon as a Vector2 array
|
|
* @param len the number of points of the polygon
|
|
*/
|
|
void SpotShadow::reverse(Vector2* polygon, int len) {
|
|
int n = len / 2;
|
|
for (int i = 0; i < n; i++) {
|
|
Vector2 tmp = polygon[i];
|
|
int k = len - 1 - i;
|
|
polygon[i] = polygon[k];
|
|
polygon[k] = tmp;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Intersects two lines in parametric form. This function is called in a tight
|
|
* loop, and we need double precision to get things right.
|
|
*
|
|
* @param x1 the x coordinate point 1 of line 1
|
|
* @param y1 the y coordinate point 1 of line 1
|
|
* @param x2 the x coordinate point 2 of line 1
|
|
* @param y2 the y coordinate point 2 of line 1
|
|
* @param x3 the x coordinate point 1 of line 2
|
|
* @param y3 the y coordinate point 1 of line 2
|
|
* @param x4 the x coordinate point 2 of line 2
|
|
* @param y4 the y coordinate point 2 of line 2
|
|
* @param ret the x,y location of the intersection
|
|
* @return true if it found an intersection
|
|
*/
|
|
inline bool SpotShadow::lineIntersection(double x1, double y1, double x2, double y2,
|
|
double x3, double y3, double x4, double y4, Vector2& ret) {
|
|
double d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4);
|
|
if (d == 0.0) return false;
|
|
|
|
double dx = (x1 * y2 - y1 * x2);
|
|
double dy = (x3 * y4 - y3 * x4);
|
|
double x = (dx * (x3 - x4) - (x1 - x2) * dy) / d;
|
|
double y = (dx * (y3 - y4) - (y1 - y2) * dy) / d;
|
|
|
|
// The intersection should be in the middle of the point 1 and point 2,
|
|
// likewise point 3 and point 4.
|
|
if (((x - x1) * (x - x2) > EPSILON)
|
|
|| ((x - x3) * (x - x4) > EPSILON)
|
|
|| ((y - y1) * (y - y2) > EPSILON)
|
|
|| ((y - y3) * (y - y4) > EPSILON)) {
|
|
// Not interesected
|
|
return false;
|
|
}
|
|
ret.x = x;
|
|
ret.y = y;
|
|
return true;
|
|
|
|
}
|
|
|
|
/**
|
|
* Compute a horizontal circular polygon about point (x , y , height) of radius
|
|
* (size)
|
|
*
|
|
* @param points number of the points of the output polygon.
|
|
* @param lightCenter the center of the light.
|
|
* @param size the light size.
|
|
* @param ret result polygon.
|
|
*/
|
|
void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter,
|
|
float size, Vector3* ret) {
|
|
// TODO: Caching all the sin / cos values and store them in a look up table.
|
|
for (int i = 0; i < points; i++) {
|
|
double angle = 2 * i * M_PI / points;
|
|
ret[i].x = cosf(angle) * size + lightCenter.x;
|
|
ret[i].y = sinf(angle) * size + lightCenter.y;
|
|
ret[i].z = lightCenter.z;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Generate the shadow from a spot light.
|
|
*
|
|
* @param poly x,y,z vertexes of a convex polygon that occludes the light source
|
|
* @param polyLength number of vertexes of the occluding polygon
|
|
* @param lightCenter the center of the light
|
|
* @param lightSize the radius of the light source
|
|
* @param lightVertexCount the vertex counter for the light polygon
|
|
* @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
|
|
* empty strip if error.
|
|
*
|
|
*/
|
|
VertexBufferMode SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3* poly,
|
|
int polyLength, const Vector3& lightCenter, float lightSize,
|
|
int lightVertexCount, VertexBuffer& retStrips) {
|
|
Vector3 light[lightVertexCount * 3];
|
|
computeLightPolygon(lightVertexCount, lightCenter, lightSize, light);
|
|
computeSpotShadow(isCasterOpaque, light, lightVertexCount, lightCenter, poly,
|
|
polyLength, retStrips);
|
|
return kVertexBufferMode_TwoPolyRingShadow;
|
|
}
|
|
|
|
/**
|
|
* Generate the shadow spot light of shape lightPoly and a object poly
|
|
*
|
|
* @param lightPoly x,y,z vertex of a convex polygon that is the light source
|
|
* @param lightPolyLength number of vertexes of the light source polygon
|
|
* @param poly x,y,z vertexes of a convex polygon that occludes the light source
|
|
* @param polyLength number of vertexes of the occluding polygon
|
|
* @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
|
|
* empty strip if error.
|
|
*/
|
|
void SpotShadow::computeSpotShadow(bool isCasterOpaque, const Vector3* lightPoly,
|
|
int lightPolyLength, const Vector3& lightCenter, const Vector3* poly,
|
|
int polyLength, VertexBuffer& shadowTriangleStrip) {
|
|
// Point clouds for all the shadowed vertices
|
|
Vector2 shadowRegion[lightPolyLength * polyLength];
|
|
// Shadow polygon from one point light.
|
|
Vector2 outline[polyLength];
|
|
Vector2 umbraMem[polyLength * lightPolyLength];
|
|
Vector2* umbra = umbraMem;
|
|
|
|
int umbraLength = 0;
|
|
|
|
// Validate input, receiver is always at z = 0 plane.
|
|
bool inputPolyPositionValid = true;
|
|
for (int i = 0; i < polyLength; i++) {
|
|
if (poly[i].z >= lightPoly[0].z) {
|
|
inputPolyPositionValid = false;
|
|
ALOGW("polygon above the light");
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If the caster's position is invalid, don't draw anything.
|
|
if (!inputPolyPositionValid) {
|
|
return;
|
|
}
|
|
|
|
// Calculate the umbra polygon based on intersections of all outlines
|
|
int k = 0;
|
|
for (int j = 0; j < lightPolyLength; j++) {
|
|
int m = 0;
|
|
for (int i = 0; i < polyLength; i++) {
|
|
// After validating the input, deltaZ is guaranteed to be positive.
|
|
float deltaZ = lightPoly[j].z - poly[i].z;
|
|
float ratioZ = lightPoly[j].z / deltaZ;
|
|
float x = lightPoly[j].x - ratioZ * (lightPoly[j].x - poly[i].x);
|
|
float y = lightPoly[j].y - ratioZ * (lightPoly[j].y - poly[i].y);
|
|
|
|
Vector2 newPoint = Vector2(x, y);
|
|
shadowRegion[k] = newPoint;
|
|
outline[m] = newPoint;
|
|
|
|
k++;
|
|
m++;
|
|
}
|
|
|
|
// For the first light polygon's vertex, use the outline as the umbra.
|
|
// Later on, use the intersection of the outline and existing umbra.
|
|
if (umbraLength == 0) {
|
|
for (int i = 0; i < polyLength; i++) {
|
|
umbra[i] = outline[i];
|
|
}
|
|
umbraLength = polyLength;
|
|
} else {
|
|
int col = ((j * 255) / lightPolyLength);
|
|
umbraLength = intersection(outline, polyLength, umbra, umbraLength);
|
|
if (umbraLength == 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Generate the penumbra area using the hull of all shadow regions.
|
|
int shadowRegionLength = k;
|
|
Vector2 penumbra[k];
|
|
int penumbraLength = hull(shadowRegion, shadowRegionLength, penumbra);
|
|
|
|
Vector2 fakeUmbra[polyLength];
|
|
if (umbraLength < 3) {
|
|
// If there is no real umbra, make a fake one.
|
|
for (int i = 0; i < polyLength; i++) {
|
|
float deltaZ = lightCenter.z - poly[i].z;
|
|
float ratioZ = lightCenter.z / deltaZ;
|
|
float x = lightCenter.x - ratioZ * (lightCenter.x - poly[i].x);
|
|
float y = lightCenter.y - ratioZ * (lightCenter.y - poly[i].y);
|
|
|
|
fakeUmbra[i].x = x;
|
|
fakeUmbra[i].y = y;
|
|
}
|
|
|
|
// Shrink the centroid's shadow by 10%.
|
|
// TODO: Study the magic number of 10%.
|
|
Vector2 shadowCentroid =
|
|
ShadowTessellator::centroid2d(fakeUmbra, polyLength);
|
|
for (int i = 0; i < polyLength; i++) {
|
|
fakeUmbra[i] = shadowCentroid * (1.0f - SHADOW_SHRINK_SCALE) +
|
|
fakeUmbra[i] * SHADOW_SHRINK_SCALE;
|
|
}
|
|
#if DEBUG_SHADOW
|
|
ALOGD("No real umbra make a fake one, centroid2d = %f , %f",
|
|
shadowCentroid.x, shadowCentroid.y);
|
|
#endif
|
|
// Set the fake umbra, whose size is the same as the original polygon.
|
|
umbra = fakeUmbra;
|
|
umbraLength = polyLength;
|
|
}
|
|
|
|
generateTriangleStrip(isCasterOpaque, penumbra, penumbraLength, umbra,
|
|
umbraLength, poly, polyLength, shadowTriangleStrip);
|
|
}
|
|
|
|
/**
|
|
* Converts a polygon specified with CW vertices into an array of distance-from-centroid values.
|
|
*
|
|
* Returns false in error conditions
|
|
*
|
|
* @param poly Array of vertices. Note that these *must* be CW.
|
|
* @param polyLength The number of vertices in the polygon.
|
|
* @param polyCentroid The centroid of the polygon, from which rays will be cast
|
|
* @param rayDist The output array for the calculated distances, must be SHADOW_RAY_COUNT in size
|
|
*/
|
|
bool convertPolyToRayDist(const Vector2* poly, int polyLength, const Vector2& polyCentroid,
|
|
float* rayDist) {
|
|
const int rays = SHADOW_RAY_COUNT;
|
|
const float step = M_PI * 2 / rays;
|
|
|
|
const Vector2* lastVertex = &(poly[polyLength - 1]);
|
|
float startAngle = angle(*lastVertex, polyCentroid);
|
|
|
|
// Start with the ray that's closest to and less than startAngle
|
|
int rayIndex = floor((startAngle - EPSILON) / step);
|
|
rayIndex = (rayIndex + rays) % rays; // ensure positive
|
|
|
|
for (int polyIndex = 0; polyIndex < polyLength; polyIndex++) {
|
|
/*
|
|
* For a given pair of vertices on the polygon, poly[i-1] and poly[i], the rays that
|
|
* intersect these will be those that are between the two angles from the centroid that the
|
|
* vertices define.
|
|
*
|
|
* Because the polygon vertices are stored clockwise, the closest ray with an angle
|
|
* *smaller* than that defined by angle(poly[i], centroid) will be the first ray that does
|
|
* not intersect with poly[i-1], poly[i].
|
|
*/
|
|
float currentAngle = angle(poly[polyIndex], polyCentroid);
|
|
|
|
// find first ray that will not intersect the line segment poly[i-1] & poly[i]
|
|
int firstRayIndexOnNextSegment = floor((currentAngle - EPSILON) / step);
|
|
firstRayIndexOnNextSegment = (firstRayIndexOnNextSegment + rays) % rays; // ensure positive
|
|
|
|
// Iterate through all rays that intersect with poly[i-1], poly[i] line segment.
|
|
// This may be 0 rays.
|
|
while (rayIndex != firstRayIndexOnNextSegment) {
|
|
float distanceToIntersect = rayIntersectPoints(polyCentroid,
|
|
cos(rayIndex * step),
|
|
sin(rayIndex * step),
|
|
*lastVertex, poly[polyIndex]);
|
|
if (distanceToIntersect < 0) {
|
|
#if DEBUG_SHADOW
|
|
ALOGW("ERROR: convertPolyToRayDist failed");
|
|
#endif
|
|
return false; // error case, abort
|
|
}
|
|
|
|
rayDist[rayIndex] = distanceToIntersect;
|
|
|
|
rayIndex = (rayIndex - 1 + rays) % rays;
|
|
}
|
|
lastVertex = &poly[polyIndex];
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int SpotShadow::calculateOccludedUmbra(const Vector2* umbra, int umbraLength,
|
|
const Vector3* poly, int polyLength, Vector2* occludedUmbra) {
|
|
// Occluded umbra area is computed as the intersection of the projected 2D
|
|
// poly and umbra.
|
|
for (int i = 0; i < polyLength; i++) {
|
|
occludedUmbra[i].x = poly[i].x;
|
|
occludedUmbra[i].y = poly[i].y;
|
|
}
|
|
|
|
// Both umbra and incoming polygon are guaranteed to be CW, so we can call
|
|
// intersection() directly.
|
|
return intersection(umbra, umbraLength,
|
|
occludedUmbra, polyLength);
|
|
}
|
|
|
|
#define OCLLUDED_UMBRA_SHRINK_FACTOR 0.95f
|
|
/**
|
|
* Generate a triangle strip given two convex polygons
|
|
*
|
|
* @param penumbra The outer polygon x,y vertexes
|
|
* @param penumbraLength The number of vertexes in the outer polygon
|
|
* @param umbra The inner outer polygon x,y vertexes
|
|
* @param umbraLength The number of vertexes in the inner polygon
|
|
* @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
|
|
* empty strip if error.
|
|
**/
|
|
void SpotShadow::generateTriangleStrip(bool isCasterOpaque, const Vector2* penumbra,
|
|
int penumbraLength, const Vector2* umbra, int umbraLength,
|
|
const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip) {
|
|
const int rays = SHADOW_RAY_COUNT;
|
|
const int size = 2 * rays;
|
|
const float step = M_PI * 2 / rays;
|
|
// Centroid of the umbra.
|
|
Vector2 centroid = ShadowTessellator::centroid2d(umbra, umbraLength);
|
|
#if DEBUG_SHADOW
|
|
ALOGD("centroid2d = %f , %f", centroid.x, centroid.y);
|
|
#endif
|
|
// Intersection to the penumbra.
|
|
float penumbraDistPerRay[rays];
|
|
// Intersection to the umbra.
|
|
float umbraDistPerRay[rays];
|
|
// Intersection to the occluded umbra area.
|
|
float occludedUmbraDistPerRay[rays];
|
|
|
|
// convert CW polygons to ray distance encoding, aborting on conversion failure
|
|
if (!convertPolyToRayDist(umbra, umbraLength, centroid, umbraDistPerRay)) return;
|
|
if (!convertPolyToRayDist(penumbra, penumbraLength, centroid, penumbraDistPerRay)) return;
|
|
|
|
bool hasOccludedUmbraArea = false;
|
|
if (isCasterOpaque) {
|
|
Vector2 occludedUmbra[polyLength + umbraLength];
|
|
int occludedUmbraLength = calculateOccludedUmbra(umbra, umbraLength, poly, polyLength,
|
|
occludedUmbra);
|
|
// Make sure the centroid is inside the umbra, otherwise, fall back to the
|
|
// approach as if there is no occluded umbra area.
|
|
if (testPointInsidePolygon(centroid, occludedUmbra, occludedUmbraLength)) {
|
|
hasOccludedUmbraArea = true;
|
|
// Shrink the occluded umbra area to avoid pixel level artifacts.
|
|
for (int i = 0; i < occludedUmbraLength; i ++) {
|
|
occludedUmbra[i] = centroid + (occludedUmbra[i] - centroid) *
|
|
OCLLUDED_UMBRA_SHRINK_FACTOR;
|
|
}
|
|
if (!convertPolyToRayDist(occludedUmbra, occludedUmbraLength, centroid,
|
|
occludedUmbraDistPerRay)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
AlphaVertex* shadowVertices =
|
|
shadowTriangleStrip.alloc<AlphaVertex>(SHADOW_VERTEX_COUNT);
|
|
|
|
// Calculate the vertices (x, y, alpha) in the shadow area.
|
|
AlphaVertex centroidXYA;
|
|
AlphaVertex::set(¢roidXYA, centroid.x, centroid.y, 1.0f);
|
|
for (int rayIndex = 0; rayIndex < rays; rayIndex++) {
|
|
float dx = cosf(step * rayIndex);
|
|
float dy = sinf(step * rayIndex);
|
|
|
|
// penumbra ring
|
|
float penumbraDistance = penumbraDistPerRay[rayIndex];
|
|
AlphaVertex::set(&shadowVertices[rayIndex],
|
|
dx * penumbraDistance + centroid.x,
|
|
dy * penumbraDistance + centroid.y, 0.0f);
|
|
|
|
// umbra ring
|
|
float umbraDistance = umbraDistPerRay[rayIndex];
|
|
AlphaVertex::set(&shadowVertices[rays + rayIndex],
|
|
dx * umbraDistance + centroid.x, dy * umbraDistance + centroid.y, 1.0f);
|
|
|
|
// occluded umbra ring
|
|
if (hasOccludedUmbraArea) {
|
|
float occludedUmbraDistance = occludedUmbraDistPerRay[rayIndex];
|
|
AlphaVertex::set(&shadowVertices[2 * rays + rayIndex],
|
|
dx * occludedUmbraDistance + centroid.x,
|
|
dy * occludedUmbraDistance + centroid.y, 1.0f);
|
|
} else {
|
|
// Put all vertices of the occluded umbra ring at the centroid.
|
|
shadowVertices[2 * rays + rayIndex] = centroidXYA;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This is only for experimental purpose.
|
|
* After intersections are calculated, we could smooth the polygon if needed.
|
|
* So far, we don't think it is more appealing yet.
|
|
*
|
|
* @param level The level of smoothness.
|
|
* @param rays The total number of rays.
|
|
* @param rayDist (In and Out) The distance for each ray.
|
|
*
|
|
*/
|
|
void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
|
|
for (int k = 0; k < level; k++) {
|
|
for (int i = 0; i < rays; i++) {
|
|
float p1 = rayDist[(rays - 1 + i) % rays];
|
|
float p2 = rayDist[i];
|
|
float p3 = rayDist[(i + 1) % rays];
|
|
rayDist[i] = (p1 + p2 * 2 + p3) / 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if DEBUG_SHADOW
|
|
|
|
#define TEST_POINT_NUMBER 128
|
|
|
|
/**
|
|
* Calculate the bounds for generating random test points.
|
|
*/
|
|
void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound,
|
|
Vector2& upperBound ) {
|
|
if (inVector.x < lowerBound.x) {
|
|
lowerBound.x = inVector.x;
|
|
}
|
|
|
|
if (inVector.y < lowerBound.y) {
|
|
lowerBound.y = inVector.y;
|
|
}
|
|
|
|
if (inVector.x > upperBound.x) {
|
|
upperBound.x = inVector.x;
|
|
}
|
|
|
|
if (inVector.y > upperBound.y) {
|
|
upperBound.y = inVector.y;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* For debug purpose, when things go wrong, dump the whole polygon data.
|
|
*/
|
|
static void dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
|
|
for (int i = 0; i < polyLength; i++) {
|
|
ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Test whether the polygon is convex.
|
|
*/
|
|
bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength,
|
|
const char* name) {
|
|
bool isConvex = true;
|
|
for (int i = 0; i < polygonLength; i++) {
|
|
Vector2 start = polygon[i];
|
|
Vector2 middle = polygon[(i + 1) % polygonLength];
|
|
Vector2 end = polygon[(i + 2) % polygonLength];
|
|
|
|
double delta = (double(middle.x) - start.x) * (double(end.y) - start.y) -
|
|
(double(middle.y) - start.y) * (double(end.x) - start.x);
|
|
bool isCCWOrCoLinear = (delta >= EPSILON);
|
|
|
|
if (isCCWOrCoLinear) {
|
|
ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
|
|
"middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
|
|
name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
|
|
isConvex = false;
|
|
break;
|
|
}
|
|
}
|
|
return isConvex;
|
|
}
|
|
|
|
/**
|
|
* Test whether or not the polygon (intersection) is within the 2 input polygons.
|
|
* Using Marte Carlo method, we generate a random point, and if it is inside the
|
|
* intersection, then it must be inside both source polygons.
|
|
*/
|
|
void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length,
|
|
const Vector2* poly2, int poly2Length,
|
|
const Vector2* intersection, int intersectionLength) {
|
|
// Find the min and max of x and y.
|
|
Vector2 lowerBound(FLT_MAX, FLT_MAX);
|
|
Vector2 upperBound(-FLT_MAX, -FLT_MAX);
|
|
for (int i = 0; i < poly1Length; i++) {
|
|
updateBound(poly1[i], lowerBound, upperBound);
|
|
}
|
|
for (int i = 0; i < poly2Length; i++) {
|
|
updateBound(poly2[i], lowerBound, upperBound);
|
|
}
|
|
|
|
bool dumpPoly = false;
|
|
for (int k = 0; k < TEST_POINT_NUMBER; k++) {
|
|
// Generate a random point between minX, minY and maxX, maxY.
|
|
double randomX = rand() / double(RAND_MAX);
|
|
double randomY = rand() / double(RAND_MAX);
|
|
|
|
Vector2 testPoint;
|
|
testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
|
|
testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
|
|
|
|
// If the random point is in both poly 1 and 2, then it must be intersection.
|
|
if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
|
|
if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
|
|
dumpPoly = true;
|
|
ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
|
|
" not in the poly1",
|
|
testPoint.x, testPoint.y);
|
|
}
|
|
|
|
if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
|
|
dumpPoly = true;
|
|
ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
|
|
" not in the poly2",
|
|
testPoint.x, testPoint.y);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dumpPoly) {
|
|
dumpPolygon(intersection, intersectionLength, "intersection");
|
|
for (int i = 1; i < intersectionLength; i++) {
|
|
Vector2 delta = intersection[i] - intersection[i - 1];
|
|
ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
|
|
}
|
|
|
|
dumpPolygon(poly1, poly1Length, "poly 1");
|
|
dumpPolygon(poly2, poly2Length, "poly 2");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
}; // namespace uirenderer
|
|
}; // namespace android
|