android_frameworks_base/libs/hwui/ShadowTessellator.cpp
Chris Craik fca52b7583 Use path intersection instead of saveLayer+mesh to mask projected ripples
bug:14297149

SaveLayer's performance cost is high, and proportional to the surface
being projected onto. Since ripples (even unbounded ones) are now
always projected to the arbitrary background content behind them, this
cost is especially important to avoid.

This removes the last semi-secret, saveLayer from the projected
ripple implementation.

Also fixes the HW test app to correctly demonstrate this projection
masking behavior.

Additionaly, alters PathTessellator to gracefully handle
counter-clockwise paths, and simplifies the work done by
ShadowTessellator to ensure all of its paths are counterclockwise.

Change-Id: Ibe9e12812bd10a774e20b1d444a140c368cbba8c
2015-05-26 17:53:16 -07:00

188 lines
6.4 KiB
C++

/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "OpenGLRenderer"
#define ATRACE_TAG ATRACE_TAG_VIEW
#include <math.h>
#include <utils/Log.h>
#include <utils/Trace.h>
#include <utils/Vector.h>
#include "AmbientShadow.h"
#include "Properties.h"
#include "ShadowTessellator.h"
#include "SpotShadow.h"
#include "Vector.h"
namespace android {
namespace uirenderer {
void ShadowTessellator::tessellateAmbientShadow(bool isCasterOpaque,
const Vector3* casterPolygon, int casterVertexCount,
const Vector3& centroid3d, const Rect& casterBounds,
const Rect& localClip, float maxZ, VertexBuffer& shadowVertexBuffer) {
ATRACE_CALL();
// A bunch of parameters to tweak the shadow.
// TODO: Allow some of these changable by debug settings or APIs.
float heightFactor = 1.0f / 128;
const float geomFactor = 64;
if (CC_UNLIKELY(Properties::overrideAmbientRatio > 0.0f)) {
heightFactor *= Properties::overrideAmbientRatio;
}
Rect ambientShadowBounds(casterBounds);
ambientShadowBounds.outset(maxZ * geomFactor * heightFactor);
if (!localClip.intersects(ambientShadowBounds)) {
#if DEBUG_SHADOW
ALOGD("Ambient shadow is out of clip rect!");
#endif
return;
}
AmbientShadow::createAmbientShadow(isCasterOpaque, casterPolygon,
casterVertexCount, centroid3d, heightFactor, geomFactor,
shadowVertexBuffer);
}
void ShadowTessellator::tessellateSpotShadow(bool isCasterOpaque,
const Vector3* casterPolygon, int casterVertexCount, const Vector3& casterCentroid,
const mat4& receiverTransform, const Vector3& lightCenter, int lightRadius,
const Rect& casterBounds, const Rect& localClip, VertexBuffer& shadowVertexBuffer) {
ATRACE_CALL();
Vector3 adjustedLightCenter(lightCenter);
if (CC_UNLIKELY(Properties::overrideLightPosY > 0)) {
adjustedLightCenter.y = - Properties::overrideLightPosY; // negated since this shifts up
}
if (CC_UNLIKELY(Properties::overrideLightPosZ > 0)) {
adjustedLightCenter.z = Properties::overrideLightPosZ;
}
#if DEBUG_SHADOW
ALOGD("light center %f %f %f",
adjustedLightCenter.x, adjustedLightCenter.y, adjustedLightCenter.z);
#endif
// light position (because it's in local space) needs to compensate for receiver transform
// TODO: should apply to light orientation, not just position
Matrix4 reverseReceiverTransform;
reverseReceiverTransform.loadInverse(receiverTransform);
reverseReceiverTransform.mapPoint3d(adjustedLightCenter);
if (CC_UNLIKELY(Properties::overrideLightRadius > 0)) {
lightRadius = Properties::overrideLightRadius;
}
// Now light and caster are both in local space, we will check whether
// the shadow is within the clip area.
Rect lightRect = Rect(adjustedLightCenter.x - lightRadius, adjustedLightCenter.y - lightRadius,
adjustedLightCenter.x + lightRadius, adjustedLightCenter.y + lightRadius);
lightRect.unionWith(localClip);
if (!lightRect.intersects(casterBounds)) {
#if DEBUG_SHADOW
ALOGD("Spot shadow is out of clip rect!");
#endif
return;
}
SpotShadow::createSpotShadow(isCasterOpaque, adjustedLightCenter, lightRadius,
casterPolygon, casterVertexCount, casterCentroid, shadowVertexBuffer);
#if DEBUG_SHADOW
if(shadowVertexBuffer.getVertexCount() <= 0) {
ALOGD("Spot shadow generation failed %d", shadowVertexBuffer.getVertexCount());
}
#endif
}
/**
* Calculate the centroid of a 2d polygon.
*
* @param poly The polygon, which is represented in a Vector2 array.
* @param polyLength The length of the polygon in terms of number of vertices.
* @return the centroid of the polygon.
*/
Vector2 ShadowTessellator::centroid2d(const Vector2* poly, int polyLength) {
double sumx = 0;
double sumy = 0;
int p1 = polyLength - 1;
double area = 0;
for (int p2 = 0; p2 < polyLength; p2++) {
double x1 = poly[p1].x;
double y1 = poly[p1].y;
double x2 = poly[p2].x;
double y2 = poly[p2].y;
double a = (x1 * y2 - x2 * y1);
sumx += (x1 + x2) * a;
sumy += (y1 + y2) * a;
area += a;
p1 = p2;
}
Vector2 centroid = poly[0];
if (area != 0) {
centroid = (Vector2){static_cast<float>(sumx / (3 * area)),
static_cast<float>(sumy / (3 * area))};
} else {
ALOGW("Area is 0 while computing centroid!");
}
return centroid;
}
// Make sure p1 -> p2 is going CW around the poly.
Vector2 ShadowTessellator::calculateNormal(const Vector2& p1, const Vector2& p2) {
Vector2 result = p2 - p1;
if (result.x != 0 || result.y != 0) {
result.normalize();
// Calculate the normal , which is CCW 90 rotate to the delta.
float tempy = result.y;
result.y = result.x;
result.x = -tempy;
}
return result;
}
int ShadowTessellator::getExtraVertexNumber(const Vector2& vector1,
const Vector2& vector2, float divisor) {
// When there is no distance difference, there is no need for extra vertices.
if (vector1.lengthSquared() == 0 || vector2.lengthSquared() == 0) {
return 0;
}
// The formula is :
// extraNumber = floor(acos(dot(n1, n2)) / (M_PI / EXTRA_VERTEX_PER_PI))
// The value ranges for each step are:
// dot( ) --- [-1, 1]
// acos( ) --- [0, M_PI]
// floor(...) --- [0, EXTRA_VERTEX_PER_PI]
float dotProduct = vector1.dot(vector2);
// TODO: Use look up table for the dotProduct to extraVerticesNumber
// computation, if needed.
float angle = acosf(dotProduct);
return (int) floor(angle / divisor);
}
void ShadowTessellator::checkOverflow(int used, int total, const char* bufferName) {
LOG_ALWAYS_FATAL_IF(used > total, "Error: %s overflow!!! used %d, total %d",
bufferName, used, total);
}
}; // namespace uirenderer
}; // namespace android