android_frameworks_base/services/jni/com_android_server_AssetAtlasService.cpp
Romain Guy 3b748a44c6 Pack preloaded framework assets in a texture atlas
When the Android runtime starts, the system preloads a series of assets
in the Zygote process. These assets are shared across all processes.
Unfortunately, each one of these assets is later uploaded in its own
OpenGL texture, once per process. This wastes memory and generates
unnecessary OpenGL state changes.

This CL introduces an asset server that provides an atlas to all processes.

Note: bitmaps used by skia shaders are *not* sampled from the atlas.
It's an uncommon use case and would require extra texture transforms
in the GL shaders.

WHAT IS THE ASSETS ATLAS

The "assets atlas" is a single, shareable graphic buffer that contains
all the system's preloaded bitmap drawables (this includes 9-patches.)
The atlas is made of two distinct objects: the graphic buffer that
contains the actual pixels and the map which indicates where each
preloaded bitmap can be found in the atlas (essentially a pair of
x and y coordinates.)

HOW IS THE ASSETS ATLAS GENERATED

Because we need to support a wide variety of devices and because it
is easy to change the list of preloaded drawables, the atlas is
generated at runtime, during the startup phase of the system process.

There are several steps that lead to the atlas generation:

1. If the device is booting for the first time, or if the device was
updated, we need to find the best atlas configuration. To do so,
the atlas service tries a number of width, height and algorithm
variations that allows us to pack as many assets as possible while
using as little memory as possible. Once a best configuration is found,
it gets written to disk in /data/system/framework_atlas

2. Given a best configuration (algorithm variant, dimensions and
number of bitmaps that can be packed in the atlas), the atlas service
packs all the preloaded bitmaps into a single graphic buffer object.

3. The packing is done using Skia in a temporary native bitmap. The
Skia bitmap is then copied into the graphic buffer using OpenGL ES
to benefit from texture swizzling.

HOW PROCESSES USE THE ATLAS

Whenever a process' hardware renderer initializes its EGL context,
it queries the atlas service for the graphic buffer and the map.

It is important to remember that both the context and the map will
be valid for the lifetime of the hardware renderer (if the system
process goes down, all apps get killed as well.)

Every time the hardware renderer needs to render a bitmap, it first
checks whether the bitmap can be found in the assets atlas. When
the bitmap is part of the atlas, texture coordinates are remapped
appropriately before rendering.

Change-Id: I8eaecf53e7f6a33d90da3d0047c5ceec89ea3af0
2013-05-02 13:32:09 -07:00

272 lines
10 KiB
C++

/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "AssetAtlasService"
#include "jni.h"
#include "JNIHelp.h"
#include <android_view_GraphicBuffer.h>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <SkCanvas.h>
#include <SkBitmap.h>
namespace android {
// ----------------------------------------------------------------------------
// Defines
// ----------------------------------------------------------------------------
// Defines how long to wait for the GPU when uploading the atlas
// This timeout is defined in nanoseconds (see EGL_KHR_fence_sync extension)
#define FENCE_TIMEOUT 2000000000
// ----------------------------------------------------------------------------
// JNI Helpers
// ----------------------------------------------------------------------------
static struct {
jfieldID mFinalizer;
jfieldID mNativeCanvas;
} gCanvasClassInfo;
static struct {
jfieldID mNativeCanvas;
} gCanvasFinalizerClassInfo;
#define GET_INT(object, field) \
env->GetIntField(object, field)
#define SET_INT(object, field, value) \
env->SetIntField(object, field, value)
// ----------------------------------------------------------------------------
// Canvas management
// ----------------------------------------------------------------------------
static inline void swapCanvasPtr(JNIEnv* env, jobject canvasObj, SkCanvas* newCanvas) {
jobject canvasFinalizerObj = env->GetObjectField(canvasObj, gCanvasClassInfo.mFinalizer);
SkCanvas* previousCanvas = reinterpret_cast<SkCanvas*>(
GET_INT(canvasObj, gCanvasClassInfo.mNativeCanvas));
SET_INT(canvasObj, gCanvasClassInfo.mNativeCanvas, (int) newCanvas);
SET_INT(canvasFinalizerObj, gCanvasFinalizerClassInfo.mNativeCanvas, (int) newCanvas);
SkSafeUnref(previousCanvas);
}
static SkBitmap* com_android_server_AssetAtlasService_acquireCanvas(JNIEnv* env, jobject,
jobject canvas, jint width, jint height) {
SkBitmap* bitmap = new SkBitmap;
bitmap->setConfig(SkBitmap::kARGB_8888_Config, width, height);
bitmap->allocPixels();
bitmap->eraseColor(0);
SkCanvas* nativeCanvas = SkNEW_ARGS(SkCanvas, (*bitmap));
swapCanvasPtr(env, canvas, nativeCanvas);
return bitmap;
}
static void com_android_server_AssetAtlasService_releaseCanvas(JNIEnv* env, jobject,
jobject canvas, SkBitmap* bitmap) {
SkCanvas* nativeCanvas = SkNEW(SkCanvas);
swapCanvasPtr(env, canvas, nativeCanvas);
delete bitmap;
}
#define CLEANUP_GL_AND_RETURN(result) \
if (fence != EGL_NO_SYNC_KHR) eglDestroySyncKHR(display, fence); \
if (image) eglDestroyImageKHR(display, image); \
if (texture) glDeleteTextures(1, &texture); \
if (surface != EGL_NO_SURFACE) eglDestroySurface(display, surface); \
if (context != EGL_NO_CONTEXT) eglDestroyContext(display, context); \
eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT); \
eglReleaseThread(); \
eglTerminate(display); \
return result;
static jboolean com_android_server_AssetAtlasService_upload(JNIEnv* env, jobject,
jobject graphicBuffer, SkBitmap* bitmap) {
// The goal of this method is to copy the bitmap into the GraphicBuffer
// using the GPU to swizzle the texture content
sp<GraphicBuffer> buffer(graphicBufferForJavaObject(env, graphicBuffer));
if (buffer != NULL) {
EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
if (display == EGL_NO_DISPLAY) return false;
EGLint major;
EGLint minor;
if (!eglInitialize(display, &major, &minor)) {
ALOGW("Could not initialize EGL");
return false;
}
// We're going to use a 1x1 pbuffer surface later on
// The configuration doesn't really matter for what we're trying to do
EGLint configAttrs[] = {
EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT,
EGL_RED_SIZE, 8,
EGL_GREEN_SIZE, 8,
EGL_BLUE_SIZE, 8,
EGL_ALPHA_SIZE, 0,
EGL_DEPTH_SIZE, 0,
EGL_STENCIL_SIZE, 0,
EGL_NONE
};
EGLConfig configs[1];
EGLint configCount;
if (!eglChooseConfig(display, configAttrs, configs, 1, &configCount)) {
ALOGW("Could not select EGL configuration");
eglReleaseThread();
eglTerminate(display);
return false;
}
if (configCount <= 0) {
ALOGW("Could not find EGL configuration");
eglReleaseThread();
eglTerminate(display);
return false;
}
// These objects are initialized below but the default "null"
// values are used to cleanup properly at any point in the
// initialization sequence
GLuint texture = 0;
EGLImageKHR image = EGL_NO_IMAGE_KHR;
EGLSurface surface = EGL_NO_SURFACE;
EGLSyncKHR fence = EGL_NO_SYNC_KHR;
EGLint attrs[] = { EGL_CONTEXT_CLIENT_VERSION, 2, EGL_NONE };
EGLContext context = eglCreateContext(display, configs[0], EGL_NO_CONTEXT, attrs);
if (context == EGL_NO_CONTEXT) {
ALOGW("Could not create EGL context");
CLEANUP_GL_AND_RETURN(false);
}
// Create the 1x1 pbuffer
EGLint surfaceAttrs[] = { EGL_WIDTH, 1, EGL_HEIGHT, 1, EGL_NONE };
surface = eglCreatePbufferSurface(display, configs[0], surfaceAttrs);
if (surface == EGL_NO_SURFACE) {
ALOGW("Could not create EGL surface");
CLEANUP_GL_AND_RETURN(false);
}
if (!eglMakeCurrent(display, surface, surface, context)) {
ALOGW("Could not change current EGL context");
CLEANUP_GL_AND_RETURN(false);
}
// We use an EGLImage to access the content of the GraphicBuffer
// The EGL image is later bound to a 2D texture
EGLClientBuffer clientBuffer = (EGLClientBuffer) buffer->getNativeBuffer();
EGLint imageAttrs[] = { EGL_IMAGE_PRESERVED_KHR, EGL_TRUE, EGL_NONE };
image = eglCreateImageKHR(display, EGL_NO_CONTEXT,
EGL_NATIVE_BUFFER_ANDROID, clientBuffer, imageAttrs);
if (image == EGL_NO_IMAGE_KHR) {
ALOGW("Could not create EGL image");
CLEANUP_GL_AND_RETURN(false);
}
glGenTextures(1, &texture);
glBindTexture(GL_TEXTURE_2D, texture);
glEGLImageTargetTexture2DOES(GL_TEXTURE_2D, image);
if (glGetError() != GL_NO_ERROR) {
ALOGW("Could not create/bind texture");
CLEANUP_GL_AND_RETURN(false);
}
// Upload the content of the bitmap in the GraphicBuffer
glPixelStorei(GL_UNPACK_ALIGNMENT, bitmap->bytesPerPixel());
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, bitmap->width(), bitmap->height(),
GL_RGBA, GL_UNSIGNED_BYTE, bitmap->getPixels());
if (glGetError() != GL_NO_ERROR) {
ALOGW("Could not upload to texture");
CLEANUP_GL_AND_RETURN(false);
}
// The fence is used to wait for the texture upload to finish
// properly. We cannot rely on glFlush() and glFinish() as
// some drivers completely ignore these API calls
fence = eglCreateSyncKHR(display, EGL_SYNC_FENCE_KHR, NULL);
if (fence == EGL_NO_SYNC_KHR) {
ALOGW("Could not create sync fence %#x", eglGetError());
CLEANUP_GL_AND_RETURN(false);
}
// The flag EGL_SYNC_FLUSH_COMMANDS_BIT_KHR will trigger a
// pipeline flush (similar to what a glFlush() would do.)
EGLint waitStatus = eglClientWaitSyncKHR(display, fence,
EGL_SYNC_FLUSH_COMMANDS_BIT_KHR, FENCE_TIMEOUT);
if (waitStatus != EGL_CONDITION_SATISFIED_KHR) {
ALOGW("Failed to wait for the fence %#x", eglGetError());
CLEANUP_GL_AND_RETURN(false);
}
CLEANUP_GL_AND_RETURN(true);
}
return false;
}
// ----------------------------------------------------------------------------
// JNI Glue
// ----------------------------------------------------------------------------
#define FIND_CLASS(var, className) \
var = env->FindClass(className); \
LOG_FATAL_IF(! var, "Unable to find class " className);
#define GET_FIELD_ID(var, clazz, fieldName, fieldDescriptor) \
var = env->GetFieldID(clazz, fieldName, fieldDescriptor); \
LOG_FATAL_IF(! var, "Unable to find field " fieldName);
const char* const kClassPathName = "com/android/server/AssetAtlasService";
static JNINativeMethod gMethods[] = {
{ "nAcquireAtlasCanvas", "(Landroid/graphics/Canvas;II)I",
(void*) com_android_server_AssetAtlasService_acquireCanvas },
{ "nReleaseAtlasCanvas", "(Landroid/graphics/Canvas;I)V",
(void*) com_android_server_AssetAtlasService_releaseCanvas },
{ "nUploadAtlas", "(Landroid/view/GraphicBuffer;I)Z",
(void*) com_android_server_AssetAtlasService_upload },
};
int register_android_server_AssetAtlasService(JNIEnv* env) {
jclass clazz;
FIND_CLASS(clazz, "android/graphics/Canvas");
GET_FIELD_ID(gCanvasClassInfo.mFinalizer, clazz, "mFinalizer",
"Landroid/graphics/Canvas$CanvasFinalizer;");
GET_FIELD_ID(gCanvasClassInfo.mNativeCanvas, clazz, "mNativeCanvas", "I");
FIND_CLASS(clazz, "android/graphics/Canvas$CanvasFinalizer");
GET_FIELD_ID(gCanvasFinalizerClassInfo.mNativeCanvas, clazz, "mNativeCanvas", "I");
return jniRegisterNativeMethods(env, kClassPathName, gMethods, NELEM(gMethods));
}
};