Dianne Hackborn ddca3ee3e8 Add support for power keys, improve behavior of virtual keys.
The platform now knows how to deal with a platform key, which at this
point is "just like end call, but don't end a call."

Also improve the handling of virtual keys, to allow for canceling when
sliding off into the display and providing haptic feedback.

Finally fixes a bug where the raw x and y in motion event were not
always set which caused the status bar to not work.
2009-07-24 17:30:15 -07:00

342 lines
14 KiB
Java

/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.android.server;
import android.util.Log;
import android.view.Display;
import android.view.MotionEvent;
import android.view.Surface;
import android.view.WindowManagerPolicy;
public class InputDevice {
/** Amount that trackball needs to move in order to generate a key event. */
static final int TRACKBALL_MOVEMENT_THRESHOLD = 6;
/** Maximum number of pointers we will track and report. */
static final int MAX_POINTERS = 2;
final int id;
final int classes;
final String name;
final AbsoluteInfo absX;
final AbsoluteInfo absY;
final AbsoluteInfo absPressure;
final AbsoluteInfo absSize;
long mKeyDownTime = 0;
int mMetaKeysState = 0;
final MotionState mAbs = new MotionState(0, 0);
final MotionState mRel = new MotionState(TRACKBALL_MOVEMENT_THRESHOLD,
TRACKBALL_MOVEMENT_THRESHOLD);
static class MotionState {
int xPrecision;
int yPrecision;
float xMoveScale;
float yMoveScale;
MotionEvent currentMove = null;
boolean changed = false;
boolean mLastAnyDown = false;
long mDownTime = 0;
final boolean[] mLastDown = new boolean[MAX_POINTERS];
final boolean[] mDown = new boolean[MAX_POINTERS];
final int[] mLastData = new int[MotionEvent.NUM_SAMPLE_DATA * MAX_POINTERS];
final int[] mCurData = new int[MotionEvent.NUM_SAMPLE_DATA * MAX_POINTERS];
final float[] mReportData = new float[MotionEvent.NUM_SAMPLE_DATA * MAX_POINTERS];
MotionState(int mx, int my) {
xPrecision = mx;
yPrecision = my;
xMoveScale = mx != 0 ? (1.0f/mx) : 1.0f;
yMoveScale = my != 0 ? (1.0f/my) : 1.0f;
}
MotionEvent generateAbsMotion(InputDevice device, long curTime,
long curTimeNano, Display display, int orientation,
int metaState) {
final float[] scaled = mReportData;
final int[] cur = mCurData;
boolean anyDown = false;
int firstDownChanged = -1;
int numPointers = 0;
for (int i=0; i<MAX_POINTERS; i++) {
boolean d = mDown[i];
anyDown |= d;
if (d != mLastDown[i] && firstDownChanged < 0) {
firstDownChanged = i;
mLastDown[i] = mDown[i];
d = true;
}
if (d) {
final int src = i * MotionEvent.NUM_SAMPLE_DATA;
final int dest = numPointers * MotionEvent.NUM_SAMPLE_DATA;
numPointers++;
scaled[dest + MotionEvent.SAMPLE_X] = cur[src + MotionEvent.SAMPLE_X];
scaled[dest + MotionEvent.SAMPLE_Y] = cur[src + MotionEvent.SAMPLE_Y];
scaled[dest + MotionEvent.SAMPLE_PRESSURE] = cur[src + MotionEvent.SAMPLE_PRESSURE];
scaled[dest + MotionEvent.SAMPLE_SIZE] = cur[src + MotionEvent.SAMPLE_SIZE];
}
}
if (numPointers <= 0) {
return null;
}
int action;
int edgeFlags = 0;
if (anyDown != mLastAnyDown) {
final AbsoluteInfo absX = device.absX;
final AbsoluteInfo absY = device.absY;
if (anyDown && absX != null && absY != null) {
// We don't let downs start unless we are
// inside of the screen. There are two reasons for
// this: to avoid spurious touches when holding
// the edges of the device near the touchscreen,
// and to avoid reporting events if there are virtual
// keys on the touchscreen outside of the display
// area.
// Note that we are only looking at the first pointer,
// since what we are handling here is the first pointer
// going down, and this is the coordinate that will be
// used to dispatch the event.
if (cur[MotionEvent.SAMPLE_X] < absX.minValue
|| cur[MotionEvent.SAMPLE_X] > absX.maxValue
|| cur[MotionEvent.SAMPLE_Y] < absY.minValue
|| cur[MotionEvent.SAMPLE_Y] > absY.maxValue) {
if (false) Log.v("InputDevice", "Rejecting ("
+ cur[MotionEvent.SAMPLE_X] + ","
+ cur[MotionEvent.SAMPLE_Y] + "): outside of ("
+ absX.minValue + "," + absY.minValue
+ ")-(" + absX.maxValue + ","
+ absY.maxValue + ")");
return null;
}
}
mLastAnyDown = anyDown;
if (anyDown) {
action = MotionEvent.ACTION_DOWN;
mDownTime = curTime;
} else {
action = MotionEvent.ACTION_UP;
}
currentMove = null;
} else if (firstDownChanged >= 0) {
if (mDown[firstDownChanged]) {
action = MotionEvent.ACTION_POINTER_DOWN
| (firstDownChanged << MotionEvent.ACTION_POINTER_SHIFT);
} else {
action = MotionEvent.ACTION_POINTER_UP
| (firstDownChanged << MotionEvent.ACTION_POINTER_SHIFT);
}
currentMove = null;
} else {
action = MotionEvent.ACTION_MOVE;
}
final int dispW = display.getWidth()-1;
final int dispH = display.getHeight()-1;
int w = dispW;
int h = dispH;
if (orientation == Surface.ROTATION_90
|| orientation == Surface.ROTATION_270) {
int tmp = w;
w = h;
h = tmp;
}
final AbsoluteInfo absX = device.absX;
final AbsoluteInfo absY = device.absY;
final AbsoluteInfo absPressure = device.absPressure;
final AbsoluteInfo absSize = device.absSize;
for (int i=0; i<numPointers; i++) {
final int j = i * MotionEvent.NUM_SAMPLE_DATA;
if (absX != null) {
scaled[j + MotionEvent.SAMPLE_X] =
((scaled[j + MotionEvent.SAMPLE_X]-absX.minValue)
/ absX.range) * w;
}
if (absY != null) {
scaled[j + MotionEvent.SAMPLE_Y] =
((scaled[j + MotionEvent.SAMPLE_Y]-absY.minValue)
/ absY.range) * h;
}
if (absPressure != null) {
scaled[j + MotionEvent.SAMPLE_PRESSURE] =
((scaled[j + MotionEvent.SAMPLE_PRESSURE]-absPressure.minValue)
/ (float)absPressure.range);
}
if (absSize != null) {
scaled[j + MotionEvent.SAMPLE_SIZE] =
((scaled[j + MotionEvent.SAMPLE_SIZE]-absSize.minValue)
/ (float)absSize.range);
}
switch (orientation) {
case Surface.ROTATION_90: {
final float temp = scaled[MotionEvent.SAMPLE_X];
scaled[j + MotionEvent.SAMPLE_X] = scaled[j + MotionEvent.SAMPLE_Y];
scaled[j + MotionEvent.SAMPLE_Y] = w-temp;
break;
}
case Surface.ROTATION_180: {
scaled[j + MotionEvent.SAMPLE_X] = w-scaled[j + MotionEvent.SAMPLE_X];
scaled[j + MotionEvent.SAMPLE_Y] = h-scaled[j + MotionEvent.SAMPLE_Y];
break;
}
case Surface.ROTATION_270: {
final float temp = scaled[i + MotionEvent.SAMPLE_X];
scaled[j + MotionEvent.SAMPLE_X] = h-scaled[j + MotionEvent.SAMPLE_Y];
scaled[j + MotionEvent.SAMPLE_Y] = temp;
break;
}
}
}
// We only consider the first pointer when computing the edge
// flags, since they are global to the event.
if (action == MotionEvent.ACTION_DOWN) {
if (scaled[MotionEvent.SAMPLE_X] <= 0) {
edgeFlags |= MotionEvent.EDGE_LEFT;
} else if (scaled[MotionEvent.SAMPLE_X] >= dispW) {
edgeFlags |= MotionEvent.EDGE_RIGHT;
}
if (scaled[MotionEvent.SAMPLE_Y] <= 0) {
edgeFlags |= MotionEvent.EDGE_TOP;
} else if (scaled[MotionEvent.SAMPLE_Y] >= dispH) {
edgeFlags |= MotionEvent.EDGE_BOTTOM;
}
}
if (currentMove != null) {
if (false) Log.i("InputDevice", "Adding batch x="
+ scaled[MotionEvent.SAMPLE_X]
+ " y=" + scaled[MotionEvent.SAMPLE_Y]
+ " to " + currentMove);
currentMove.addBatch(curTime, scaled, metaState);
if (WindowManagerPolicy.WATCH_POINTER) {
Log.i("KeyInputQueue", "Updating: " + currentMove);
}
return null;
}
MotionEvent me = MotionEvent.obtainNano(mDownTime, curTime,
curTimeNano, action, numPointers, scaled, metaState,
xPrecision, yPrecision, device.id, edgeFlags);
if (action == MotionEvent.ACTION_MOVE) {
currentMove = me;
}
return me;
}
MotionEvent generateRelMotion(InputDevice device, long curTime,
long curTimeNano, int orientation, int metaState) {
final float[] scaled = mReportData;
// For now we only support 1 pointer with relative motions.
scaled[MotionEvent.SAMPLE_X] = mCurData[MotionEvent.SAMPLE_X];
scaled[MotionEvent.SAMPLE_Y] = mCurData[MotionEvent.SAMPLE_Y];
scaled[MotionEvent.SAMPLE_PRESSURE] = 1.0f;
scaled[MotionEvent.SAMPLE_SIZE] = 0;
int edgeFlags = 0;
int action;
if (mDown[0] != mLastDown[0]) {
mCurData[MotionEvent.SAMPLE_X] =
mCurData[MotionEvent.SAMPLE_Y] = 0;
mLastDown[0] = mDown[0];
if (mDown[0]) {
action = MotionEvent.ACTION_DOWN;
mDownTime = curTime;
} else {
action = MotionEvent.ACTION_UP;
}
currentMove = null;
} else {
action = MotionEvent.ACTION_MOVE;
}
scaled[MotionEvent.SAMPLE_X] *= xMoveScale;
scaled[MotionEvent.SAMPLE_Y] *= yMoveScale;
switch (orientation) {
case Surface.ROTATION_90: {
final float temp = scaled[MotionEvent.SAMPLE_X];
scaled[MotionEvent.SAMPLE_X] = scaled[MotionEvent.SAMPLE_Y];
scaled[MotionEvent.SAMPLE_Y] = -temp;
break;
}
case Surface.ROTATION_180: {
scaled[MotionEvent.SAMPLE_X] = -scaled[MotionEvent.SAMPLE_X];
scaled[MotionEvent.SAMPLE_Y] = -scaled[MotionEvent.SAMPLE_Y];
break;
}
case Surface.ROTATION_270: {
final float temp = scaled[MotionEvent.SAMPLE_X];
scaled[MotionEvent.SAMPLE_X] = -scaled[MotionEvent.SAMPLE_Y];
scaled[MotionEvent.SAMPLE_Y] = temp;
break;
}
}
if (currentMove != null) {
if (false) Log.i("InputDevice", "Adding batch x="
+ scaled[MotionEvent.SAMPLE_X]
+ " y=" + scaled[MotionEvent.SAMPLE_Y]
+ " to " + currentMove);
currentMove.addBatch(curTime, scaled, metaState);
if (WindowManagerPolicy.WATCH_POINTER) {
Log.i("KeyInputQueue", "Updating: " + currentMove);
}
return null;
}
MotionEvent me = MotionEvent.obtainNano(mDownTime, curTime,
curTimeNano, action, 1, scaled, metaState,
xPrecision, yPrecision, device.id, edgeFlags);
if (action == MotionEvent.ACTION_MOVE) {
currentMove = me;
}
return me;
}
}
static class AbsoluteInfo {
int minValue;
int maxValue;
int range;
int flat;
int fuzz;
};
InputDevice(int _id, int _classes, String _name,
AbsoluteInfo _absX, AbsoluteInfo _absY,
AbsoluteInfo _absPressure, AbsoluteInfo _absSize) {
id = _id;
classes = _classes;
name = _name;
absX = _absX;
absY = _absY;
absPressure = _absPressure;
absSize = _absSize;
}
};