Chris Craik f57776b2d1 3d view system!
True 3d transformations are now supported by DisplayLists and the
renderer, initially with the translationZ property on view.

Renderer operations used directly by DisplayList (formerly,
clip/save/restore/saveLayer) are now more simply managed by allocating
them temporarily on the handler's allocator, which exists for a single
frame. This is much simpler than continuing to expand the pool of
pre-allocated DisplayListOps now that more operations are called
directly by DisplayList, especially with z ordered drawing.

Still TODO:
-APIs for camera positioning, shadows
-Make Z apis public, and expose through XML
-Make invalidation / input 3d aware

Change-Id: I95fe6fa03f9b6ddd34a7e0c6ec8dd9fe47c6c6eb
2013-12-12 10:18:23 -08:00

569 lines
16 KiB
C++

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "OpenGLRenderer"
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <utils/Log.h>
#include <SkMatrix.h>
#include "Matrix.h"
namespace android {
namespace uirenderer {
///////////////////////////////////////////////////////////////////////////////
// Defines
///////////////////////////////////////////////////////////////////////////////
static const float EPSILON = 0.0000001f;
///////////////////////////////////////////////////////////////////////////////
// Matrix
///////////////////////////////////////////////////////////////////////////////
const Matrix4& Matrix4::identity() {
static Matrix4 sIdentity;
return sIdentity;
}
void Matrix4::loadIdentity() {
data[kScaleX] = 1.0f;
data[kSkewY] = 0.0f;
data[2] = 0.0f;
data[kPerspective0] = 0.0f;
data[kSkewX] = 0.0f;
data[kScaleY] = 1.0f;
data[6] = 0.0f;
data[kPerspective1] = 0.0f;
data[8] = 0.0f;
data[9] = 0.0f;
data[kScaleZ] = 1.0f;
data[11] = 0.0f;
data[kTranslateX] = 0.0f;
data[kTranslateY] = 0.0f;
data[kTranslateZ] = 0.0f;
data[kPerspective2] = 1.0f;
mType = kTypeIdentity | kTypeRectToRect;
}
static bool isZero(float f) {
return fabs(f) <= EPSILON;
}
uint8_t Matrix4::getType() const {
if (mType & kTypeUnknown) {
mType = kTypeIdentity;
if (data[kPerspective0] != 0.0f || data[kPerspective1] != 0.0f ||
data[kPerspective2] != 1.0f) {
mType |= kTypePerspective;
}
if (data[kTranslateX] != 0.0f || data[kTranslateY] != 0.0f) {
mType |= kTypeTranslate;
}
float m00 = data[kScaleX];
float m01 = data[kSkewX];
float m10 = data[kSkewY];
float m11 = data[kScaleY];
float m32 = data[kTranslateZ];
if (m01 != 0.0f || m10 != 0.0f || m32 != 0.0f) {
mType |= kTypeAffine;
}
if (m00 != 1.0f || m11 != 1.0f) {
mType |= kTypeScale;
}
// The following section determines whether the matrix will preserve
// rectangles. For instance, a rectangle transformed by a pure
// translation matrix will result in a rectangle. A rectangle
// transformed by a 45 degrees rotation matrix is not a rectangle.
// If the matrix has a perspective component then we already know
// it doesn't preserve rectangles.
if (!(mType & kTypePerspective)) {
if ((isZero(m00) && isZero(m11) && !isZero(m01) && !isZero(m10)) ||
(isZero(m01) && isZero(m10) && !isZero(m00) && !isZero(m11))) {
mType |= kTypeRectToRect;
}
}
}
return mType;
}
uint8_t Matrix4::getGeometryType() const {
return getType() & sGeometryMask;
}
bool Matrix4::rectToRect() const {
return getType() & kTypeRectToRect;
}
bool Matrix4::positiveScale() const {
return (data[kScaleX] > 0.0f && data[kScaleY] > 0.0f);
}
bool Matrix4::changesBounds() const {
return getType() & (kTypeScale | kTypeAffine | kTypePerspective);
}
bool Matrix4::isPureTranslate() const {
// NOTE: temporary hack to workaround ignoreTransform behavior with Z values
// TODO: separate this into isPure2dTranslate vs isPure3dTranslate
return getGeometryType() <= kTypeTranslate && (data[kTranslateZ] == 0.0f);
}
bool Matrix4::isSimple() const {
return getGeometryType() <= (kTypeScale | kTypeTranslate) && (data[kTranslateZ] == 0.0f);
}
bool Matrix4::isIdentity() const {
return getGeometryType() == kTypeIdentity;
}
bool Matrix4::isPerspective() const {
return getType() & kTypePerspective;
}
void Matrix4::load(const float* v) {
memcpy(data, v, sizeof(data));
mType = kTypeUnknown;
}
void Matrix4::load(const Matrix4& v) {
memcpy(data, v.data, sizeof(data));
mType = v.getType();
}
void Matrix4::load(const SkMatrix& v) {
memset(data, 0, sizeof(data));
data[kScaleX] = v[SkMatrix::kMScaleX];
data[kSkewX] = v[SkMatrix::kMSkewX];
data[kTranslateX] = v[SkMatrix::kMTransX];
data[kSkewY] = v[SkMatrix::kMSkewY];
data[kScaleY] = v[SkMatrix::kMScaleY];
data[kTranslateY] = v[SkMatrix::kMTransY];
data[kPerspective0] = v[SkMatrix::kMPersp0];
data[kPerspective1] = v[SkMatrix::kMPersp1];
data[kPerspective2] = v[SkMatrix::kMPersp2];
data[kScaleZ] = 1.0f;
// NOTE: The flags are compatible between SkMatrix and this class.
// However, SkMatrix::getType() does not return the flag
// kRectStaysRect. The return value is masked with 0xF
// so we need the extra rectStaysRect() check
mType = v.getType();
if (v.rectStaysRect()) {
mType |= kTypeRectToRect;
}
}
void Matrix4::copyTo(SkMatrix& v) const {
v.reset();
v.set(SkMatrix::kMScaleX, data[kScaleX]);
v.set(SkMatrix::kMSkewX, data[kSkewX]);
v.set(SkMatrix::kMTransX, data[kTranslateX]);
v.set(SkMatrix::kMSkewY, data[kSkewY]);
v.set(SkMatrix::kMScaleY, data[kScaleY]);
v.set(SkMatrix::kMTransY, data[kTranslateY]);
v.set(SkMatrix::kMPersp0, data[kPerspective0]);
v.set(SkMatrix::kMPersp1, data[kPerspective1]);
v.set(SkMatrix::kMPersp2, data[kPerspective2]);
}
void Matrix4::loadInverse(const Matrix4& v) {
double scale = 1.0 /
(v.data[kScaleX] * ((double) v.data[kScaleY] * v.data[kPerspective2] -
(double) v.data[kTranslateY] * v.data[kPerspective1]) +
v.data[kSkewX] * ((double) v.data[kTranslateY] * v.data[kPerspective0] -
(double) v.data[kSkewY] * v.data[kPerspective2]) +
v.data[kTranslateX] * ((double) v.data[kSkewY] * v.data[kPerspective1] -
(double) v.data[kScaleY] * v.data[kPerspective0]));
data[kScaleX] = (v.data[kScaleY] * v.data[kPerspective2] -
v.data[kTranslateY] * v.data[kPerspective1]) * scale;
data[kSkewX] = (v.data[kTranslateX] * v.data[kPerspective1] -
v.data[kSkewX] * v.data[kPerspective2]) * scale;
data[kTranslateX] = (v.data[kSkewX] * v.data[kTranslateY] -
v.data[kTranslateX] * v.data[kScaleY]) * scale;
data[kSkewY] = (v.data[kTranslateY] * v.data[kPerspective0] -
v.data[kSkewY] * v.data[kPerspective2]) * scale;
data[kScaleY] = (v.data[kScaleX] * v.data[kPerspective2] -
v.data[kTranslateX] * v.data[kPerspective0]) * scale;
data[kTranslateY] = (v.data[kTranslateX] * v.data[kSkewY] -
v.data[kScaleX] * v.data[kTranslateY]) * scale;
data[kPerspective0] = (v.data[kSkewY] * v.data[kPerspective1] -
v.data[kScaleY] * v.data[kPerspective0]) * scale;
data[kPerspective1] = (v.data[kSkewX] * v.data[kPerspective0] -
v.data[kScaleX] * v.data[kPerspective1]) * scale;
data[kPerspective2] = (v.data[kScaleX] * v.data[kScaleY] -
v.data[kSkewX] * v.data[kSkewY]) * scale;
mType = kTypeUnknown;
}
void Matrix4::copyTo(float* v) const {
memcpy(v, data, sizeof(data));
}
float Matrix4::getTranslateX() const {
return data[kTranslateX];
}
float Matrix4::getTranslateY() const {
return data[kTranslateY];
}
void Matrix4::multiply(float v) {
for (int i = 0; i < 16; i++) {
data[i] *= v;
}
mType = kTypeUnknown;
}
void Matrix4::loadTranslate(float x, float y, float z) {
loadIdentity();
data[kTranslateX] = x;
data[kTranslateY] = y;
data[kTranslateZ] = z;
mType = kTypeTranslate | kTypeRectToRect;
}
void Matrix4::loadScale(float sx, float sy, float sz) {
loadIdentity();
data[kScaleX] = sx;
data[kScaleY] = sy;
data[kScaleZ] = sz;
mType = kTypeScale | kTypeRectToRect;
}
void Matrix4::loadSkew(float sx, float sy) {
loadIdentity();
data[kScaleX] = 1.0f;
data[kSkewX] = sx;
data[kTranslateX] = 0.0f;
data[kSkewY] = sy;
data[kScaleY] = 1.0f;
data[kTranslateY] = 0.0f;
data[kPerspective0] = 0.0f;
data[kPerspective1] = 0.0f;
data[kPerspective2] = 1.0f;
mType = kTypeUnknown;
}
void Matrix4::loadRotate(float angle) {
angle *= float(M_PI / 180.0f);
float c = cosf(angle);
float s = sinf(angle);
loadIdentity();
data[kScaleX] = c;
data[kSkewX] = -s;
data[kSkewY] = s;
data[kScaleY] = c;
mType = kTypeUnknown;
}
void Matrix4::loadRotate(float angle, float x, float y, float z) {
data[kPerspective0] = 0.0f;
data[kPerspective1] = 0.0f;
data[11] = 0.0f;
data[kTranslateX] = 0.0f;
data[kTranslateY] = 0.0f;
data[kTranslateZ] = 0.0f;
data[kPerspective2] = 1.0f;
angle *= float(M_PI / 180.0f);
float c = cosf(angle);
float s = sinf(angle);
const float length = sqrtf(x * x + y * y + z * z);
float recipLen = 1.0f / length;
x *= recipLen;
y *= recipLen;
z *= recipLen;
const float nc = 1.0f - c;
const float xy = x * y;
const float yz = y * z;
const float zx = z * x;
const float xs = x * s;
const float ys = y * s;
const float zs = z * s;
data[kScaleX] = x * x * nc + c;
data[kSkewX] = xy * nc - zs;
data[8] = zx * nc + ys;
data[kSkewY] = xy * nc + zs;
data[kScaleY] = y * y * nc + c;
data[9] = yz * nc - xs;
data[2] = zx * nc - ys;
data[6] = yz * nc + xs;
data[kScaleZ] = z * z * nc + c;
mType = kTypeUnknown;
}
void Matrix4::loadMultiply(const Matrix4& u, const Matrix4& v) {
for (int i = 0 ; i < 4 ; i++) {
float x = 0;
float y = 0;
float z = 0;
float w = 0;
for (int j = 0 ; j < 4 ; j++) {
const float e = v.get(i, j);
x += u.get(j, 0) * e;
y += u.get(j, 1) * e;
z += u.get(j, 2) * e;
w += u.get(j, 3) * e;
}
set(i, 0, x);
set(i, 1, y);
set(i, 2, z);
set(i, 3, w);
}
mType = kTypeUnknown;
}
// translated from android.opengl.Matrix#frustumM()
void Matrix4::loadFrustum(float left, float top, float right, float bottom, float near, float far) {
float r_width = 1.0f / (right - left);
float r_height = 1.0f / (top - bottom);
float r_depth = 1.0f / (near - far);
float x = 2.0f * (near * r_width);
float y = 2.0f * (near * r_height);
float A = (right + left) * r_width;
float B = (top + bottom) * r_height;
float C = (far + near) * r_depth;
float D = 2.0f * (far * near * r_depth);
memset(&data, 0, sizeof(data));
mType = kTypeUnknown;
data[kScaleX] = x;
data[kScaleY] = y;
data[8] = A;
data[9] = B;
data[kScaleZ] = C;
data[kTranslateZ] = D;
data[11] = -1.0f;
}
// translated from android.opengl.Matrix#setLookAtM()
void Matrix4::loadLookAt(float eyeX, float eyeY, float eyeZ,
float centerX, float centerY, float centerZ,
float upX, float upY, float upZ) {
float fx = centerX - eyeX;
float fy = centerY - eyeY;
float fz = centerZ - eyeZ;
// Normalize f
float rlf = 1.0f / sqrt(fx*fx + fy*fy + fz*fz);
fx *= rlf;
fy *= rlf;
fz *= rlf;
// compute s = f x up (x means "cross product")
float sx = fy * upZ - fz * upY;
float sy = fz * upX - fx * upZ;
float sz = fx * upY - fy * upX;
// and normalize s
float rls = 1.0f / sqrt(sx*sx + sy*sy + sz*sz);
sx *= rls;
sy *= rls;
sz *= rls;
// compute u = s x f
float ux = sy * fz - sz * fy;
float uy = sz * fx - sx * fz;
float uz = sx * fy - sy * fx;
mType = kTypeUnknown;
data[0] = sx;
data[1] = ux;
data[2] = -fx;
data[3] = 0.0f;
data[4] = sy;
data[5] = uy;
data[6] = -fy;
data[7] = 0.0f;
data[8] = sz;
data[9] = uz;
data[10] = -fz;
data[11] = 0.0f;
data[12] = 0.0f;
data[13] = 0.0f;
data[14] = 0.0f;
data[15] = 1.0f;
translate(-eyeX, -eyeY, -eyeZ);
}
void Matrix4::loadOrtho(float left, float right, float bottom, float top, float near, float far) {
loadIdentity();
data[kScaleX] = 2.0f / (right - left);
data[kScaleY] = 2.0f / (top - bottom);
data[kScaleZ] = -2.0f / (far - near);
data[kTranslateX] = -(right + left) / (right - left);
data[kTranslateY] = -(top + bottom) / (top - bottom);
data[kTranslateZ] = -(far + near) / (far - near);
mType = kTypeTranslate | kTypeScale | kTypeRectToRect;
}
void Matrix4::mapPoint3d(Vector3& vec) const {
//TODO: optimize simple case
Vector3 orig(vec);
vec.x = orig.x * data[kScaleX] + orig.y * data[kSkewX] + orig.z * data[8] + data[kTranslateX];
vec.y = orig.x * data[kSkewY] + orig.y * data[kScaleY] + orig.z * data[9] + data[kTranslateY];
vec.z = orig.x * data[2] + orig.y * data[6] + orig.z * data[kScaleZ] + data[kTranslateZ];
}
#define MUL_ADD_STORE(a, b, c) a = (a) * (b) + (c)
void Matrix4::mapPoint(float& x, float& y) const {
if (isSimple()) {
MUL_ADD_STORE(x, data[kScaleX], data[kTranslateX]);
MUL_ADD_STORE(y, data[kScaleY], data[kTranslateY]);
return;
}
float dx = x * data[kScaleX] + y * data[kSkewX] + data[kTranslateX];
float dy = x * data[kSkewY] + y * data[kScaleY] + data[kTranslateY];
float dz = x * data[kPerspective0] + y * data[kPerspective1] + data[kPerspective2];
if (dz) dz = 1.0f / dz;
x = dx * dz;
y = dy * dz;
}
void Matrix4::mapRect(Rect& r) const {
if (isSimple()) {
MUL_ADD_STORE(r.left, data[kScaleX], data[kTranslateX]);
MUL_ADD_STORE(r.right, data[kScaleX], data[kTranslateX]);
MUL_ADD_STORE(r.top, data[kScaleY], data[kTranslateY]);
MUL_ADD_STORE(r.bottom, data[kScaleY], data[kTranslateY]);
if (r.left > r.right) {
float x = r.left;
r.left = r.right;
r.right = x;
}
if (r.top > r.bottom) {
float y = r.top;
r.top = r.bottom;
r.bottom = y;
}
return;
}
float vertices[] = {
r.left, r.top,
r.right, r.top,
r.right, r.bottom,
r.left, r.bottom
};
float x, y, z;
for (int i = 0; i < 8; i+= 2) {
float px = vertices[i];
float py = vertices[i + 1];
x = px * data[kScaleX] + py * data[kSkewX] + data[kTranslateX];
y = px * data[kSkewY] + py * data[kScaleY] + data[kTranslateY];
z = px * data[kPerspective0] + py * data[kPerspective1] + data[kPerspective2];
if (z) z = 1.0f / z;
vertices[i] = x * z;
vertices[i + 1] = y * z;
}
r.left = r.right = vertices[0];
r.top = r.bottom = vertices[1];
for (int i = 2; i < 8; i += 2) {
x = vertices[i];
y = vertices[i + 1];
if (x < r.left) r.left = x;
else if (x > r.right) r.right = x;
if (y < r.top) r.top = y;
else if (y > r.bottom) r.bottom = y;
}
}
void Matrix4::decomposeScale(float& sx, float& sy) const {
float len;
len = data[mat4::kScaleX] * data[mat4::kScaleX] + data[mat4::kSkewX] * data[mat4::kSkewX];
sx = copysignf(sqrtf(len), data[mat4::kScaleX]);
len = data[mat4::kScaleY] * data[mat4::kScaleY] + data[mat4::kSkewY] * data[mat4::kSkewY];
sy = copysignf(sqrtf(len), data[mat4::kScaleY]);
}
void Matrix4::dump() const {
ALOGD("Matrix4[simple=%d, type=0x%x", isSimple(), getType());
ALOGD(" %f %f %f %f", data[kScaleX], data[kSkewX], data[8], data[kTranslateX]);
ALOGD(" %f %f %f %f", data[kSkewY], data[kScaleY], data[9], data[kTranslateY]);
ALOGD(" %f %f %f %f", data[2], data[6], data[kScaleZ], data[kTranslateZ]);
ALOGD(" %f %f %f %f", data[kPerspective0], data[kPerspective1], data[11], data[kPerspective2]);
ALOGD("]");
}
}; // namespace uirenderer
}; // namespace android