54de77470d
Change-Id: I40cea46efd80c448640ff69753698fe8404da40b
3309 lines
169 KiB
Java
3309 lines
169 KiB
Java
/*
|
|
* Copyright (C) 2015 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
package android.renderscript;
|
|
|
|
import android.annotation.IntDef;
|
|
import java.lang.annotation.Retention;
|
|
import java.lang.annotation.RetentionPolicy;
|
|
|
|
/**
|
|
*
|
|
* ScriptIntrinsicBLAS class provides high performance RenderScript APIs to BLAS.
|
|
*
|
|
* The BLAS (Basic Linear Algebra Subprograms) are routines that provide standard
|
|
* building blocks for performing basic vector and matrix operations.
|
|
*
|
|
* For detailed description of BLAS, please refer to http://www.netlib.org/blas/
|
|
*
|
|
**/
|
|
public final class ScriptIntrinsicBLAS extends ScriptIntrinsic {
|
|
private Allocation mLUT;
|
|
|
|
private ScriptIntrinsicBLAS(long id, RenderScript rs) {
|
|
super(id, rs);
|
|
}
|
|
|
|
private static final int RsBlas_sdsdot = 1;
|
|
private static final int RsBlas_dsdot = 2;
|
|
private static final int RsBlas_sdot = 3;
|
|
private static final int RsBlas_ddot = 4;
|
|
private static final int RsBlas_cdotu_sub = 5;
|
|
private static final int RsBlas_cdotc_sub = 6;
|
|
private static final int RsBlas_zdotu_sub = 7;
|
|
private static final int RsBlas_zdotc_sub = 8;
|
|
private static final int RsBlas_snrm2 = 9;
|
|
private static final int RsBlas_sasum = 10;
|
|
private static final int RsBlas_dnrm2 = 11;
|
|
private static final int RsBlas_dasum = 12;
|
|
private static final int RsBlas_scnrm2 = 13;
|
|
private static final int RsBlas_scasum = 14;
|
|
private static final int RsBlas_dznrm2 = 15;
|
|
private static final int RsBlas_dzasum = 16;
|
|
private static final int RsBlas_isamax = 17;
|
|
private static final int RsBlas_idamax = 18;
|
|
private static final int RsBlas_icamax = 19;
|
|
private static final int RsBlas_izamax = 20;
|
|
private static final int RsBlas_sswap = 21;
|
|
private static final int RsBlas_scopy = 22;
|
|
private static final int RsBlas_saxpy = 23;
|
|
private static final int RsBlas_dswap = 24;
|
|
private static final int RsBlas_dcopy = 25;
|
|
private static final int RsBlas_daxpy = 26;
|
|
private static final int RsBlas_cswap = 27;
|
|
private static final int RsBlas_ccopy = 28;
|
|
private static final int RsBlas_caxpy = 29;
|
|
private static final int RsBlas_zswap = 30;
|
|
private static final int RsBlas_zcopy = 31;
|
|
private static final int RsBlas_zaxpy = 32;
|
|
private static final int RsBlas_srotg = 33;
|
|
private static final int RsBlas_srotmg = 34;
|
|
private static final int RsBlas_srot = 35;
|
|
private static final int RsBlas_srotm = 36;
|
|
private static final int RsBlas_drotg = 37;
|
|
private static final int RsBlas_drotmg = 38;
|
|
private static final int RsBlas_drot = 39;
|
|
private static final int RsBlas_drotm = 40;
|
|
private static final int RsBlas_sscal = 41;
|
|
private static final int RsBlas_dscal = 42;
|
|
private static final int RsBlas_cscal = 43;
|
|
private static final int RsBlas_zscal = 44;
|
|
private static final int RsBlas_csscal = 45;
|
|
private static final int RsBlas_zdscal = 46;
|
|
private static final int RsBlas_sgemv = 47;
|
|
private static final int RsBlas_sgbmv = 48;
|
|
private static final int RsBlas_strmv = 49;
|
|
private static final int RsBlas_stbmv = 50;
|
|
private static final int RsBlas_stpmv = 51;
|
|
private static final int RsBlas_strsv = 52;
|
|
private static final int RsBlas_stbsv = 53;
|
|
private static final int RsBlas_stpsv = 54;
|
|
private static final int RsBlas_dgemv = 55;
|
|
private static final int RsBlas_dgbmv = 56;
|
|
private static final int RsBlas_dtrmv = 57;
|
|
private static final int RsBlas_dtbmv = 58;
|
|
private static final int RsBlas_dtpmv = 59;
|
|
private static final int RsBlas_dtrsv = 60;
|
|
private static final int RsBlas_dtbsv = 61;
|
|
private static final int RsBlas_dtpsv = 62;
|
|
private static final int RsBlas_cgemv = 63;
|
|
private static final int RsBlas_cgbmv = 64;
|
|
private static final int RsBlas_ctrmv = 65;
|
|
private static final int RsBlas_ctbmv = 66;
|
|
private static final int RsBlas_ctpmv = 67;
|
|
private static final int RsBlas_ctrsv = 68;
|
|
private static final int RsBlas_ctbsv = 69;
|
|
private static final int RsBlas_ctpsv = 70;
|
|
private static final int RsBlas_zgemv = 71;
|
|
private static final int RsBlas_zgbmv = 72;
|
|
private static final int RsBlas_ztrmv = 73;
|
|
private static final int RsBlas_ztbmv = 74;
|
|
private static final int RsBlas_ztpmv = 75;
|
|
private static final int RsBlas_ztrsv = 76;
|
|
private static final int RsBlas_ztbsv = 77;
|
|
private static final int RsBlas_ztpsv = 78;
|
|
private static final int RsBlas_ssymv = 79;
|
|
private static final int RsBlas_ssbmv = 80;
|
|
private static final int RsBlas_sspmv = 81;
|
|
private static final int RsBlas_sger = 82;
|
|
private static final int RsBlas_ssyr = 83;
|
|
private static final int RsBlas_sspr = 84;
|
|
private static final int RsBlas_ssyr2 = 85;
|
|
private static final int RsBlas_sspr2 = 86;
|
|
private static final int RsBlas_dsymv = 87;
|
|
private static final int RsBlas_dsbmv = 88;
|
|
private static final int RsBlas_dspmv = 89;
|
|
private static final int RsBlas_dger = 90;
|
|
private static final int RsBlas_dsyr = 91;
|
|
private static final int RsBlas_dspr = 92;
|
|
private static final int RsBlas_dsyr2 = 93;
|
|
private static final int RsBlas_dspr2 = 94;
|
|
private static final int RsBlas_chemv = 95;
|
|
private static final int RsBlas_chbmv = 96;
|
|
private static final int RsBlas_chpmv = 97;
|
|
private static final int RsBlas_cgeru = 98;
|
|
private static final int RsBlas_cgerc = 99;
|
|
private static final int RsBlas_cher = 100;
|
|
private static final int RsBlas_chpr = 101;
|
|
private static final int RsBlas_cher2 = 102;
|
|
private static final int RsBlas_chpr2 = 103;
|
|
private static final int RsBlas_zhemv = 104;
|
|
private static final int RsBlas_zhbmv = 105;
|
|
private static final int RsBlas_zhpmv = 106;
|
|
private static final int RsBlas_zgeru = 107;
|
|
private static final int RsBlas_zgerc = 108;
|
|
private static final int RsBlas_zher = 109;
|
|
private static final int RsBlas_zhpr = 110;
|
|
private static final int RsBlas_zher2 = 111;
|
|
private static final int RsBlas_zhpr2 = 112;
|
|
private static final int RsBlas_sgemm = 113;
|
|
private static final int RsBlas_ssymm = 114;
|
|
private static final int RsBlas_ssyrk = 115;
|
|
private static final int RsBlas_ssyr2k = 116;
|
|
private static final int RsBlas_strmm = 117;
|
|
private static final int RsBlas_strsm = 118;
|
|
private static final int RsBlas_dgemm = 119;
|
|
private static final int RsBlas_dsymm = 120;
|
|
private static final int RsBlas_dsyrk = 121;
|
|
private static final int RsBlas_dsyr2k = 122;
|
|
private static final int RsBlas_dtrmm = 123;
|
|
private static final int RsBlas_dtrsm = 124;
|
|
private static final int RsBlas_cgemm = 125;
|
|
private static final int RsBlas_csymm = 126;
|
|
private static final int RsBlas_csyrk = 127;
|
|
private static final int RsBlas_csyr2k = 128;
|
|
private static final int RsBlas_ctrmm = 129;
|
|
private static final int RsBlas_ctrsm = 130;
|
|
private static final int RsBlas_zgemm = 131;
|
|
private static final int RsBlas_zsymm = 132;
|
|
private static final int RsBlas_zsyrk = 133;
|
|
private static final int RsBlas_zsyr2k = 134;
|
|
private static final int RsBlas_ztrmm = 135;
|
|
private static final int RsBlas_ztrsm = 136;
|
|
private static final int RsBlas_chemm = 137;
|
|
private static final int RsBlas_cherk = 138;
|
|
private static final int RsBlas_cher2k = 139;
|
|
private static final int RsBlas_zhemm = 140;
|
|
private static final int RsBlas_zherk = 141;
|
|
private static final int RsBlas_zher2k = 142;
|
|
|
|
// BLAS extensions start here
|
|
private static final int RsBlas_bnnm = 1000;
|
|
|
|
/**
|
|
* Create an intrinsic to access BLAS subroutines.
|
|
*
|
|
* @param rs The RenderScript context
|
|
* @return ScriptIntrinsicBLAS
|
|
*/
|
|
public static ScriptIntrinsicBLAS create(RenderScript rs) {
|
|
long id = rs.nScriptIntrinsicCreate(13, Element.U32(rs).getID(rs));
|
|
return new ScriptIntrinsicBLAS(id, rs);
|
|
}
|
|
|
|
/**
|
|
* @hide
|
|
*/
|
|
@IntDef({NO_TRANSPOSE, TRANSPOSE, CONJ_TRANSPOSE})
|
|
@Retention(RetentionPolicy.SOURCE)
|
|
public @interface Transpose {}
|
|
|
|
/**
|
|
* @hide
|
|
*/
|
|
@IntDef({UPPER, LOWER})
|
|
@Retention(RetentionPolicy.SOURCE)
|
|
public @interface Uplo {}
|
|
|
|
/**
|
|
* @hide
|
|
*/
|
|
@IntDef({NON_UNIT, UNIT})
|
|
@Retention(RetentionPolicy.SOURCE)
|
|
public @interface Diag {}
|
|
|
|
/**
|
|
* @hide
|
|
*/
|
|
@IntDef({LEFT, RIGHT})
|
|
@Retention(RetentionPolicy.SOURCE)
|
|
public @interface Side {}
|
|
|
|
public static final int NO_TRANSPOSE = 111;
|
|
public static final int TRANSPOSE = 112;
|
|
public static final int CONJ_TRANSPOSE = 113;
|
|
|
|
public static final int UPPER = 121;
|
|
public static final int LOWER = 122;
|
|
|
|
public static final int NON_UNIT = 131;
|
|
public static final int UNIT = 132;
|
|
|
|
public static final int LEFT = 141;
|
|
public static final int RIGHT = 142;
|
|
|
|
static void validateSide(@Side int Side) {
|
|
if (Side != LEFT && Side != RIGHT) {
|
|
throw new RSRuntimeException("Invalid side passed to BLAS");
|
|
}
|
|
}
|
|
|
|
static void validateTranspose(@Transpose int Trans) {
|
|
if (Trans != NO_TRANSPOSE && Trans != TRANSPOSE &&
|
|
Trans != CONJ_TRANSPOSE) {
|
|
throw new RSRuntimeException("Invalid transpose passed to BLAS");
|
|
}
|
|
}
|
|
|
|
static void validateConjTranspose(@Transpose int Trans) {
|
|
if (Trans != NO_TRANSPOSE &&
|
|
Trans != CONJ_TRANSPOSE) {
|
|
throw new RSRuntimeException("Invalid transpose passed to BLAS");
|
|
}
|
|
}
|
|
|
|
static void validateDiag(@Diag int Diag) {
|
|
if (Diag != NON_UNIT && Diag != UNIT) {
|
|
throw new RSRuntimeException("Invalid diag passed to BLAS");
|
|
}
|
|
}
|
|
|
|
static void validateUplo(@Uplo int Uplo) {
|
|
if (Uplo != UPPER && Uplo != LOWER) {
|
|
throw new RSRuntimeException("Invalid uplo passed to BLAS");
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Level 2 BLAS
|
|
*/
|
|
|
|
static void validateGEMV(Element e, int TransA, Allocation A, Allocation X, int incX, Allocation Y, int incY) {
|
|
validateTranspose(TransA);
|
|
int M = A.getType().getY();
|
|
int N = A.getType().getX();
|
|
if (!A.getType().getElement().isCompatible(e) ||
|
|
!X.getType().getElement().isCompatible(e) ||
|
|
!Y.getType().getElement().isCompatible(e)) {
|
|
throw new RSRuntimeException("Called BLAS with wrong Element type");
|
|
}
|
|
if (X.getType().getY() > 1 || Y.getType().getY() > 1) {
|
|
throw new RSRuntimeException("BLAS vectors must have Y dimension of 0 or 1");
|
|
}
|
|
|
|
if (incX <= 0 || incY <= 0) {
|
|
throw new RSRuntimeException("Vector increments must be greater than 0");
|
|
}
|
|
int expectedXDim = -1, expectedYDim = -1;
|
|
if (TransA == NO_TRANSPOSE) {
|
|
expectedXDim = 1 + (N - 1) * incX;
|
|
expectedYDim = 1 + (M - 1) * incY;
|
|
} else {
|
|
expectedXDim = 1 + (M - 1) * incX;
|
|
expectedYDim = 1 + (N - 1) * incY;
|
|
}
|
|
if (X.getType().getX() != expectedXDim ||
|
|
Y.getType().getX() != expectedYDim) {
|
|
throw new RSRuntimeException("Incorrect vector dimensions for GEMV");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* SGEMV performs one of the matrix-vector operations
|
|
* y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/db/d58/sgemv_8f.html
|
|
*
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param beta The scalar beta.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F32}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
*/
|
|
public void SGEMV(@Transpose int TransA, float alpha, Allocation A, Allocation X, int incX, float beta, Allocation Y, int incY) {
|
|
validateGEMV(Element.F32(mRS), TransA, A, X, incX, Y, incY);
|
|
int M = A.getType().getY();
|
|
int N = A.getType().getX();
|
|
mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_sgemv, TransA, 0, 0, 0, 0, M, N, 0, alpha, A.getID(mRS), X.getID(mRS), beta, Y.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* DGEMV performs one of the matrix-vector operations
|
|
* y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/dc/da8/dgemv_8f.html
|
|
*
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param beta The scalar beta.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F64}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
*/
|
|
public void DGEMV(@Transpose int TransA, double alpha, Allocation A, Allocation X, int incX, double beta, Allocation Y, int incY) {
|
|
validateGEMV(Element.F64(mRS), TransA, A, X, incX, Y, incY);
|
|
int M = A.getType().getY();
|
|
int N = A.getType().getX();
|
|
mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dgemv, TransA, 0, 0, 0, 0, M, N, 0, alpha, A.getID(mRS), X.getID(mRS), beta, Y.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* CGEMV performs one of the matrix-vector operations
|
|
* y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d4/d8a/cgemv_8f.html
|
|
*
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param beta The scalar beta.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F32_2}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
*/
|
|
public void CGEMV(@Transpose int TransA, Float2 alpha, Allocation A, Allocation X, int incX, Float2 beta, Allocation Y, int incY) {
|
|
validateGEMV(Element.F32_2(mRS), TransA, A, X, incX, Y, incY);
|
|
int M = A.getType().getY();
|
|
int N = A.getType().getX();
|
|
mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_cgemv, TransA, 0, 0, 0, 0, M, N, 0, alpha.x, alpha.y, A.getID(mRS), X.getID(mRS), beta.x, beta.y, Y.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* ZGEMV performs one of the matrix-vector operations
|
|
* y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/db/d40/zgemv_8f.html
|
|
*
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param beta The scalar beta.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F64_2}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
*/
|
|
public void ZGEMV(@Transpose int TransA, Double2 alpha, Allocation A, Allocation X, int incX, Double2 beta, Allocation Y, int incY) {
|
|
validateGEMV(Element.F64_2(mRS), TransA, A, X, incX, Y, incY);
|
|
int M = A.getType().getY();
|
|
int N = A.getType().getX();
|
|
mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zgemv, TransA, 0, 0, 0, 0, M, N, 0, alpha.x, alpha.y, A.getID(mRS), X.getID(mRS), beta.x, beta.y, Y.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* SGBMV performs one of the matrix-vector operations
|
|
* y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d6/d46/sgbmv_8f.html
|
|
*
|
|
* Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N),
|
|
* but only the region M*(KL+KU+1) will be referenced. The following subroutine can is an
|
|
* example showing how to convert the original matrix 'a' to row-based band matrix 'b'.
|
|
* for i in range(0, m):
|
|
* for j in range(max(0, i-kl), min(i+ku+1, n)):
|
|
* b[i, j-i+kl] = a[i, j]
|
|
*
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param KL The number of sub-diagonals of the matrix A.
|
|
* @param KU The number of super-diagonals of the matrix A.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains the band matrix A, supported elements type {@link Element#F32}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param beta The scalar beta.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F32}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
*/
|
|
public void SGBMV(@Transpose int TransA, int KL, int KU, float alpha, Allocation A, Allocation X, int incX, float beta, Allocation Y, int incY) {
|
|
// GBMV has the same validation requirements as GEMV + KL and KU >= 0
|
|
validateGEMV(Element.F32(mRS), TransA, A, X, incX, Y, incY);
|
|
if (KL < 0 || KU < 0) {
|
|
throw new RSRuntimeException("KL and KU must be greater than or equal to 0");
|
|
}
|
|
int M = A.getType().getY();
|
|
int N = A.getType().getX();
|
|
mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_sgbmv, TransA, 0, 0, 0, 0, M, N, 0, alpha, A.getID(mRS), X.getID(mRS), beta, Y.getID(mRS), incX, incY, KL, KU);
|
|
}
|
|
|
|
/**
|
|
* DGBMV performs one of the matrix-vector operations
|
|
* y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d2/d3f/dgbmv_8f.html
|
|
*
|
|
* Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N),
|
|
* but only the region M*(KL+KU+1) will be referenced. The following subroutine can is an
|
|
* example showing how to convert the original matrix 'a' to row-based band matrix 'b'.
|
|
* for i in range(0, m):
|
|
* for j in range(max(0, i-kl), min(i+ku+1, n)):
|
|
* b[i, j-i+kl] = a[i, j]
|
|
*
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param KL The number of sub-diagonals of the matrix A.
|
|
* @param KU The number of super-diagonals of the matrix A.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains the band matrix A, supported elements type {@link Element#F64}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param beta The scalar beta.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F64}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
*/
|
|
public void DGBMV(@Transpose int TransA, int KL, int KU, double alpha, Allocation A, Allocation X, int incX, double beta, Allocation Y, int incY) {
|
|
// GBMV has the same validation requirements as GEMV + KL and KU >= 0
|
|
validateGEMV(Element.F64(mRS), TransA, A, X, incX, Y, incY);
|
|
if (KL < 0 || KU < 0) {
|
|
throw new RSRuntimeException("KL and KU must be greater than or equal to 0");
|
|
}
|
|
int M = A.getType().getY();
|
|
int N = A.getType().getX();
|
|
mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dgbmv, TransA, 0, 0, 0, 0, M, N, 0, alpha, A.getID(mRS), X.getID(mRS), beta, Y.getID(mRS), incX, incY, KL, KU);
|
|
}
|
|
|
|
/**
|
|
* CGBMV performs one of the matrix-vector operations
|
|
* y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d0/d75/cgbmv_8f.html
|
|
*
|
|
* Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N),
|
|
* but only the region M*(KL+KU+1) will be referenced. The following subroutine can is an
|
|
* example showing how to convert the original matrix 'a' to row-based band matrix 'b'.
|
|
* for i in range(0, m):
|
|
* for j in range(max(0, i-kl), min(i+ku+1, n)):
|
|
* b[i, j-i+kl] = a[i, j]
|
|
*
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param KL The number of sub-diagonals of the matrix A.
|
|
* @param KU The number of super-diagonals of the matrix A.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains the band matrix A, supported elements type {@link Element#F32_2}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param beta The scalar beta.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F32_2}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
*/
|
|
public void CGBMV(@Transpose int TransA, int KL, int KU, Float2 alpha, Allocation A, Allocation X, int incX, Float2 beta, Allocation Y, int incY) {
|
|
// GBMV has the same validation requirements as GEMV + KL and KU >= 0
|
|
validateGEMV(Element.F32_2(mRS), TransA, A, X, incX, Y, incY);
|
|
if (KL < 0 || KU < 0) {
|
|
throw new RSRuntimeException("KL and KU must be greater than or equal to 0");
|
|
}
|
|
int M = A.getType().getY();
|
|
int N = A.getType().getX();
|
|
mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_cgbmv, TransA, 0, 0, 0, 0, M, N, 0, alpha.x, alpha.y, A.getID(mRS), X.getID(mRS), beta.x, beta.y, Y.getID(mRS), incX, incY, KL, KU);
|
|
}
|
|
|
|
/**
|
|
* ZGBMV performs one of the matrix-vector operations
|
|
* y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d9/d46/zgbmv_8f.html
|
|
*
|
|
* Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N),
|
|
* but only the region M*(KL+KU+1) will be referenced. The following subroutine can is an
|
|
* example showing how to convert the original matrix 'a' to row-based band matrix 'b'.
|
|
* for i in range(0, m):
|
|
* for j in range(max(0, i-kl), min(i+ku+1, n)):
|
|
* b[i, j-i+kl] = a[i, j]
|
|
*
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param KL The number of sub-diagonals of the matrix A.
|
|
* @param KU The number of super-diagonals of the matrix A.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains the band matrix A, supported elements type {@link Element#F64_2}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param beta The scalar beta.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F64_2}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
*/
|
|
public void ZGBMV(@Transpose int TransA, int KL, int KU, Double2 alpha, Allocation A, Allocation X, int incX, Double2 beta, Allocation Y, int incY) {
|
|
// GBMV has the same validation requirements as GEMV + KL and KU >= 0
|
|
validateGEMV(Element.F64_2(mRS), TransA, A, X, incX, Y, incY);
|
|
if (KL < 0 || KU < 0) {
|
|
throw new RSRuntimeException("KL and KU must be greater than or equal to 0");
|
|
}
|
|
int M = A.getType().getY();
|
|
int N = A.getType().getX();
|
|
mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zgbmv, TransA, 0, 0, 0, 0, M, N, 0, alpha.x, alpha.y, A.getID(mRS), X.getID(mRS), beta.x, beta.y, Y.getID(mRS), incX, incY, KL, KU);
|
|
}
|
|
|
|
static void validateTRMV(Element e, @Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation A, Allocation X, int incX) {
|
|
validateTranspose(TransA);
|
|
validateUplo(Uplo);
|
|
validateDiag(Diag);
|
|
int N = A.getType().getY();
|
|
if (A.getType().getX() != N) {
|
|
throw new RSRuntimeException("A must be a square matrix for TRMV");
|
|
}
|
|
if (!A.getType().getElement().isCompatible(e) ||
|
|
!X.getType().getElement().isCompatible(e)) {
|
|
throw new RSRuntimeException("Called BLAS with wrong Element type");
|
|
}
|
|
if (X.getType().getY() > 1) {
|
|
throw new RSRuntimeException("BLAS vectors must have Y dimension of 0 or 1");
|
|
}
|
|
|
|
if (incX <= 0) {
|
|
throw new RSRuntimeException("Vector increments must be greater than 0");
|
|
}
|
|
int expectedXDim = 1 + (N - 1) * incX;
|
|
if (X.getType().getX() != expectedXDim) {
|
|
throw new RSRuntimeException("Incorrect vector dimensions for TRMV");
|
|
}
|
|
}
|
|
|
|
static int validateTPMV(Element e, @Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation Ap, Allocation X, int incX) {
|
|
validateTranspose(TransA);
|
|
validateUplo(Uplo);
|
|
validateDiag(Diag);
|
|
if (!Ap.getType().getElement().isCompatible(e) ||
|
|
!X.getType().getElement().isCompatible(e)) {
|
|
throw new RSRuntimeException("Called BLAS with wrong Element type");
|
|
}
|
|
if (X.getType().getY() > 1) {
|
|
throw new RSRuntimeException("BLAS vectors must have Y dimension of 0 or 1");
|
|
}
|
|
|
|
if (Ap.getType().getY() > 1) {
|
|
throw new RSRuntimeException("Ap must have a Y dimension of 0 or 1");
|
|
}
|
|
|
|
int N = (int)Math.sqrt((double)Ap.getType().getX() * 2);
|
|
//is it really doing anything?
|
|
if (Ap.getType().getX() != ((N * (N+1)) / 2)) {
|
|
throw new RSRuntimeException("Invalid dimension for Ap");
|
|
}
|
|
if (incX <= 0) {
|
|
throw new RSRuntimeException("Vector increments must be greater than 0");
|
|
}
|
|
int expectedXDim = 1 + (N - 1) * incX;
|
|
if (X.getType().getX() != expectedXDim) {
|
|
throw new RSRuntimeException("Incorrect vector dimensions for TPMV");
|
|
}
|
|
|
|
return N;
|
|
}
|
|
|
|
/**
|
|
* STRMV performs one of the matrix-vector operations
|
|
* x := A*x or x := A**T*x
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/de/d45/strmv_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
*/
|
|
public void STRMV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation A, Allocation X, int incX) {
|
|
validateTRMV(Element.F32(mRS), Uplo, TransA, Diag, A, X, incX);
|
|
int N = A.getType().getY();
|
|
mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_strmv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, A.getID(mRS), X.getID(mRS), 0, 0, incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* DTRMV performs one of the matrix-vector operations
|
|
* x := A*x or x := A**T*x
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/dc/d7e/dtrmv_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
*/
|
|
public void DTRMV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation A, Allocation X, int incX) {
|
|
validateTRMV(Element.F64(mRS), Uplo, TransA, Diag, A, X, incX);
|
|
int N = A.getType().getY();
|
|
mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dtrmv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, A.getID(mRS), X.getID(mRS), 0, 0, incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* CTRMV performs one of the matrix-vector operations
|
|
* x := A*x or x := A**T*x or x := A**H*x
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/df/d78/ctrmv_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
*/
|
|
public void CTRMV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation A, Allocation X, int incX) {
|
|
validateTRMV(Element.F32_2(mRS), Uplo, TransA, Diag, A, X, incX);
|
|
int N = A.getType().getY();
|
|
mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_ctrmv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, 0, A.getID(mRS), X.getID(mRS), 0, 0, 0, incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* ZTRMV performs one of the matrix-vector operations
|
|
* x := A*x or x := A**T*x or x := A**H*x
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d0/dd1/ztrmv_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
*/
|
|
public void ZTRMV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation A, Allocation X, int incX) {
|
|
validateTRMV(Element.F64_2(mRS), Uplo, TransA, Diag, A, X, incX);
|
|
int N = A.getType().getY();
|
|
mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_ztrmv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, 0, A.getID(mRS), X.getID(mRS), 0, 0, 0, incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* STBMV performs one of the matrix-vector operations
|
|
* x := A*x or x := A**T*x
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d6/d7d/stbmv_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
|
|
* but only the region N*(K+1) will be referenced. The following subroutine can is an
|
|
* example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'.
|
|
* for i in range(0, n):
|
|
* for j in range(i, min(i+k+1, n)):
|
|
* b[i, j-i] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param K The number of off-diagonals of the matrix A
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
*/
|
|
public void STBMV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, int K, Allocation A, Allocation X, int incX) {
|
|
// TBMV has the same requirements as TRMV + K >= 0
|
|
if (K < 0) {
|
|
throw new RSRuntimeException("K must be greater than or equal to 0");
|
|
}
|
|
validateTRMV(Element.F32(mRS), Uplo, TransA, Diag, A, X, incX);
|
|
int N = A.getType().getY();
|
|
mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_stbmv, TransA, 0, 0, Uplo, Diag, 0, N, K, 0, A.getID(mRS), X.getID(mRS), 0, 0, incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* DTBMV performs one of the matrix-vector operations
|
|
* x := A*x or x := A**T*x
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/df/d29/dtbmv_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
|
|
* but only the region N*(K+1) will be referenced. The following subroutine can is an
|
|
* example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'.
|
|
* for i in range(0, n):
|
|
* for j in range(i, min(i+k+1, n)):
|
|
* b[i, j-i] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param K The number of off-diagonals of the matrix A
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
*/
|
|
public void DTBMV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, int K, Allocation A, Allocation X, int incX) {
|
|
// TBMV has the same requirements as TRMV + K >= 0
|
|
if (K < 0) {
|
|
throw new RSRuntimeException("K must be greater than or equal to 0");
|
|
}
|
|
validateTRMV(Element.F64(mRS), Uplo, TransA, Diag, A, X, incX);
|
|
int N = A.getType().getY();
|
|
mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dtbmv, TransA, 0, 0, Uplo, Diag, 0, N, K, 0, A.getID(mRS), X.getID(mRS), 0, 0, incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* CTBMV performs one of the matrix-vector operations
|
|
* x := A*x or x := A**T*x or x := A**H*x
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d3/dcd/ctbmv_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
|
|
* but only the region N*(K+1) will be referenced. The following subroutine can is an
|
|
* example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'.
|
|
* for i in range(0, n):
|
|
* for j in range(i, min(i+k+1, n)):
|
|
* b[i, j-i] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param K The number of off-diagonals of the matrix A
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
*/
|
|
public void CTBMV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, int K, Allocation A, Allocation X, int incX) {
|
|
// TBMV has the same requirements as TRMV + K >= 0
|
|
if (K < 0) {
|
|
throw new RSRuntimeException("K must be greater than or equal to 0");
|
|
}
|
|
validateTRMV(Element.F32_2(mRS), Uplo, TransA, Diag, A, X, incX);
|
|
int N = A.getType().getY();
|
|
mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_ctbmv, TransA, 0, 0, Uplo, Diag, 0, N, K, 0, 0, A.getID(mRS), X.getID(mRS), 0, 0, 0, incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* ZTBMV performs one of the matrix-vector operations
|
|
* x := A*x or x := A**T*x or x := A**H*x
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d3/d39/ztbmv_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
|
|
* but only the region N*(K+1) will be referenced. The following subroutine can is an
|
|
* example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'.
|
|
* for i in range(0, n):
|
|
* for j in range(i, min(i+k+1, n)):
|
|
* b[i, j-i] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param K The number of off-diagonals of the matrix A
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
*/
|
|
public void ZTBMV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, int K, Allocation A, Allocation X, int incX) {
|
|
// TBMV has the same requirements as TRMV + K >= 0
|
|
if (K < 0) {
|
|
throw new RSRuntimeException("K must be greater than or equal to 0");
|
|
}
|
|
validateTRMV(Element.F64_2(mRS), Uplo, TransA, Diag, A, X, incX);
|
|
int N = A.getType().getY();
|
|
mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_ztbmv, TransA, 0, 0, Uplo, Diag, 0, N, K, 0, 0, A.getID(mRS), X.getID(mRS), 0, 0, 0, incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* STPMV performs one of the matrix-vector operations
|
|
* x := A*x or x := A**T*x
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/db/db1/stpmv_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
|
|
* The following subroutine can is an example showing how to convert a UPPER trianglar matrix
|
|
* 'a' to packed matrix 'b'.
|
|
* k = 0
|
|
* for i in range(0, n):
|
|
* for j in range(i, n):
|
|
* b[k++] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param Ap The input allocation contains packed matrix A, supported elements type {@link Element#F32}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
*/
|
|
public void STPMV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation Ap, Allocation X, int incX) {
|
|
int N = validateTPMV(Element.F32(mRS), Uplo, TransA, Diag, Ap, X, incX);
|
|
mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_stpmv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, Ap.getID(mRS), X.getID(mRS), 0, 0, incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* DTPMV performs one of the matrix-vector operations
|
|
* x := A*x or x := A**T*x
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/dc/dcd/dtpmv_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
|
|
* The following subroutine can is an example showing how to convert a UPPER trianglar matrix
|
|
* 'a' to packed matrix 'b'.
|
|
* k = 0
|
|
* for i in range(0, n):
|
|
* for j in range(i, n):
|
|
* b[k++] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param Ap The input allocation contains packed matrix A, supported elements type {@link Element#F64}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
*/
|
|
public void DTPMV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation Ap, Allocation X, int incX) {
|
|
int N = validateTPMV(Element.F64(mRS), Uplo, TransA, Diag, Ap, X, incX);
|
|
mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dtpmv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, Ap.getID(mRS), X.getID(mRS), 0, 0, incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* CTPMV performs one of the matrix-vector operations
|
|
* x := A*x or x := A**T*x or x := A**H*x
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d4/dbb/ctpmv_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
|
|
* The following subroutine can is an example showing how to convert a UPPER trianglar matrix
|
|
* 'a' to packed matrix 'b'.
|
|
* k = 0
|
|
* for i in range(0, n):
|
|
* for j in range(i, n):
|
|
* b[k++] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param Ap The input allocation contains packed matrix A, supported elements type {@link Element#F32_2}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
*/
|
|
public void CTPMV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation Ap, Allocation X, int incX) {
|
|
int N = validateTPMV(Element.F32_2(mRS), Uplo, TransA, Diag, Ap, X, incX);
|
|
mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_ctpmv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, 0, Ap.getID(mRS), X.getID(mRS), 0, 0, 0, incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* ZTPMV performs one of the matrix-vector operations
|
|
* x := A*x or x := A**T*x or x := A**H*x
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d2/d9e/ztpmv_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
|
|
* The following subroutine can is an example showing how to convert a UPPER trianglar matrix
|
|
* 'a' to packed matrix 'b'.
|
|
* k = 0
|
|
* for i in range(0, n):
|
|
* for j in range(i, n):
|
|
* b[k++] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param Ap The input allocation contains packed matrix A, supported elements type {@link Element#F64_2}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
*/
|
|
public void ZTPMV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation Ap, Allocation X, int incX) {
|
|
int N = validateTPMV(Element.F64_2(mRS), Uplo, TransA, Diag, Ap, X, incX);
|
|
mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_ztpmv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, 0, Ap.getID(mRS), X.getID(mRS), 0, 0, 0, incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* STRSV solves one of the systems of equations
|
|
* A*x = b or A**T*x = b
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d0/d2a/strsv_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
*/
|
|
public void STRSV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation A, Allocation X, int incX) {
|
|
// TRSV is the same as TRMV
|
|
validateTRMV(Element.F32(mRS), Uplo, TransA, Diag, A, X, incX);
|
|
int N = A.getType().getY();
|
|
mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_strsv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, A.getID(mRS), X.getID(mRS), 0, 0, incX, 0, 0, 0);
|
|
|
|
}
|
|
|
|
/**
|
|
* DTRSV solves one of the systems of equations
|
|
* A*x = b or A**T*x = b
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d6/d96/dtrsv_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
*/
|
|
public void DTRSV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation A, Allocation X, int incX) {
|
|
// TRSV is the same as TRMV
|
|
validateTRMV(Element.F64(mRS), Uplo, TransA, Diag, A, X, incX);
|
|
int N = A.getType().getY();
|
|
mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dtrsv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, A.getID(mRS), X.getID(mRS), 0, 0, incX, 0, 0, 0);
|
|
|
|
}
|
|
|
|
/**
|
|
* CTRSV solves one of the systems of equations
|
|
* A*x = b or A**T*x = b or A**H*x = b
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d4/dc8/ctrsv_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
*/
|
|
public void CTRSV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation A, Allocation X, int incX) {
|
|
// TRSV is the same as TRMV
|
|
validateTRMV(Element.F32_2(mRS), Uplo, TransA, Diag, A, X, incX);
|
|
int N = A.getType().getY();
|
|
mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_ctrsv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, 0, A.getID(mRS), X.getID(mRS), 0, 0, 0, incX, 0, 0, 0);
|
|
|
|
}
|
|
|
|
/**
|
|
* ZTRSV solves one of the systems of equations
|
|
* A*x = b or A**T*x = b or A**H*x = b
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d1/d2f/ztrsv_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
*/
|
|
public void ZTRSV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation A, Allocation X, int incX) {
|
|
// TRSV is the same as TRMV
|
|
validateTRMV(Element.F64_2(mRS), Uplo, TransA, Diag, A, X, incX);
|
|
int N = A.getType().getY();
|
|
mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_ztrsv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, 0, A.getID(mRS), X.getID(mRS), 0, 0, 0, incX, 0, 0, 0);
|
|
|
|
}
|
|
|
|
/**
|
|
* STBSV solves one of the systems of equations
|
|
* A*x = b or A**T*x = b
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d0/d1f/stbsv_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
|
|
* but only the region N*(K+1) will be referenced. The following subroutine can is an
|
|
* example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'.
|
|
* for i in range(0, n):
|
|
* for j in range(i, min(i+k+1, n)):
|
|
* b[i, j-i] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param K The number of off-diagonals of the matrix A
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
*/
|
|
public void STBSV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, int K, Allocation A, Allocation X, int incX) {
|
|
// TBSV is the same as TRMV + K >= 0
|
|
validateTRMV(Element.F32(mRS), Uplo, TransA, Diag, A, X, incX);
|
|
int N = A.getType().getY();
|
|
if (K < 0) {
|
|
throw new RSRuntimeException("Number of diagonals must be positive");
|
|
}
|
|
mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_stbsv, TransA, 0, 0, Uplo, Diag, 0, N, K, 0, A.getID(mRS), X.getID(mRS), 0, 0, incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* DTBSV solves one of the systems of equations
|
|
* A*x = b or A**T*x = b
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d4/dcf/dtbsv_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
|
|
* but only the region N*(K+1) will be referenced. The following subroutine can is an
|
|
* example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'.
|
|
* for i in range(0, n):
|
|
* for j in range(i, min(i+k+1, n)):
|
|
* b[i, j-i] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param K The number of off-diagonals of the matrix A
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
*/
|
|
public void DTBSV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, int K, Allocation A, Allocation X, int incX) {
|
|
// TBSV is the same as TRMV + K >= 0
|
|
validateTRMV(Element.F64(mRS), Uplo, TransA, Diag, A, X, incX);
|
|
int N = A.getType().getY();
|
|
if (K < 0) {
|
|
throw new RSRuntimeException("Number of diagonals must be positive");
|
|
}
|
|
mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dtbsv, TransA, 0, 0, Uplo, Diag, 0, N, K, 0, A.getID(mRS), X.getID(mRS), 0, 0, incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* CTBSV solves one of the systems of equations
|
|
* A*x = b or A**T*x = b or A**H*x = b
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d9/d5f/ctbsv_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
|
|
* but only the region N*(K+1) will be referenced. The following subroutine can is an
|
|
* example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'.
|
|
* for i in range(0, n):
|
|
* for j in range(i, min(i+k+1, n)):
|
|
* b[i, j-i] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param K The number of off-diagonals of the matrix A
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
*/
|
|
public void CTBSV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, int K, Allocation A, Allocation X, int incX) {
|
|
// TBSV is the same as TRMV + K >= 0
|
|
validateTRMV(Element.F32_2(mRS), Uplo, TransA, Diag, A, X, incX);
|
|
int N = A.getType().getY();
|
|
if (K < 0) {
|
|
throw new RSRuntimeException("Number of diagonals must be positive");
|
|
}
|
|
mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_ctbsv, TransA, 0, 0, Uplo, Diag, 0, N, K, 0, 0, A.getID(mRS), X.getID(mRS), 0, 0, 0, incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* ZTBSV solves one of the systems of equations
|
|
* A*x = b or A**T*x = b or A**H*x = b
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d4/d5a/ztbsv_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
|
|
* but only the region N*(K+1) will be referenced. The following subroutine can is an
|
|
* example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'.
|
|
* for i in range(0, n):
|
|
* for j in range(i, min(i+k+1, n)):
|
|
* b[i, j-i] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param K The number of off-diagonals of the matrix A
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
*/
|
|
public void ZTBSV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, int K, Allocation A, Allocation X, int incX) {
|
|
// TBSV is the same as TRMV + K >= 0
|
|
validateTRMV(Element.F64_2(mRS), Uplo, TransA, Diag, A, X, incX);
|
|
int N = A.getType().getY();
|
|
if (K < 0) {
|
|
throw new RSRuntimeException("Number of diagonals must be positive");
|
|
}
|
|
mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_ztbsv, TransA, 0, 0, Uplo, Diag, 0, N, K, 0, 0, A.getID(mRS), X.getID(mRS), 0, 0, 0, incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* STPSV solves one of the systems of equations
|
|
* A*x = b or A**T*x = b
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d0/d7c/stpsv_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
|
|
* The following subroutine can is an example showing how to convert a UPPER trianglar matrix
|
|
* 'a' to packed matrix 'b'.
|
|
* k = 0
|
|
* for i in range(0, n):
|
|
* for j in range(i, n):
|
|
* b[k++] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param Ap The input allocation contains packed matrix A, supported elements type {@link Element#F32}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
*/
|
|
public void STPSV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation Ap, Allocation X, int incX) {
|
|
// TPSV is same as TPMV
|
|
int N = validateTPMV(Element.F32(mRS), Uplo, TransA, Diag, Ap, X, incX);
|
|
mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_stpsv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, Ap.getID(mRS), X.getID(mRS), 0, 0, incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* DTPSV solves one of the systems of equations
|
|
* A*x = b or A**T*x = b
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d9/d84/dtpsv_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
|
|
* The following subroutine can is an example showing how to convert a UPPER trianglar matrix
|
|
* 'a' to packed matrix 'b'.
|
|
* k = 0
|
|
* for i in range(0, n):
|
|
* for j in range(i, n):
|
|
* b[k++] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param Ap The input allocation contains packed matrix A, supported elements type {@link Element#F64}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
*/
|
|
public void DTPSV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation Ap, Allocation X, int incX) {
|
|
// TPSV is same as TPMV
|
|
int N = validateTPMV(Element.F64(mRS), Uplo, TransA, Diag, Ap, X, incX);
|
|
mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dtpsv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, Ap.getID(mRS), X.getID(mRS), 0, 0, incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* CTPSV solves one of the systems of equations
|
|
* A*x = b or A**T*x = b or A**H*x = b
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d8/d56/ctpsv_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
|
|
* The following subroutine can is an example showing how to convert a UPPER trianglar matrix
|
|
* 'a' to packed matrix 'b'.
|
|
* k = 0
|
|
* for i in range(0, n):
|
|
* for j in range(i, n):
|
|
* b[k++] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param Ap The input allocation contains packed matrix A, supported elements type {@link Element#F32_2}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
*/
|
|
public void CTPSV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation Ap, Allocation X, int incX) {
|
|
// TPSV is same as TPMV
|
|
int N = validateTPMV(Element.F32_2(mRS), Uplo, TransA, Diag, Ap, X, incX);
|
|
mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_ctpsv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, 0, Ap.getID(mRS), X.getID(mRS), 0, 0, 0, incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* ZTPSV solves one of the systems of equations
|
|
* A*x = b or A**T*x = b or A**H*x = b
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/da/d57/ztpsv_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
|
|
* The following subroutine can is an example showing how to convert a UPPER trianglar matrix
|
|
* 'a' to packed matrix 'b'.
|
|
* k = 0
|
|
* for i in range(0, n):
|
|
* for j in range(i, n):
|
|
* b[k++] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the matrix is an upper or lower triangular matrix.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param Ap The input allocation contains packed matrix A, supported elements type {@link Element#F64_2}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
*/
|
|
public void ZTPSV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation Ap, Allocation X, int incX) {
|
|
// TPSV is same as TPMV
|
|
int N = validateTPMV(Element.F64_2(mRS), Uplo, TransA, Diag, Ap, X, incX);
|
|
mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_ztpsv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, 0, Ap.getID(mRS), X.getID(mRS), 0, 0, 0, incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* Level 2, S and D only
|
|
*/
|
|
static int validateSYMV(Element e, @Uplo int Uplo, Allocation A, Allocation X, Allocation Y, int incX, int incY) {
|
|
validateUplo(Uplo);
|
|
int N = A.getType().getY();
|
|
if (A.getType().getX() != N) {
|
|
throw new RSRuntimeException("A must be a square matrix for SYMV");
|
|
}
|
|
if (!A.getType().getElement().isCompatible(e) ||
|
|
!X.getType().getElement().isCompatible(e) ||
|
|
!Y.getType().getElement().isCompatible(e) ) {
|
|
throw new RSRuntimeException("Called BLAS with wrong Element type");
|
|
}
|
|
if (X.getType().getY() > 1 || Y.getType().getY() > 1) {
|
|
throw new RSRuntimeException("BLAS vectors must have Y dimension of 0 or 1");
|
|
}
|
|
|
|
if (incX <= 0 || incY <= 0) {
|
|
throw new RSRuntimeException("Vector increments must be greater than 0");
|
|
}
|
|
int expectedXDim = 1 + (N - 1) * incX;
|
|
if (X.getType().getX() != expectedXDim) {
|
|
throw new RSRuntimeException("Incorrect vector dimensions for SYMV");
|
|
}
|
|
int expectedYDim = 1 + (N - 1) * incY;
|
|
if (Y.getType().getX() != expectedYDim) {
|
|
throw new RSRuntimeException("Incorrect vector dimensions for SYMV");
|
|
}
|
|
return N;
|
|
}
|
|
static int validateSPMV(Element e, @Uplo int Uplo, Allocation Ap, Allocation X, int incX, Allocation Y, int incY) {
|
|
validateUplo(Uplo);
|
|
if (!Ap.getType().getElement().isCompatible(e) ||
|
|
!X.getType().getElement().isCompatible(e) ||
|
|
!Y.getType().getElement().isCompatible(e)) {
|
|
throw new RSRuntimeException("Called BLAS with wrong Element type");
|
|
}
|
|
if (X.getType().getY() > 1 || Y.getType().getY() > 1) {
|
|
throw new RSRuntimeException("BLAS vectors must have Y dimension of 0 or 1");
|
|
}
|
|
|
|
if (Ap.getType().getY() > 1) {
|
|
throw new RSRuntimeException("Ap must have a Y dimension of 0 or 1");
|
|
}
|
|
|
|
int N = (int)Math.sqrt((double)Ap.getType().getX() * 2);
|
|
if (Ap.getType().getX() != ((N * (N+1)) / 2)) {
|
|
throw new RSRuntimeException("Invalid dimension for Ap");
|
|
}
|
|
if (incX <= 0 || incY <= 0) {
|
|
throw new RSRuntimeException("Vector increments must be greater than 0");
|
|
}
|
|
int expectedXDim = 1 + (N - 1) * incX;
|
|
if (X.getType().getX() != expectedXDim) {
|
|
throw new RSRuntimeException("Incorrect vector dimensions for SPMV");
|
|
}
|
|
int expectedYDim = 1 + (N - 1) * incY;
|
|
if (Y.getType().getX() != expectedYDim) {
|
|
throw new RSRuntimeException("Incorrect vector dimensions for SPMV");
|
|
}
|
|
|
|
return N;
|
|
}
|
|
static void validateGER(Element e, Allocation X, int incX, Allocation Y, int incY, Allocation A) {
|
|
if (!A.getType().getElement().isCompatible(e) ||
|
|
!X.getType().getElement().isCompatible(e) ||
|
|
!Y.getType().getElement().isCompatible(e) ) {
|
|
throw new RSRuntimeException("Called BLAS with wrong Element type");
|
|
}
|
|
|
|
if (X.getType().getY() > 1 || Y.getType().getY() > 1) {
|
|
throw new RSRuntimeException("BLAS vectors must have Y dimension of 0 or 1");
|
|
}
|
|
|
|
int M = A.getType().getY();
|
|
int N = A.getType().getX();
|
|
|
|
if (N < 1 || M < 1) {
|
|
throw new RSRuntimeException("M and N must be 1 or greater for GER");
|
|
}
|
|
if (incX <= 0 || incY <= 0) {
|
|
throw new RSRuntimeException("Vector increments must be greater than 0");
|
|
}
|
|
int expectedXDim = 1 + (M - 1) * incX;
|
|
if (X.getType().getX() != expectedXDim) {
|
|
throw new RSRuntimeException("Incorrect vector dimensions for GER");
|
|
}
|
|
int expectedYDim = 1 + (N - 1) * incY;
|
|
if (Y.getType().getX() != expectedYDim) {
|
|
throw new RSRuntimeException("Incorrect vector dimensions for GER");
|
|
}
|
|
|
|
|
|
}
|
|
static int validateSYR(Element e, @Uplo int Uplo, Allocation X, int incX, Allocation A) {
|
|
validateUplo(Uplo);
|
|
if (!A.getType().getElement().isCompatible(e) ||
|
|
!X.getType().getElement().isCompatible(e)) {
|
|
throw new RSRuntimeException("Called BLAS with wrong Element type");
|
|
}
|
|
|
|
int N = A.getType().getX();
|
|
|
|
if (X.getType().getY() > 1) {
|
|
throw new RSRuntimeException("BLAS vectors must have Y dimension of 0 or 1");
|
|
}
|
|
if (N != A.getType().getY()) {
|
|
throw new RSRuntimeException("A must be a symmetric matrix");
|
|
}
|
|
if (incX <= 0) {
|
|
throw new RSRuntimeException("Vector increments must be greater than 0");
|
|
}
|
|
int expectedXDim = 1 + (N - 1) * incX;
|
|
if (X.getType().getX() != expectedXDim) {
|
|
throw new RSRuntimeException("Incorrect vector dimensions for SYR");
|
|
}
|
|
return N;
|
|
}
|
|
static int validateSPR(Element e, @Uplo int Uplo, Allocation X, int incX, Allocation Ap) {
|
|
validateUplo(Uplo);
|
|
if (!Ap.getType().getElement().isCompatible(e) ||
|
|
!X.getType().getElement().isCompatible(e)) {
|
|
throw new RSRuntimeException("Called BLAS with wrong Element type");
|
|
}
|
|
if (X.getType().getY() > 1) {
|
|
throw new RSRuntimeException("BLAS vectors must have Y dimension of 0 or 1");
|
|
}
|
|
|
|
if (Ap.getType().getY() > 1) {
|
|
throw new RSRuntimeException("Ap must have a Y dimension of 0 or 1");
|
|
}
|
|
|
|
int N = (int)Math.sqrt((double)Ap.getType().getX() * 2);
|
|
if (Ap.getType().getX() != ((N * (N+1)) / 2)) {
|
|
throw new RSRuntimeException("Invalid dimension for Ap");
|
|
}
|
|
if (incX <= 0) {
|
|
throw new RSRuntimeException("Vector increments must be greater than 0");
|
|
}
|
|
int expectedXDim = 1 + (N - 1) * incX;
|
|
if (X.getType().getX() != expectedXDim) {
|
|
throw new RSRuntimeException("Incorrect vector dimensions for SPR");
|
|
}
|
|
|
|
return N;
|
|
}
|
|
|
|
static int validateSYR2(Element e, @Uplo int Uplo, Allocation X, int incX, Allocation Y, int incY, Allocation A) {
|
|
validateUplo(Uplo);
|
|
if (!A.getType().getElement().isCompatible(e) ||
|
|
!X.getType().getElement().isCompatible(e) ||
|
|
!Y.getType().getElement().isCompatible(e)) {
|
|
throw new RSRuntimeException("Called BLAS with wrong Element type");
|
|
}
|
|
|
|
if (X.getType().getY() > 1 || Y.getType().getY() > 1) {
|
|
throw new RSRuntimeException("BLAS vectors must have Y dimension of 0 or 1");
|
|
}
|
|
|
|
int N = A.getType().getX();
|
|
|
|
if (N != A.getType().getY()) {
|
|
throw new RSRuntimeException("A must be a symmetric matrix");
|
|
}
|
|
if (incX <= 0 || incY <= 0) {
|
|
throw new RSRuntimeException("Vector increments must be greater than 0");
|
|
}
|
|
int expectedXDim = 1 + (N - 1) * incX;
|
|
int expectedYDim = 1 + (N - 1) * incY;
|
|
if (X.getType().getX() != expectedXDim || Y.getType().getX() != expectedYDim) {
|
|
throw new RSRuntimeException("Incorrect vector dimensions for SYR");
|
|
}
|
|
return N;
|
|
|
|
}
|
|
static int validateSPR2(Element e, @Uplo int Uplo, Allocation X, int incX, Allocation Y, int incY, Allocation Ap) {
|
|
validateUplo(Uplo);
|
|
if (!Ap.getType().getElement().isCompatible(e) ||
|
|
!X.getType().getElement().isCompatible(e) ||
|
|
!Y.getType().getElement().isCompatible(e)) {
|
|
throw new RSRuntimeException("Called BLAS with wrong Element type");
|
|
}
|
|
if (X.getType().getY() > 1 || Y.getType().getY() > 1) {
|
|
throw new RSRuntimeException("BLAS vectors must have Y dimension of 0 or 1");
|
|
}
|
|
|
|
if (Ap.getType().getY() > 1) {
|
|
throw new RSRuntimeException("Ap must have a Y dimension of 0 or 1");
|
|
}
|
|
|
|
int N = (int)Math.sqrt((double)Ap.getType().getX() * 2);
|
|
if (Ap.getType().getX() != ((N * (N+1)) / 2)) {
|
|
throw new RSRuntimeException("Invalid dimension for Ap");
|
|
}
|
|
if (incX <= 0 || incY <= 0) {
|
|
throw new RSRuntimeException("Vector increments must be greater than 0");
|
|
}
|
|
int expectedXDim = 1 + (N - 1) * incX;
|
|
int expectedYDim = 1 + (N - 1) * incY;
|
|
if (X.getType().getX() != expectedXDim || Y.getType().getX() != expectedYDim) {
|
|
throw new RSRuntimeException("Incorrect vector dimensions for SPR2");
|
|
}
|
|
|
|
return N;
|
|
}
|
|
|
|
/**
|
|
* SSYMV performs the matrix-vector operation
|
|
* y := alpha*A*x + beta*y
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d2/d94/ssymv_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param beta The scalar beta.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F32}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
*/
|
|
public void SSYMV(@Uplo int Uplo, float alpha, Allocation A, Allocation X, int incX, float beta, Allocation Y, int incY) {
|
|
int N = validateSYMV(Element.F32(mRS), Uplo, A, X, Y, incX, incY);
|
|
mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_ssymv, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, A.getID(mRS), X.getID(mRS), beta, Y.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* SSBMV performs the matrix-vector operation
|
|
* y := alpha*A*x + beta*y
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d3/da1/ssbmv_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
|
|
* but only the region N*(K+1) will be referenced. The following subroutine can is an
|
|
* example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'.
|
|
* for i in range(0, n):
|
|
* for j in range(i, min(i+k+1, n)):
|
|
* b[i, j-i] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part of the band matrix A is being supplied.
|
|
* @param K The number of off-diagonals of the matrix A
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param beta The scalar beta.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F32}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
*/
|
|
public void SSBMV(@Uplo int Uplo, int K, float alpha, Allocation A, Allocation X, int incX, float beta, Allocation Y, int incY) {
|
|
// SBMV is the same as SYMV + K >= 0
|
|
if (K < 0) {
|
|
throw new RSRuntimeException("K must be greater than or equal to 0");
|
|
}
|
|
int N = validateSYMV(Element.F32(mRS), Uplo, A, X, Y, incX, incY);
|
|
mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_ssbmv, 0, 0, 0, Uplo, 0, 0, N, K, alpha, A.getID(mRS), X.getID(mRS), beta, Y.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* SSPMV performs the matrix-vector operation
|
|
* y := alpha*A*x + beta*y
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d8/d68/sspmv_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
|
|
* The following subroutine can is an example showing how to convert a UPPER trianglar matrix
|
|
* 'a' to packed matrix 'b'.
|
|
* k = 0
|
|
* for i in range(0, n):
|
|
* for j in range(i, n):
|
|
* b[k++] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form.
|
|
* @param alpha The scalar alpha.
|
|
* @param Ap The input allocation contains matrix A, supported elements type {@link Element#F32}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param beta The scalar beta.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F32}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
*/
|
|
public void SSPMV(@Uplo int Uplo, float alpha, Allocation Ap, Allocation X, int incX, float beta, Allocation Y, int incY) {
|
|
int N = validateSPMV(Element.F32(mRS), Uplo, Ap, X, incX, Y, incY);
|
|
mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_sspmv, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, Ap.getID(mRS), X.getID(mRS), beta, Y.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* SGER performs the rank 1 operation
|
|
* A := alpha*x*y**T + A
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/db/d5c/sger_8f.html
|
|
*
|
|
* @param alpha The scalar alpha.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F32}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32}.
|
|
*/
|
|
public void SGER(float alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A) {
|
|
int M = A.getType().getY();
|
|
int N = A.getType().getX();
|
|
validateGER(Element.F32(mRS), X, incX, Y, incY, A);
|
|
mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_sger, 0, 0, 0, 0, 0, M, N, 0, alpha, X.getID(mRS), Y.getID(mRS), 0.f, A.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* SSYR performs the rank 1 operation
|
|
* A := alpha*x*x**T + A
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d6/dac/ssyr_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
|
|
* @param alpha The scalar alpha.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32}.
|
|
*/
|
|
public void SSYR(@Uplo int Uplo, float alpha, Allocation X, int incX, Allocation A) {
|
|
int N = validateSYR(Element.F32(mRS), Uplo, X, incX, A);
|
|
mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_ssyr, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, X.getID(mRS), A.getID(mRS), 0.f, 0, incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* SSPR performs the rank 1 operation
|
|
* A := alpha*x*x**T + A
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d2/d9b/sspr_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
|
|
* The following subroutine can is an example showing how to convert a UPPER trianglar matrix
|
|
* 'a' to packed matrix 'b'.
|
|
* k = 0
|
|
* for i in range(0, n):
|
|
* for j in range(i, n):
|
|
* b[k++] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form.
|
|
* @param alpha The scalar alpha.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param Ap The input allocation contains matrix A, supported elements type {@link Element#F32}.
|
|
*/
|
|
public void SSPR(@Uplo int Uplo, float alpha, Allocation X, int incX, Allocation Ap) {
|
|
int N = validateSPR(Element.F32(mRS), Uplo, X, incX, Ap);
|
|
mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_sspr, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, X.getID(mRS), Ap.getID(mRS), 0.f, 0, incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* SSYR2 performs the symmetric rank 2 operation
|
|
* A := alpha*x*y**T + alpha*y*x**T + A
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/db/d99/ssyr2_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
|
|
* @param alpha The scalar alpha.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F32}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32}.
|
|
*/
|
|
public void SSYR2(@Uplo int Uplo, float alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A) {
|
|
int N = validateSYR2(Element.F32(mRS), Uplo, X, incX, Y, incY, A);
|
|
mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_ssyr2, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, X.getID(mRS), Y.getID(mRS), 0, A.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* SSPR2 performs the symmetric rank 2 operation
|
|
* A := alpha*x*y**T + alpha*y*x**T + A
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/db/d3e/sspr2_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
|
|
* The following subroutine can is an example showing how to convert a UPPER trianglar matrix
|
|
* 'a' to packed matrix 'b'.
|
|
* k = 0
|
|
* for i in range(0, n):
|
|
* for j in range(i, n):
|
|
* b[k++] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form.
|
|
* @param alpha The scalar alpha.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F32}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
* @param Ap The input allocation contains matrix A, supported elements type {@link Element#F32}.
|
|
*/
|
|
public void SSPR2(@Uplo int Uplo, float alpha, Allocation X, int incX, Allocation Y, int incY, Allocation Ap) {
|
|
int N = validateSPR2(Element.F32(mRS), Uplo, X, incX, Y, incY, Ap);
|
|
mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_sspr2, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, X.getID(mRS), Y.getID(mRS), 0, Ap.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* DSYMV performs the matrix-vector operation
|
|
* y := alpha*A*x + beta*y
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d8/dbe/dsymv_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param beta The scalar beta.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F64}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
*/
|
|
public void DSYMV(@Uplo int Uplo, double alpha, Allocation A, Allocation X, int incX, double beta, Allocation Y, int incY) {
|
|
int N = validateSYMV(Element.F64(mRS), Uplo, A, X, Y, incX, incY);
|
|
mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dsymv, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, A.getID(mRS), X.getID(mRS), beta, Y.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* DSBMV performs the matrix-vector operation
|
|
* y := alpha*A*x + beta*y
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d8/d1e/dsbmv_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
|
|
* but only the region N*(K+1) will be referenced. The following subroutine can is an
|
|
* example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'.
|
|
* for i in range(0, n):
|
|
* for j in range(i, min(i+k+1, n)):
|
|
* b[i, j-i] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part of the band matrix A is being supplied.
|
|
* @param K The number of off-diagonals of the matrix A
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param beta The scalar beta.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F64}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
*/
|
|
public void DSBMV(@Uplo int Uplo, int K, double alpha, Allocation A, Allocation X, int incX, double beta, Allocation Y, int incY) {
|
|
// SBMV is the same as SYMV + K >= 0
|
|
if (K < 0) {
|
|
throw new RSRuntimeException("K must be greater than or equal to 0");
|
|
}
|
|
int N = validateSYMV(Element.F64(mRS), Uplo, A, X, Y, incX, incY);
|
|
mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dsbmv, 0, 0, 0, Uplo, 0, 0, N, K, alpha, A.getID(mRS), X.getID(mRS), beta, Y.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* DSPMV performs the matrix-vector operation
|
|
* y := alpha*A*x + beta*y
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d4/d85/dspmv_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
|
|
* The following subroutine can is an example showing how to convert a UPPER trianglar matrix
|
|
* 'a' to packed matrix 'b'.
|
|
* k = 0
|
|
* for i in range(0, n):
|
|
* for j in range(i, n):
|
|
* b[k++] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form.
|
|
* @param alpha The scalar alpha.
|
|
* @param Ap The input allocation contains matrix A, supported elements type {@link Element#F64}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param beta The scalar beta.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F64}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
*/
|
|
public void DSPMV(@Uplo int Uplo, double alpha, Allocation Ap, Allocation X, int incX, double beta, Allocation Y, int incY) {
|
|
int N = validateSPMV(Element.F64(mRS), Uplo, Ap, X, incX, Y, incY);
|
|
mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dspmv, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, Ap.getID(mRS), X.getID(mRS), beta, Y.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* DGER performs the rank 1 operation
|
|
* A := alpha*x*y**T + A
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/dc/da8/dger_8f.html
|
|
*
|
|
* @param alpha The scalar alpha.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F64}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64}.
|
|
*/
|
|
public void DGER(double alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A) {
|
|
int M = A.getType().getY();
|
|
int N = A.getType().getX();
|
|
validateGER(Element.F64(mRS), X, incX, Y, incY, A);
|
|
mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dger, 0, 0, 0, 0, 0, M, N, 0, alpha, X.getID(mRS), Y.getID(mRS), 0.f, A.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* DSYR performs the rank 1 operation
|
|
* A := alpha*x*x**T + A
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d3/d60/dsyr_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
|
|
* @param alpha The scalar alpha.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64}.
|
|
*/
|
|
public void DSYR(@Uplo int Uplo, double alpha, Allocation X, int incX, Allocation A) {
|
|
int N = validateSYR(Element.F64(mRS), Uplo, X, incX, A);
|
|
mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dsyr, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, X.getID(mRS), A.getID(mRS), 0.f, 0, incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* DSPR performs the rank 1 operation
|
|
* A := alpha*x*x**T + A
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/dd/dba/dspr_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
|
|
* The following subroutine can is an example showing how to convert a UPPER trianglar matrix
|
|
* 'a' to packed matrix 'b'.
|
|
* k = 0
|
|
* for i in range(0, n):
|
|
* for j in range(i, n):
|
|
* b[k++] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form.
|
|
* @param alpha The scalar alpha.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param Ap The input allocation contains matrix A, supported elements type {@link Element#F64}.
|
|
*/
|
|
public void DSPR(@Uplo int Uplo, double alpha, Allocation X, int incX, Allocation Ap) {
|
|
int N = validateSPR(Element.F64(mRS), Uplo, X, incX, Ap);
|
|
mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dspr, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, X.getID(mRS), Ap.getID(mRS), 0.f, 0, incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* DSYR2 performs the symmetric rank 2 operation
|
|
* A := alpha*x*y**T + alpha*y*x**T + A
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/de/d41/dsyr2_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
|
|
* @param alpha The scalar alpha.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F64}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64}.
|
|
*/
|
|
public void DSYR2(@Uplo int Uplo, double alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A) {
|
|
int N = validateSYR2(Element.F64(mRS), Uplo, X, incX, Y, incY, A);
|
|
mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dsyr2, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, X.getID(mRS), Y.getID(mRS), 0, A.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* DSPR2 performs the symmetric rank 2 operation
|
|
* A := alpha*x*y**T + alpha*y*x**T + A
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/dd/d9e/dspr2_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
|
|
* The following subroutine can is an example showing how to convert a UPPER trianglar matrix
|
|
* 'a' to packed matrix 'b'.
|
|
* k = 0
|
|
* for i in range(0, n):
|
|
* for j in range(i, n):
|
|
* b[k++] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form.
|
|
* @param alpha The scalar alpha.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F64}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
* @param Ap The input allocation contains matrix A, supported elements type {@link Element#F64}.
|
|
*/
|
|
public void DSPR2(@Uplo int Uplo, double alpha, Allocation X, int incX, Allocation Y, int incY, Allocation Ap) {
|
|
int N = validateSPR2(Element.F64(mRS), Uplo, X, incX, Y, incY, Ap);
|
|
mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dspr2, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, X.getID(mRS), Y.getID(mRS), 0, Ap.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
|
|
/**
|
|
* Level 2, C and Z only
|
|
*/
|
|
|
|
static void validateGERU(Element e, Allocation X, int incX, Allocation Y, int incY, Allocation A) {
|
|
if (!A.getType().getElement().isCompatible(e) ||
|
|
!X.getType().getElement().isCompatible(e) ||
|
|
!Y.getType().getElement().isCompatible(e)) {
|
|
throw new RSRuntimeException("Called BLAS with wrong Element type");
|
|
}
|
|
if (X.getType().getY() > 1 || Y.getType().getY() > 1) {
|
|
throw new RSRuntimeException("BLAS vectors must have Y dimension of 0 or 1");
|
|
}
|
|
|
|
int M = A.getType().getY();
|
|
int N = A.getType().getX();
|
|
if (incX <= 0 || incY <= 0) {
|
|
throw new RSRuntimeException("Vector increments must be greater than 0");
|
|
}
|
|
int expectedXDim = 1 + (M - 1) * incX;
|
|
if (X.getType().getX() != expectedXDim) {
|
|
throw new RSRuntimeException("Incorrect vector dimensions for GERU");
|
|
}
|
|
int expectedYDim = 1 + (N - 1) * incY;
|
|
if (Y.getType().getX() != expectedYDim) {
|
|
throw new RSRuntimeException("Incorrect vector dimensions for GERU");
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* CHEMV performs the matrix-vector operation
|
|
* y := alpha*A*x + beta*y
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d7/d51/chemv_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param beta The scalar beta.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F32_2}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
*/
|
|
public void CHEMV(@Uplo int Uplo, Float2 alpha, Allocation A, Allocation X, int incX, Float2 beta, Allocation Y, int incY) {
|
|
// HEMV is the same as SYR2 validation-wise
|
|
int N = validateSYR2(Element.F32_2(mRS), Uplo, X, incX, Y, incY, A);
|
|
mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_chemv, 0, 0, 0, Uplo, 0, 0, N, 0, alpha.x, alpha.y, A.getID(mRS), X.getID(mRS), beta.x, beta.y, Y.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* CHBMV performs the matrix-vector operation
|
|
* y := alpha*A*x + beta*y
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/db/dc2/chbmv_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
|
|
* but only the region N*(K+1) will be referenced. The following subroutine can is an
|
|
* example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'.
|
|
* for i in range(0, n):
|
|
* for j in range(i, min(i+k+1, n)):
|
|
* b[i, j-i] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part of the band matrix A is being supplied.
|
|
* @param K The number of off-diagonals of the matrix A
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param beta The scalar beta.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F32_2}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
*/
|
|
public void CHBMV(@Uplo int Uplo, int K, Float2 alpha, Allocation A, Allocation X, int incX, Float2 beta, Allocation Y, int incY) {
|
|
// HBMV is the same as SYR2 validation-wise
|
|
int N = validateSYR2(Element.F32_2(mRS), Uplo, X, incX, Y, incY, A);
|
|
if (K < 0) {
|
|
throw new RSRuntimeException("K must be 0 or greater for HBMV");
|
|
}
|
|
mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_chbmv, 0, 0, 0, Uplo, 0, 0, N, K, alpha.x, alpha.y, A.getID(mRS), X.getID(mRS), beta.x, beta.y, Y.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* CHPMV performs the matrix-vector operation
|
|
* y := alpha*A*x + beta*y
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d2/d06/chpmv_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
|
|
* The following subroutine can is an example showing how to convert a UPPER trianglar matrix
|
|
* 'a' to packed matrix 'b'.
|
|
* k = 0
|
|
* for i in range(0, n):
|
|
* for j in range(i, n):
|
|
* b[k++] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form.
|
|
* @param alpha The scalar alpha.
|
|
* @param Ap The input allocation contains matrix A, supported elements type {@link Element#F32_2}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param beta The scalar beta.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F32_2}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
*/
|
|
public void CHPMV(@Uplo int Uplo, Float2 alpha, Allocation Ap, Allocation X, int incX, Float2 beta, Allocation Y, int incY) {
|
|
// HPMV is the same as SPR2
|
|
int N = validateSPR2(Element.F32_2(mRS), Uplo, X, incX, Y, incY, Ap);
|
|
mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_chpmv, 0, 0, 0, Uplo, 0, 0, N, 0, alpha.x, alpha.y, Ap.getID(mRS), X.getID(mRS), beta.x, beta.y, Y.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* CGERU performs the rank 1 operation
|
|
* A := alpha*x*y**T + A
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/db/d5f/cgeru_8f.html
|
|
*
|
|
* @param alpha The scalar alpha.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F32_2}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}.
|
|
*/
|
|
public void CGERU(Float2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A) {
|
|
validateGERU(Element.F32_2(mRS), X, incX, Y, incY, A);
|
|
int M = A.getType().getY();
|
|
int N = A.getType().getX();
|
|
mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_cgeru, 0, 0, 0, 0, 0, M, N, 0, alpha.x, alpha.y, X.getID(mRS), Y.getID(mRS), 0, 0, A.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* CGERC performs the rank 1 operation
|
|
* A := alpha*x*y**H + A
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/dd/d84/cgerc_8f.html
|
|
*
|
|
* @param alpha The scalar alpha.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F32_2}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}.
|
|
*/
|
|
public void CGERC(Float2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A) {
|
|
// same as GERU
|
|
validateGERU(Element.F32_2(mRS), X, incX, Y, incY, A);
|
|
int M = A.getType().getY();
|
|
int N = A.getType().getX();
|
|
mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_cgerc, 0, 0, 0, 0, 0, M, N, 0, alpha.x, alpha.y, X.getID(mRS), Y.getID(mRS), 0, 0, A.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* CHER performs the rank 1 operation
|
|
* A := alpha*x*x**H + A
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d3/d6d/cher_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
|
|
* @param alpha The scalar alpha.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}.
|
|
*/
|
|
public void CHER(@Uplo int Uplo, float alpha, Allocation X, int incX, Allocation A) {
|
|
// same as SYR
|
|
int N = validateSYR(Element.F32_2(mRS), Uplo, X, incX, A);
|
|
mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_cher, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, 0, X.getID(mRS), 0, 0, 0, A.getID(mRS), incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* CHPR performs the rank 1 operation
|
|
* A := alpha*x*x**H + A
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/db/dcd/chpr_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
|
|
* The following subroutine can is an example showing how to convert a UPPER trianglar matrix
|
|
* 'a' to packed matrix 'b'.
|
|
* k = 0
|
|
* for i in range(0, n):
|
|
* for j in range(i, n):
|
|
* b[k++] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form.
|
|
* @param alpha The scalar alpha.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param Ap The input allocation contains matrix A, supported elements type {@link Element#F32_2}.
|
|
*/
|
|
public void CHPR(@Uplo int Uplo, float alpha, Allocation X, int incX, Allocation Ap) {
|
|
// equivalent to SPR for validation
|
|
int N = validateSPR(Element.F32_2(mRS), Uplo, X, incX, Ap);
|
|
mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_chpr, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, 0, X.getID(mRS), 0, 0, 0, Ap.getID(mRS), incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* CHER2 performs the symmetric rank 2 operation
|
|
* A := alpha*x*y**H + alpha*y*x**H + A
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/db/d87/cher2_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
|
|
* @param alpha The scalar alpha.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F32_2}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}.
|
|
*/
|
|
public void CHER2(@Uplo int Uplo, Float2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A) {
|
|
// same as SYR2
|
|
int N = validateSYR2(Element.F32_2(mRS), Uplo, X, incX, Y, incY, A);
|
|
mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_cher2, 0, 0, 0, Uplo, 0, 0, N, 0, alpha.x, alpha.y, X.getID(mRS), Y.getID(mRS), 0, 0, A.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* CHPR2 performs the symmetric rank 2 operation
|
|
* A := alpha*x*y**H + alpha*y*x**H + A
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d6/d44/chpr2_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
|
|
* The following subroutine can is an example showing how to convert a UPPER trianglar matrix
|
|
* 'a' to packed matrix 'b'.
|
|
* k = 0
|
|
* for i in range(0, n):
|
|
* for j in range(i, n):
|
|
* b[k++] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form.
|
|
* @param alpha The scalar alpha.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F32_2}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
* @param Ap The input allocation contains matrix A, supported elements type {@link Element#F32_2}.
|
|
*/
|
|
public void CHPR2(@Uplo int Uplo, Float2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation Ap) {
|
|
// same as SPR2
|
|
int N = validateSPR2(Element.F32_2(mRS), Uplo, X, incX, Y, incY, Ap);
|
|
mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_chpr2, 0, 0, 0, Uplo, 0, 0, N, 0, alpha.x, alpha.y, X.getID(mRS), Y.getID(mRS), 0, 0, Ap.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* ZHEMV performs the matrix-vector operation
|
|
* y := alpha*A*x + beta*y
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d0/ddd/zhemv_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param beta The scalar beta.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F64_2}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
*/
|
|
public void ZHEMV(@Uplo int Uplo, Double2 alpha, Allocation A, Allocation X, int incX, Double2 beta, Allocation Y, int incY) {
|
|
// HEMV is the same as SYR2 validation-wise
|
|
int N = validateSYR2(Element.F64_2(mRS), Uplo, X, incX, Y, incY, A);
|
|
mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zhemv, 0, 0, 0, Uplo, 0, 0, N, 0, alpha.x, alpha.y, A.getID(mRS), X.getID(mRS), beta.x, beta.y, Y.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* ZHBMV performs the matrix-vector operation
|
|
* y := alpha*A*x + beta*y
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d3/d1a/zhbmv_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
|
|
* but only the region N*(K+1) will be referenced. The following subroutine can is an
|
|
* example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'.
|
|
* for i in range(0, n):
|
|
* for j in range(i, min(i+k+1, n)):
|
|
* b[i, j-i] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part of the band matrix A is being supplied.
|
|
* @param K The number of off-diagonals of the matrix A
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param beta The scalar beta.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F64_2}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
*/
|
|
public void ZHBMV(@Uplo int Uplo, int K, Double2 alpha, Allocation A, Allocation X, int incX, Double2 beta, Allocation Y, int incY) {
|
|
// HBMV is the same as SYR2 validation-wise
|
|
int N = validateSYR2(Element.F64_2(mRS), Uplo, X, incX, Y, incY, A);
|
|
if (K < 0) {
|
|
throw new RSRuntimeException("K must be 0 or greater for HBMV");
|
|
}
|
|
mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zhbmv, 0, 0, 0, Uplo, 0, 0, N, K, alpha.x, alpha.y, A.getID(mRS), X.getID(mRS), beta.x, beta.y, Y.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* ZHPMV performs the matrix-vector operation
|
|
* y := alpha*A*x + beta*y
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d0/d60/zhpmv_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
|
|
* The following subroutine can is an example showing how to convert a UPPER trianglar matrix
|
|
* 'a' to packed matrix 'b'.
|
|
* k = 0
|
|
* for i in range(0, n):
|
|
* for j in range(i, n):
|
|
* b[k++] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form.
|
|
* @param alpha The scalar alpha.
|
|
* @param Ap The input allocation contains matrix A, supported elements type {@link Element#F64_2}.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param beta The scalar beta.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F64_2}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
*/
|
|
public void ZHPMV(@Uplo int Uplo, Double2 alpha, Allocation Ap, Allocation X, int incX, Double2 beta, Allocation Y, int incY) {
|
|
// HPMV is the same as SPR2
|
|
int N = validateSPR2(Element.F64_2(mRS), Uplo, X, incX, Y, incY, Ap);
|
|
mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zhpmv, 0, 0, 0, Uplo, 0, 0, N, 0, alpha.x, alpha.y, Ap.getID(mRS), X.getID(mRS), beta.x, beta.y, Y.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* ZGERU performs the rank 1 operation
|
|
* A := alpha*x*y**T + A
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d7/d12/zgeru_8f.html
|
|
*
|
|
* @param alpha The scalar alpha.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F64_2}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}.
|
|
*/
|
|
public void ZGERU(Double2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A) {
|
|
validateGERU(Element.F64_2(mRS), X, incX, Y, incY, A);
|
|
int M = A.getType().getY();
|
|
int N = A.getType().getX();
|
|
mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zgeru, 0, 0, 0, 0, 0, M, N, 0, alpha.x, alpha.y, X.getID(mRS), Y.getID(mRS), 0, 0, A.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* ZGERC performs the rank 1 operation
|
|
* A := alpha*x*y**H + A
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d3/dad/zgerc_8f.html
|
|
*
|
|
* @param alpha The scalar alpha.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F64_2}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}.
|
|
*/
|
|
public void ZGERC(Double2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A) {
|
|
// same as GERU
|
|
validateGERU(Element.F64_2(mRS), X, incX, Y, incY, A);
|
|
int M = A.getType().getY();
|
|
int N = A.getType().getX();
|
|
mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zgerc, 0, 0, 0, 0, 0, M, N, 0, alpha.x, alpha.y, X.getID(mRS), Y.getID(mRS), 0, 0, A.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* ZHER performs the rank 1 operation
|
|
* A := alpha*x*x**H + A
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/de/d0e/zher_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
|
|
* @param alpha The scalar alpha.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}.
|
|
*/
|
|
public void ZHER(@Uplo int Uplo, double alpha, Allocation X, int incX, Allocation A) {
|
|
// same as SYR
|
|
int N = validateSYR(Element.F64_2(mRS), Uplo, X, incX, A);
|
|
mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zher, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, 0, X.getID(mRS), 0, 0, 0, A.getID(mRS), incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* ZHPR performs the rank 1 operation
|
|
* A := alpha*x*x**H + A
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/de/de1/zhpr_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
|
|
* The following subroutine can is an example showing how to convert a UPPER trianglar matrix
|
|
* 'a' to packed matrix 'b'.
|
|
* k = 0
|
|
* for i in range(0, n):
|
|
* for j in range(i, n):
|
|
* b[k++] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form.
|
|
* @param alpha The scalar alpha.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param Ap The input allocation contains matrix A, supported elements type {@link Element#F64_2}.
|
|
*/
|
|
public void ZHPR(@Uplo int Uplo, double alpha, Allocation X, int incX, Allocation Ap) {
|
|
// equivalent to SPR for validation
|
|
int N = validateSPR(Element.F64_2(mRS), Uplo, X, incX, Ap);
|
|
mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zhpr, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, 0, X.getID(mRS), 0, 0, 0, Ap.getID(mRS), incX, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* ZHER2 performs the symmetric rank 2 operation
|
|
* A := alpha*x*y**H + alpha*y*x**H + A
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/da/d8a/zher2_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
|
|
* @param alpha The scalar alpha.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F64_2}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}.
|
|
*/
|
|
public void ZHER2(@Uplo int Uplo, Double2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A) {
|
|
// same as SYR2
|
|
int N = validateSYR2(Element.F64_2(mRS), Uplo, X, incX, Y, incY, A);
|
|
mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zher2, 0, 0, 0, Uplo, 0, 0, N, 0, alpha.x, alpha.y, X.getID(mRS), Y.getID(mRS), 0, 0, A.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* ZHPR2 performs the symmetric rank 2 operation
|
|
* A := alpha*x*y**H + alpha*y*x**H + A
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d5/d52/zhpr2_8f.html
|
|
*
|
|
* Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
|
|
* The following subroutine can is an example showing how to convert a UPPER trianglar matrix
|
|
* 'a' to packed matrix 'b'.
|
|
* k = 0
|
|
* for i in range(0, n):
|
|
* for j in range(i, n):
|
|
* b[k++] = a[i, j]
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form.
|
|
* @param alpha The scalar alpha.
|
|
* @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}.
|
|
* @param incX The increment for the elements of vector x, must be larger than zero.
|
|
* @param Y The input allocation contains vector y, supported elements type {@link Element#F64_2}.
|
|
* @param incY The increment for the elements of vector y, must be larger than zero.
|
|
* @param Ap The input allocation contains matrix A, supported elements type {@link Element#F64_2}.
|
|
*/
|
|
public void ZHPR2(@Uplo int Uplo, Double2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation Ap) {
|
|
// same as SPR2
|
|
int N = validateSPR2(Element.F64_2(mRS), Uplo, X, incX, Y, incY, Ap);
|
|
mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zhpr2, 0, 0, 0, Uplo, 0, 0, N, 0, alpha.x, alpha.y, X.getID(mRS), Y.getID(mRS), 0, 0, Ap.getID(mRS), incX, incY, 0, 0);
|
|
}
|
|
|
|
|
|
/**
|
|
* Level 3 BLAS
|
|
*/
|
|
|
|
static void validateL3(Element e, int TransA, int TransB, int Side, Allocation A, Allocation B, Allocation C) {
|
|
int aM = -1, aN = -1, bM = -1, bN = -1, cM = -1, cN = -1;
|
|
if ((A != null && !A.getType().getElement().isCompatible(e)) ||
|
|
(B != null && !B.getType().getElement().isCompatible(e)) ||
|
|
(C != null && !C.getType().getElement().isCompatible(e))) {
|
|
throw new RSRuntimeException("Called BLAS with wrong Element type");
|
|
}
|
|
if (C == null) {
|
|
//since matrix C is used to store the result, it cannot be null.
|
|
throw new RSRuntimeException("Allocation C cannot be null");
|
|
}
|
|
cM = C.getType().getY();
|
|
cN = C.getType().getX();
|
|
|
|
if (Side == RIGHT) {
|
|
if ((A == null && B != null) || (A != null && B == null)) {
|
|
throw new RSRuntimeException("Provided Matrix A without Matrix B, or vice versa");
|
|
}
|
|
if (B != null) {
|
|
bM = A.getType().getY();
|
|
bN = A.getType().getX();
|
|
}
|
|
if (A != null) {
|
|
aM = B.getType().getY();
|
|
aN = B.getType().getX();
|
|
}
|
|
} else {
|
|
if (A != null) {
|
|
if (TransA == TRANSPOSE || TransA == CONJ_TRANSPOSE) {
|
|
aN = A.getType().getY();
|
|
aM = A.getType().getX();
|
|
} else {
|
|
aM = A.getType().getY();
|
|
aN = A.getType().getX();
|
|
}
|
|
}
|
|
if (B != null) {
|
|
if (TransB == TRANSPOSE || TransB == CONJ_TRANSPOSE) {
|
|
bN = B.getType().getY();
|
|
bM = B.getType().getX();
|
|
} else {
|
|
bM = B.getType().getY();
|
|
bN = B.getType().getX();
|
|
}
|
|
}
|
|
}
|
|
if (A != null && B != null && C != null) {
|
|
if (aN != bM || aM != cM || bN != cN) {
|
|
throw new RSRuntimeException("Called BLAS with invalid dimensions");
|
|
}
|
|
} else if (A != null && C != null) {
|
|
// A and C only, for SYRK
|
|
if (cM != cN) {
|
|
throw new RSRuntimeException("Matrix C is not symmetric");
|
|
}
|
|
if (aM != cM) {
|
|
throw new RSRuntimeException("Called BLAS with invalid dimensions");
|
|
}
|
|
} else if (A != null && B != null) {
|
|
// A and B only
|
|
if (aN != bM) {
|
|
throw new RSRuntimeException("Called BLAS with invalid dimensions");
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* SGEMM performs one of the matrix-matrix operations
|
|
* C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d4/de2/sgemm_8f.html
|
|
*
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param TransB The type of transpose applied to matrix B.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32}.
|
|
* @param B The input allocation contains matrix B, supported elements type {@link Element#F32}.
|
|
* @param beta The scalar beta.
|
|
* @param C The input allocation contains matrix C, supported elements type {@link Element#F32}.
|
|
*/
|
|
public void SGEMM(@Transpose int TransA, @Transpose int TransB, float alpha, Allocation A,
|
|
Allocation B, float beta, Allocation C) {
|
|
validateTranspose(TransA);
|
|
validateTranspose(TransB);
|
|
validateL3(Element.F32(mRS), TransA, TransB, 0, A, B, C);
|
|
|
|
int M = -1, N = -1, K = -1;
|
|
if (TransA != NO_TRANSPOSE) {
|
|
M = A.getType().getX();
|
|
K = A.getType().getY();
|
|
} else {
|
|
M = A.getType().getY();
|
|
K = A.getType().getX();
|
|
}
|
|
if (TransB != NO_TRANSPOSE) {
|
|
N = B.getType().getY();
|
|
} else {
|
|
N = B.getType().getX();
|
|
}
|
|
mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_sgemm, TransA, TransB, 0, 0, 0, M, N, K, alpha, A.getID(mRS), B.getID(mRS),
|
|
beta, C.getID(mRS), 0, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* DGEMM performs one of the matrix-matrix operations
|
|
* C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d7/d2b/dgemm_8f.html
|
|
*
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param TransB The type of transpose applied to matrix B.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64}.
|
|
* @param B The input allocation contains matrix B, supported elements type {@link Element#F64}.
|
|
* @param beta The scalar beta.
|
|
* @param C The input allocation contains matrix C, supported elements type {@link Element#F64}.
|
|
*/
|
|
public void DGEMM(@Transpose int TransA, @Transpose int TransB, double alpha, Allocation A,
|
|
Allocation B, double beta, Allocation C) {
|
|
validateTranspose(TransA);
|
|
validateTranspose(TransB);
|
|
validateL3(Element.F64(mRS), TransA, TransB, 0, A, B, C);
|
|
int M = -1, N = -1, K = -1;
|
|
if (TransA != NO_TRANSPOSE) {
|
|
M = A.getType().getX();
|
|
K = A.getType().getY();
|
|
} else {
|
|
M = A.getType().getY();
|
|
K = A.getType().getX();
|
|
}
|
|
if (TransB != NO_TRANSPOSE) {
|
|
N = B.getType().getY();
|
|
} else {
|
|
N = B.getType().getX();
|
|
}
|
|
mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dgemm, TransA, TransB, 0, 0, 0, M, N, K, alpha, A.getID(mRS), B.getID(mRS),
|
|
beta, C.getID(mRS), 0, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* CGEMM performs one of the matrix-matrix operations
|
|
* C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T or op(X) = X**H
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d6/d5b/cgemm_8f.html
|
|
*
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param TransB The type of transpose applied to matrix B.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}.
|
|
* @param B The input allocation contains matrix B, supported elements type {@link Element#F32_2}.
|
|
* @param beta The scalar beta.
|
|
* @param C The input allocation contains matrix C, supported elements type {@link Element#F32_2}.
|
|
*/
|
|
public void CGEMM(@Transpose int TransA, @Transpose int TransB, Float2 alpha, Allocation A,
|
|
Allocation B, Float2 beta, Allocation C) {
|
|
validateTranspose(TransA);
|
|
validateTranspose(TransB);
|
|
validateL3(Element.F32_2(mRS), TransA, TransB, 0, A, B, C);
|
|
int M = -1, N = -1, K = -1;
|
|
if (TransA != NO_TRANSPOSE) {
|
|
M = A.getType().getX();
|
|
K = A.getType().getY();
|
|
} else {
|
|
M = A.getType().getY();
|
|
K = A.getType().getX();
|
|
}
|
|
if (TransB != NO_TRANSPOSE) {
|
|
N = B.getType().getY();
|
|
} else {
|
|
N = B.getType().getX();
|
|
}
|
|
mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_cgemm, TransA, TransB, 0, 0, 0, M, N, K, alpha.x, alpha.y, A.getID(mRS), B.getID(mRS),
|
|
beta.x, beta.y, C.getID(mRS), 0, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* ZGEMM performs one of the matrix-matrix operations
|
|
* C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T or op(X) = X**H
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d7/d76/zgemm_8f.html
|
|
*
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param TransB The type of transpose applied to matrix B.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}.
|
|
* @param B The input allocation contains matrix B, supported elements type {@link Element#F64_2}.
|
|
* @param beta The scalar beta.
|
|
* @param C The input allocation contains matrix C, supported elements type {@link Element#F64_2}.
|
|
*/
|
|
public void ZGEMM(@Transpose int TransA, @Transpose int TransB, Double2 alpha, Allocation A,
|
|
Allocation B, Double2 beta, Allocation C) {
|
|
validateTranspose(TransA);
|
|
validateTranspose(TransB);
|
|
validateL3(Element.F64_2(mRS), TransA, TransB, 0, A, B, C);
|
|
int M = -1, N = -1, K = -1;
|
|
if (TransA != NO_TRANSPOSE) {
|
|
M = A.getType().getX();
|
|
K = A.getType().getY();
|
|
} else {
|
|
M = A.getType().getY();
|
|
K = A.getType().getX();
|
|
}
|
|
if (TransB != NO_TRANSPOSE) {
|
|
N = B.getType().getY();
|
|
} else {
|
|
N = B.getType().getX();
|
|
}
|
|
mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zgemm, TransA, TransB, 0, 0, 0, M, N, K, alpha.x, alpha.y, A.getID(mRS), B.getID(mRS),
|
|
beta.x, beta.y, C.getID(mRS), 0, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* SSYMM performs one of the matrix-matrix operations
|
|
* C := alpha*A*B + beta*C or C := alpha*B*A + beta*C
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d7/d42/ssymm_8f.html
|
|
*
|
|
* @param Side Specifies whether the symmetric matrix A appears on the left or right.
|
|
* @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32}.
|
|
* @param B The input allocation contains matrix B, supported elements type {@link Element#F32}.
|
|
* @param beta The scalar beta.
|
|
* @param C The input allocation contains matrix C, supported elements type {@link Element#F32}.
|
|
*/
|
|
public void SSYMM(@Side int Side, @Uplo int Uplo, float alpha, Allocation A,
|
|
Allocation B, float beta, Allocation C) {
|
|
validateSide(Side);
|
|
validateUplo(Uplo);
|
|
//For SYMM, Matrix A should be symmetric
|
|
if (A.getType().getX() != A.getType().getY()) {
|
|
throw new RSRuntimeException("Matrix A is not symmetric");
|
|
}
|
|
validateL3(Element.F32(mRS), 0, 0, Side, A, B, C);
|
|
mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_ssymm, 0, 0, Side, Uplo, 0, C.getType().getY(), C.getType().getX(), 0, alpha, A.getID(mRS), B.getID(mRS),
|
|
beta, C.getID(mRS), 0, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* DSYMM performs one of the matrix-matrix operations
|
|
* C := alpha*A*B + beta*C or C := alpha*B*A + beta*C
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d8/db0/dsymm_8f.html
|
|
*
|
|
* @param Side Specifies whether the symmetric matrix A appears on the left or right.
|
|
* @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64}.
|
|
* @param B The input allocation contains matrix B, supported elements type {@link Element#F64}.
|
|
* @param beta The scalar beta.
|
|
* @param C The input allocation contains matrix C, supported elements type {@link Element#F64}.
|
|
*/
|
|
public void DSYMM(@Side int Side, @Uplo int Uplo, double alpha, Allocation A,
|
|
Allocation B, double beta, Allocation C) {
|
|
validateSide(Side);
|
|
validateUplo(Uplo);
|
|
if (A.getType().getX() != A.getType().getY()) {
|
|
throw new RSRuntimeException("Matrix A is not symmetric");
|
|
}
|
|
validateL3(Element.F64(mRS), 0, 0, Side, A, B, C);
|
|
mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dsymm, 0, 0, Side, Uplo, 0, C.getType().getY(), C.getType().getX(), 0, alpha, A.getID(mRS), B.getID(mRS),
|
|
beta, C.getID(mRS), 0, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* CSYMM performs one of the matrix-matrix operations
|
|
* C := alpha*A*B + beta*C or C := alpha*B*A + beta*C
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/db/d59/csymm_8f.html
|
|
*
|
|
* @param Side Specifies whether the symmetric matrix A appears on the left or right.
|
|
* @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}.
|
|
* @param B The input allocation contains matrix B, supported elements type {@link Element#F32_2}.
|
|
* @param beta The scalar beta.
|
|
* @param C The input allocation contains matrix C, supported elements type {@link Element#F32_2}.
|
|
*/
|
|
public void CSYMM(@Side int Side, @Uplo int Uplo, Float2 alpha, Allocation A,
|
|
Allocation B, Float2 beta, Allocation C) {
|
|
validateSide(Side);
|
|
validateUplo(Uplo);
|
|
if (A.getType().getX() != A.getType().getY()) {
|
|
throw new RSRuntimeException("Matrix A is not symmetric");
|
|
}
|
|
validateL3(Element.F32_2(mRS), 0, 0, Side, A, B, C);
|
|
mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_csymm, 0, 0, Side, Uplo, 0, C.getType().getY(), C.getType().getX(), 0, alpha.x, alpha.y, A.getID(mRS), B.getID(mRS),
|
|
beta.x, beta.y, C.getID(mRS), 0, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* ZSYMM performs one of the matrix-matrix operations
|
|
* C := alpha*A*B + beta*C or C := alpha*B*A + beta*C
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/df/d51/zsymm_8f.html
|
|
*
|
|
* @param Side Specifies whether the symmetric matrix A appears on the left or right.
|
|
* @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}.
|
|
* @param B The input allocation contains matrix B, supported elements type {@link Element#F64_2}.
|
|
* @param beta The scalar beta.
|
|
* @param C The input allocation contains matrix C, supported elements type {@link Element#F64_2}.
|
|
*/
|
|
public void ZSYMM(@Side int Side, @Uplo int Uplo, Double2 alpha, Allocation A,
|
|
Allocation B, Double2 beta, Allocation C) {
|
|
validateSide(Side);
|
|
validateUplo(Uplo);
|
|
if (A.getType().getX() != A.getType().getY()) {
|
|
throw new RSRuntimeException("Matrix A is not symmetric");
|
|
}
|
|
validateL3(Element.F64_2(mRS), 0, 0, Side, A, B, C);
|
|
mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zsymm, 0, 0, Side, Uplo, 0, C.getType().getY(), C.getType().getX(), 0, alpha.x, alpha.y, A.getID(mRS), B.getID(mRS),
|
|
beta.x, beta.y, C.getID(mRS), 0, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* SSYRK performs one of the symmetric rank k operations
|
|
* C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d0/d40/ssyrk_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
|
|
* @param Trans The type of transpose applied to the operation.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32}.
|
|
* @param beta The scalar beta.
|
|
* @param C The input allocation contains matrix C, supported elements type {@link Element#F32}.
|
|
*/
|
|
public void SSYRK(@Uplo int Uplo, @Transpose int Trans, float alpha, Allocation A, float beta, Allocation C) {
|
|
validateTranspose(Trans);
|
|
validateUplo(Uplo);
|
|
validateL3(Element.F32(mRS), Trans, 0, 0, A, null, C);
|
|
int K = -1;
|
|
if (Trans != NO_TRANSPOSE) {
|
|
K = A.getType().getY();
|
|
} else {
|
|
K = A.getType().getX();
|
|
}
|
|
|
|
mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_ssyrk, Trans, 0, 0, Uplo, 0, 0, C.getType().getX(), K, alpha, A.getID(mRS), 0, beta, C.getID(mRS), 0, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* DSYRK performs one of the symmetric rank k operations
|
|
* C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/dc/d05/dsyrk_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
|
|
* @param Trans The type of transpose applied to the operation.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64}.
|
|
* @param beta The scalar beta.
|
|
* @param C The input allocation contains matrix C, supported elements type {@link Element#F64}.
|
|
*/
|
|
public void DSYRK(@Uplo int Uplo, @Transpose int Trans, double alpha, Allocation A, double beta, Allocation C) {
|
|
validateTranspose(Trans);
|
|
validateUplo(Uplo);
|
|
validateL3(Element.F64(mRS), Trans, 0, 0, A, null, C);
|
|
int K = -1;
|
|
if (Trans != NO_TRANSPOSE) {
|
|
K = A.getType().getY();
|
|
} else {
|
|
K = A.getType().getX();
|
|
}
|
|
mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dsyrk, Trans, 0, 0, Uplo, 0, 0, C.getType().getX(), K, alpha, A.getID(mRS), 0, beta, C.getID(mRS), 0, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* CSYRK performs one of the symmetric rank k operations
|
|
* C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d3/d6a/csyrk_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
|
|
* @param Trans The type of transpose applied to the operation.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}.
|
|
* @param beta The scalar beta.
|
|
* @param C The input allocation contains matrix C, supported elements type {@link Element#F32_2}.
|
|
*/
|
|
public void CSYRK(@Uplo int Uplo, @Transpose int Trans, Float2 alpha, Allocation A, Float2 beta, Allocation C) {
|
|
validateTranspose(Trans);
|
|
validateUplo(Uplo);
|
|
validateL3(Element.F32_2(mRS), Trans, 0, 0, A, null, C);
|
|
int K = -1;
|
|
if (Trans != NO_TRANSPOSE) {
|
|
K = A.getType().getY();
|
|
} else {
|
|
K = A.getType().getX();
|
|
}
|
|
mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_csyrk, Trans, 0, 0, Uplo, 0, 0, C.getType().getX(), K, alpha.x, alpha.y, A.getID(mRS), 0, beta.x, beta.y,
|
|
C.getID(mRS), 0, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* ZSYRK performs one of the symmetric rank k operations
|
|
* C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/de/d54/zsyrk_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
|
|
* @param Trans The type of transpose applied to the operation.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}.
|
|
* @param beta The scalar beta.
|
|
* @param C The input allocation contains matrix C, supported elements type {@link Element#F64_2}.
|
|
*/
|
|
public void ZSYRK(@Uplo int Uplo, @Transpose int Trans, Double2 alpha, Allocation A, Double2 beta, Allocation C) {
|
|
validateTranspose(Trans);
|
|
validateUplo(Uplo);
|
|
validateL3(Element.F64_2(mRS), Trans, 0, 0, A, null, C);
|
|
int K = -1;
|
|
if (Trans != NO_TRANSPOSE) {
|
|
K = A.getType().getY();
|
|
} else {
|
|
K = A.getType().getX();
|
|
}
|
|
mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zsyrk, Trans, 0, 0, Uplo, 0, 0, C.getType().getX(), K, alpha.x, alpha.y, A.getID(mRS), 0, beta.x, beta.y,
|
|
C.getID(mRS), 0, 0, 0, 0);
|
|
}
|
|
|
|
static void validateSYR2K(Element e, @Transpose int Trans, Allocation A, Allocation B, Allocation C) {
|
|
validateTranspose(Trans);
|
|
if (!A.getType().getElement().isCompatible(e) ||
|
|
!B.getType().getElement().isCompatible(e) ||
|
|
!C.getType().getElement().isCompatible(e)) {
|
|
throw new RSRuntimeException("Called BLAS with wrong Element type");
|
|
}
|
|
int Cdim = -1;
|
|
// A is n x k if no transpose, k x n if transpose
|
|
// C is n x n
|
|
if (Trans == TRANSPOSE) {
|
|
// check columns versus C
|
|
Cdim = A.getType().getX();
|
|
} else {
|
|
// check rows versus C
|
|
Cdim = A.getType().getY();
|
|
}
|
|
if (C.getType().getX() != Cdim || C.getType().getY() != Cdim) {
|
|
throw new RSRuntimeException("Invalid symmetric matrix in SYR2K");
|
|
}
|
|
// A dims == B dims
|
|
if (A.getType().getX() != B.getType().getX() || A.getType().getY() != B.getType().getY()) {
|
|
throw new RSRuntimeException("Invalid A and B in SYR2K");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* SSYR2K performs one of the symmetric rank 2k operations
|
|
* C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/df/d3d/ssyr2k_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
|
|
* @param Trans The type of transpose applied to the operation.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32}.
|
|
* @param B The input allocation contains matrix B, supported elements type {@link Element#F32}.
|
|
* @param beta The scalar beta.
|
|
* @param C The input allocation contains matrix C, supported elements type {@link Element#F32}.
|
|
*/
|
|
public void SSYR2K(@Uplo int Uplo, @Transpose int Trans, float alpha, Allocation A, Allocation B, float beta, Allocation C) {
|
|
validateUplo(Uplo);
|
|
validateSYR2K(Element.F32(mRS), Trans, A, B, C);
|
|
int K = -1;
|
|
if (Trans != NO_TRANSPOSE) {
|
|
K = A.getType().getY();
|
|
} else {
|
|
K = A.getType().getX();
|
|
}
|
|
mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_ssyr2k, Trans, 0, 0, Uplo, 0, 0, C.getType().getX(), K, alpha, A.getID(mRS), B.getID(mRS), beta, C.getID(mRS), 0, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* DSYR2K performs one of the symmetric rank 2k operations
|
|
* C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d1/dec/dsyr2k_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
|
|
* @param Trans The type of transpose applied to the operation.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64}.
|
|
* @param B The input allocation contains matrix B, supported elements type {@link Element#F64}.
|
|
* @param beta The scalar beta.
|
|
* @param C The input allocation contains matrix C, supported elements type {@link Element#F64}.
|
|
*/
|
|
public void DSYR2K(@Uplo int Uplo, @Transpose int Trans, double alpha, Allocation A, Allocation B, double beta, Allocation C) {
|
|
validateUplo(Uplo);
|
|
validateSYR2K(Element.F64(mRS), Trans, A, B, C);
|
|
int K = -1;
|
|
if (Trans != NO_TRANSPOSE) {
|
|
K = A.getType().getY();
|
|
} else {
|
|
K = A.getType().getX();
|
|
}
|
|
mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dsyr2k, Trans, 0, 0, Uplo, 0, 0, C.getType().getX(), K, alpha, A.getID(mRS), B.getID(mRS), beta, C.getID(mRS), 0, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* CSYR2K performs one of the symmetric rank 2k operations
|
|
* C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/de/d7e/csyr2k_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
|
|
* @param Trans The type of transpose applied to the operation.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}.
|
|
* @param B The input allocation contains matrix B, supported elements type {@link Element#F32_2}.
|
|
* @param beta The scalar beta.
|
|
* @param C The input allocation contains matrix C, supported elements type {@link Element#F32_2}.
|
|
*/
|
|
public void CSYR2K(@Uplo int Uplo, @Transpose int Trans, Float2 alpha, Allocation A, Allocation B, Float2 beta, Allocation C) {
|
|
validateUplo(Uplo);
|
|
validateSYR2K(Element.F32_2(mRS), Trans, A, B, C);
|
|
int K = -1;
|
|
if (Trans != NO_TRANSPOSE) {
|
|
K = A.getType().getY();
|
|
} else {
|
|
K = A.getType().getX();
|
|
}
|
|
mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_csyr2k, Trans, 0, 0, Uplo, 0, 0, C.getType().getX(), K, alpha.x, alpha.y, A.getID(mRS), B.getID(mRS), beta.x, beta.y, C.getID(mRS), 0, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* ZSYR2K performs one of the symmetric rank 2k operations
|
|
* C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/df/d20/zsyr2k_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
|
|
* @param Trans The type of transpose applied to the operation.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}.
|
|
* @param B The input allocation contains matrix B, supported elements type {@link Element#F64_2}.
|
|
* @param beta The scalar beta.
|
|
* @param C The input allocation contains matrix C, supported elements type {@link Element#F64_2}.
|
|
*/
|
|
public void ZSYR2K(@Uplo int Uplo, @Transpose int Trans, Double2 alpha, Allocation A, Allocation B, Double2 beta, Allocation C) {
|
|
validateUplo(Uplo);
|
|
validateSYR2K(Element.F64_2(mRS), Trans, A, B, C);
|
|
int K = -1;
|
|
if (Trans != NO_TRANSPOSE) {
|
|
K = A.getType().getY();
|
|
} else {
|
|
K = A.getType().getX();
|
|
}
|
|
mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zsyr2k, Trans, 0, 0, Uplo, 0, 0, C.getType().getX(), K, alpha.x, alpha.y, A.getID(mRS), B.getID(mRS), beta.x, beta.y, C.getID(mRS), 0, 0, 0, 0);
|
|
}
|
|
|
|
static void validateTRMM(Element e, @Side int Side, @Transpose int TransA, Allocation A, Allocation B) {
|
|
validateSide(Side);
|
|
validateTranspose(TransA);
|
|
int aM = -1, aN = -1, bM = -1, bN = -1;
|
|
if (!A.getType().getElement().isCompatible(e) ||
|
|
!B.getType().getElement().isCompatible(e)) {
|
|
throw new RSRuntimeException("Called BLAS with wrong Element type");
|
|
}
|
|
|
|
aM = A.getType().getY();
|
|
aN = A.getType().getX();
|
|
if (aM != aN) {
|
|
throw new RSRuntimeException("Called TRMM with a non-symmetric matrix A");
|
|
}
|
|
|
|
bM = B.getType().getY();
|
|
bN = B.getType().getX();
|
|
if (Side == LEFT) {
|
|
if (aN != bM) {
|
|
throw new RSRuntimeException("Called TRMM with invalid matrices");
|
|
}
|
|
} else {
|
|
if (bN != aM) {
|
|
throw new RSRuntimeException("Called TRMM with invalid matrices");
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* STRMM performs one of the matrix-matrix operations
|
|
* B := alpha*op(A)*B or B := alpha*B*op(A)
|
|
* op(A) is one of op(A) = A or op(A) = A**T
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/df/d01/strmm_8f.html
|
|
*
|
|
* @param Side Specifies whether the symmetric matrix A appears on the left or right.
|
|
* @param Uplo Specifies whether matrix A is upper or lower triangular.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32}.
|
|
* @param B The input allocation contains matrix B, supported elements type {@link Element#F32}.
|
|
*/
|
|
public void STRMM(@Side int Side, @Uplo int Uplo, @Transpose int TransA, @Diag int Diag, float alpha, Allocation A, Allocation B) {
|
|
validateUplo(Uplo);
|
|
validateDiag(Diag);
|
|
validateTRMM(Element.F32(mRS), Side, TransA, A, B);
|
|
mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_strmm, TransA, 0, Side, Uplo, Diag, B.getType().getY(), B.getType().getX(), 0,
|
|
alpha, A.getID(mRS), B.getID(mRS), 0.f, 0, 0, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* DTRMM performs one of the matrix-matrix operations
|
|
* B := alpha*op(A)*B or B := alpha*B*op(A)
|
|
* op(A) is one of op(A) = A or op(A) = A**T
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/dd/d19/dtrmm_8f.html
|
|
*
|
|
* @param Side Specifies whether the symmetric matrix A appears on the left or right.
|
|
* @param Uplo Specifies whether matrix A is upper or lower triangular.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64}.
|
|
* @param B The input allocation contains matrix B, supported elements type {@link Element#F64}.
|
|
*/
|
|
public void DTRMM(@Side int Side, @Uplo int Uplo, @Transpose int TransA, @Diag int Diag, double alpha, Allocation A, Allocation B) {
|
|
validateUplo(Uplo);
|
|
validateDiag(Diag);
|
|
validateTRMM(Element.F64(mRS), Side, TransA, A, B);
|
|
mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dtrmm, TransA, 0, Side, Uplo, Diag, B.getType().getY(), B.getType().getX(), 0,
|
|
alpha, A.getID(mRS), B.getID(mRS), 0, 0, 0, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* CTRMM performs one of the matrix-matrix operations
|
|
* B := alpha*op(A)*B or B := alpha*B*op(A)
|
|
* op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d4/d9b/ctrmm_8f.html
|
|
*
|
|
* @param Side Specifies whether the symmetric matrix A appears on the left or right.
|
|
* @param Uplo Specifies whether matrix A is upper or lower triangular.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}.
|
|
* @param B The input allocation contains matrix B, supported elements type {@link Element#F32_2}.
|
|
*/
|
|
public void CTRMM(@Side int Side, @Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Float2 alpha, Allocation A, Allocation B) {
|
|
validateUplo(Uplo);
|
|
validateDiag(Diag);
|
|
validateTRMM(Element.F32_2(mRS), Side, TransA, A, B);
|
|
mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_ctrmm, TransA, 0, Side, Uplo, Diag, B.getType().getY(), B.getType().getX(), 0,
|
|
alpha.x, alpha.y, A.getID(mRS), B.getID(mRS), 0, 0, 0, 0, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* ZTRMM performs one of the matrix-matrix operations
|
|
* B := alpha*op(A)*B or B := alpha*B*op(A)
|
|
* op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d8/de1/ztrmm_8f.html
|
|
*
|
|
* @param Side Specifies whether the symmetric matrix A appears on the left or right.
|
|
* @param Uplo Specifies whether matrix A is upper or lower triangular.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}.
|
|
* @param B The input allocation contains matrix B, supported elements type {@link Element#F64_2}.
|
|
*/
|
|
public void ZTRMM(@Side int Side, @Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Double2 alpha, Allocation A, Allocation B) {
|
|
validateUplo(Uplo);
|
|
validateDiag(Diag);
|
|
validateTRMM(Element.F64_2(mRS), Side, TransA, A, B);
|
|
mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_ztrmm, TransA, 0, Side, Uplo, Diag, B.getType().getY(), B.getType().getX(), 0,
|
|
alpha.x, alpha.y, A.getID(mRS), B.getID(mRS), 0, 0, 0, 0, 0, 0, 0);
|
|
}
|
|
|
|
static void validateTRSM(Element e, @Side int Side, @Transpose int TransA, Allocation A, Allocation B) {
|
|
int adim = -1, bM = -1, bN = -1;
|
|
validateSide(Side);
|
|
validateTranspose(TransA);
|
|
if (!A.getType().getElement().isCompatible(e) ||
|
|
!B.getType().getElement().isCompatible(e)) {
|
|
throw new RSRuntimeException("Called BLAS with wrong Element type");
|
|
}
|
|
adim = A.getType().getX();
|
|
if (adim != A.getType().getY()) {
|
|
// this may be unnecessary, the restriction could potentially be relaxed
|
|
// A needs to contain at least that symmetric matrix but could theoretically be larger
|
|
// for now we assume adapters are sufficient, will reevaluate in the future
|
|
throw new RSRuntimeException("Called TRSM with a non-symmetric matrix A");
|
|
}
|
|
bM = B.getType().getY();
|
|
bN = B.getType().getX();
|
|
if (Side == LEFT) {
|
|
// A is M*M
|
|
if (adim != bM) {
|
|
throw new RSRuntimeException("Called TRSM with invalid matrix dimensions");
|
|
}
|
|
} else {
|
|
// A is N*N
|
|
if (adim != bN) {
|
|
throw new RSRuntimeException("Called TRSM with invalid matrix dimensions");
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* STRSM solves one of the matrix equations
|
|
* op(A)*X := alpha*B or X*op(A) := alpha*B
|
|
* op(A) is one of op(A) = A or op(A) = A**T
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d2/d8b/strsm_8f.html
|
|
*
|
|
* @param Side Specifies whether the symmetric matrix A appears on the left or right.
|
|
* @param Uplo Specifies whether matrix A is upper or lower triangular.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32}.
|
|
* @param B The input allocation contains matrix B, supported elements type {@link Element#F32}.
|
|
*/
|
|
public void STRSM(@Side int Side, @Uplo int Uplo, @Transpose int TransA, @Diag int Diag, float alpha, Allocation A, Allocation B) {
|
|
validateUplo(Uplo);
|
|
validateDiag(Diag);
|
|
validateTRSM(Element.F32(mRS), Side, TransA, A, B);
|
|
mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_strsm, TransA, 0, Side, Uplo, Diag, B.getType().getY(), B.getType().getX(), 0,
|
|
alpha, A.getID(mRS), B.getID(mRS), 0, 0, 0, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* DTRSM solves one of the matrix equations
|
|
* op(A)*X := alpha*B or X*op(A) := alpha*B
|
|
* op(A) is one of op(A) = A or op(A) = A**T
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/de/da7/dtrsm_8f.html
|
|
*
|
|
* @param Side Specifies whether the symmetric matrix A appears on the left or right.
|
|
* @param Uplo Specifies whether matrix A is upper or lower triangular.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64}.
|
|
* @param B The input allocation contains matrix B, supported elements type {@link Element#F64}.
|
|
*/
|
|
public void DTRSM(@Side int Side, @Uplo int Uplo, @Transpose int TransA, @Diag int Diag, double alpha, Allocation A, Allocation B) {
|
|
validateUplo(Uplo);
|
|
validateDiag(Diag);
|
|
validateTRSM(Element.F64(mRS), Side, TransA, A, B);
|
|
mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dtrsm, TransA, 0, Side, Uplo, Diag, B.getType().getY(), B.getType().getX(), 0,
|
|
alpha, A.getID(mRS), B.getID(mRS), 0, 0, 0, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* CTRSM solves one of the matrix equations
|
|
* op(A)*X := alpha*B or X*op(A) := alpha*B
|
|
* op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/de/d30/ctrsm_8f.html
|
|
*
|
|
* @param Side Specifies whether the symmetric matrix A appears on the left or right.
|
|
* @param Uplo Specifies whether matrix A is upper or lower triangular.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}.
|
|
* @param B The input allocation contains matrix B, supported elements type {@link Element#F32_2}.
|
|
*/
|
|
public void CTRSM(@Side int Side, @Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Float2 alpha, Allocation A, Allocation B) {
|
|
validateUplo(Uplo);
|
|
validateDiag(Diag);
|
|
validateTRSM(Element.F32_2(mRS), Side, TransA, A, B);
|
|
mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_ctrsm, TransA, 0, Side, Uplo, Diag, B.getType().getY(), B.getType().getX(), 0,
|
|
alpha.x, alpha.y, A.getID(mRS), B.getID(mRS), 0, 0, 0, 0, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* ZTRSM solves one of the matrix equations
|
|
* op(A)*X := alpha*B or X*op(A) := alpha*B
|
|
* op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d1/d39/ztrsm_8f.html
|
|
*
|
|
* @param Side Specifies whether the symmetric matrix A appears on the left or right.
|
|
* @param Uplo Specifies whether matrix A is upper or lower triangular.
|
|
* @param TransA The type of transpose applied to matrix A.
|
|
* @param Diag Specifies whether or not A is unit triangular.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}.
|
|
* @param B The input allocation contains matrix B, supported elements type {@link Element#F64_2}.
|
|
*/
|
|
public void ZTRSM(@Side int Side, @Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Double2 alpha, Allocation A, Allocation B) {
|
|
validateUplo(Uplo);
|
|
validateDiag(Diag);
|
|
validateTRSM(Element.F64_2(mRS), Side, TransA, A, B);
|
|
mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_ztrsm, TransA, 0, Side, Uplo, Diag, B.getType().getY(), B.getType().getX(), 0,
|
|
alpha.x, alpha.y, A.getID(mRS), B.getID(mRS), 0, 0, 0, 0, 0, 0, 0);
|
|
}
|
|
|
|
static void validateHEMM(Element e, @Side int Side, Allocation A, Allocation B, Allocation C) {
|
|
validateSide(Side);
|
|
|
|
if (!A.getType().getElement().isCompatible(e) ||
|
|
!B.getType().getElement().isCompatible(e) ||
|
|
!C.getType().getElement().isCompatible(e)) {
|
|
throw new RSRuntimeException("Called BLAS with wrong Element type");
|
|
}
|
|
|
|
// A must be square; can potentially be relaxed similar to TRSM
|
|
int adim = A.getType().getX();
|
|
if (adim != A.getType().getY()) {
|
|
throw new RSRuntimeException("Called HEMM with non-square A");
|
|
}
|
|
if ((Side == LEFT && adim != B.getType().getY()) ||
|
|
(Side == RIGHT && adim != B.getType().getX())) {
|
|
throw new RSRuntimeException("Called HEMM with invalid B");
|
|
}
|
|
if (B.getType().getX() != C.getType().getX() ||
|
|
B.getType().getY() != C.getType().getY()) {
|
|
throw new RSRuntimeException("Called HEMM with mismatched B and C");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* CHEMM performs one of the matrix-matrix operations
|
|
* C := alpha*A*B + beta*C or C := alpha*B*A + beta*C
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d3/d66/chemm_8f.html
|
|
*
|
|
* @param Side Specifies whether the symmetric matrix A appears on the left or right.
|
|
* @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}.
|
|
* @param B The input allocation contains matrix B, supported elements type {@link Element#F32_2}.
|
|
* @param beta The scalar beta.
|
|
* @param C The input allocation contains matrix C, supported elements type {@link Element#F32_2}.
|
|
*/
|
|
public void CHEMM(@Side int Side, @Uplo int Uplo, Float2 alpha, Allocation A, Allocation B, Float2 beta, Allocation C) {
|
|
validateUplo(Uplo);
|
|
validateHEMM(Element.F32_2(mRS), Side, A, B, C);
|
|
mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_chemm, 0, 0, Side, Uplo, 0, C.getType().getY(), C.getType().getX(), 0,
|
|
alpha.x, alpha.y, A.getID(mRS), B.getID(mRS), beta.x, beta.y, C.getID(mRS), 0, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* ZHEMM performs one of the matrix-matrix operations
|
|
* C := alpha*A*B + beta*C or C := alpha*B*A + beta*C
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d6/d3e/zhemm_8f.html
|
|
*
|
|
* @param Side Specifies whether the symmetric matrix A appears on the left or right.
|
|
* @param Uplo Specifies whether the upper or lower triangular part is to be referenced.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}.
|
|
* @param B The input allocation contains matrix B, supported elements type {@link Element#F64_2}.
|
|
* @param beta The scalar beta.
|
|
* @param C The input allocation contains matrix C, supported elements type {@link Element#F64_2}.
|
|
*/
|
|
public void ZHEMM(@Side int Side, @Uplo int Uplo, Double2 alpha, Allocation A, Allocation B, Double2 beta, Allocation C) {
|
|
validateUplo(Uplo);
|
|
validateHEMM(Element.F64_2(mRS), Side, A, B, C);
|
|
mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zhemm, 0, 0, Side, Uplo, 0, C.getType().getY(), C.getType().getX(), 0,
|
|
alpha.x, alpha.y, A.getID(mRS), B.getID(mRS), beta.x, beta.y, C.getID(mRS), 0, 0, 0, 0);
|
|
}
|
|
|
|
static void validateHERK(Element e, @Transpose int Trans, Allocation A, Allocation C) {
|
|
if (!A.getType().getElement().isCompatible(e) ||
|
|
!C.getType().getElement().isCompatible(e)) {
|
|
throw new RSRuntimeException("Called BLAS with wrong Element type");
|
|
}
|
|
validateConjTranspose(Trans);
|
|
int cdim = C.getType().getX();
|
|
if (cdim != C.getType().getY()) {
|
|
throw new RSRuntimeException("Called HERK with non-square C");
|
|
}
|
|
if (Trans == NO_TRANSPOSE) {
|
|
if (cdim != A.getType().getY()) {
|
|
throw new RSRuntimeException("Called HERK with invalid A");
|
|
}
|
|
} else {
|
|
if (cdim != A.getType().getX()) {
|
|
throw new RSRuntimeException("Called HERK with invalid A");
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* CHERK performs one of the hermitian rank k operations
|
|
* C := alpha*A*A**H + beta*C or C := alpha*A**H*A + beta*C
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d8/d52/cherk_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
|
|
* @param Trans The type of transpose applied to the operation.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}.
|
|
* @param beta The scalar beta.
|
|
* @param C The input allocation contains matrix C, supported elements type {@link Element#F32_2}.
|
|
*/
|
|
public void CHERK(@Uplo int Uplo, @Transpose int Trans, float alpha, Allocation A, float beta, Allocation C) {
|
|
validateUplo(Uplo);
|
|
validateHERK(Element.F32_2(mRS), Trans, A, C);
|
|
int k = 0;
|
|
if (Trans == CONJ_TRANSPOSE) {
|
|
k = A.getType().getY();
|
|
} else {
|
|
k = A.getType().getX();
|
|
}
|
|
mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_cherk, Trans, 0, 0, Uplo, 0, 0, C.getType().getX(), k,
|
|
alpha, 0, A.getID(mRS), 0, beta, 0, C.getID(mRS), 0, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* ZHERK performs one of the hermitian rank k operations
|
|
* C := alpha*A*A**H + beta*C or C := alpha*A**H*A + beta*C
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d1/db1/zherk_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
|
|
* @param Trans The type of transpose applied to the operation.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}.
|
|
* @param beta The scalar beta.
|
|
* @param C The input allocation contains matrix C, supported elements type {@link Element#F64_2}.
|
|
*/
|
|
public void ZHERK(@Uplo int Uplo, @Transpose int Trans, double alpha, Allocation A, double beta, Allocation C) {
|
|
validateUplo(Uplo);
|
|
validateHERK(Element.F64_2(mRS), Trans, A, C);
|
|
int k = 0;
|
|
if (Trans == CONJ_TRANSPOSE) {
|
|
k = A.getType().getY();
|
|
} else {
|
|
k = A.getType().getX();
|
|
}
|
|
mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zherk, Trans, 0, 0, Uplo, 0, 0, C.getType().getX(), k,
|
|
alpha, 0, A.getID(mRS), 0, beta, 0, C.getID(mRS), 0, 0, 0, 0);
|
|
}
|
|
|
|
static void validateHER2K(Element e, @Transpose int Trans, Allocation A, Allocation B, Allocation C) {
|
|
if (!A.getType().getElement().isCompatible(e) ||
|
|
!B.getType().getElement().isCompatible(e) ||
|
|
!C.getType().getElement().isCompatible(e)) {
|
|
throw new RSRuntimeException("Called BLAS with wrong Element type");
|
|
}
|
|
validateConjTranspose(Trans);
|
|
int cdim = C.getType().getX();
|
|
if (cdim != C.getType().getY()) {
|
|
throw new RSRuntimeException("Called HER2K with non-square C");
|
|
}
|
|
if (Trans == NO_TRANSPOSE) {
|
|
if (A.getType().getY() != cdim) {
|
|
throw new RSRuntimeException("Called HER2K with invalid matrices");
|
|
}
|
|
} else {
|
|
if (A.getType().getX() != cdim) {
|
|
throw new RSRuntimeException("Called HER2K with invalid matrices");
|
|
}
|
|
}
|
|
if (A.getType().getX() != B.getType().getX() || A.getType().getY() != B.getType().getY()) {
|
|
throw new RSRuntimeException("Called HER2K with invalid A and B matrices");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* CHER2K performs one of the hermitian rank 2k operations
|
|
* C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C or C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d1/d82/cher2k_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
|
|
* @param Trans The type of transpose applied to the operation.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}.
|
|
* @param B The input allocation contains matrix B, supported elements type {@link Element#F32_2}.
|
|
* @param beta The scalar beta.
|
|
* @param C The input allocation contains matrix C, supported elements type {@link Element#F32_2}.
|
|
*/
|
|
public void CHER2K(@Uplo int Uplo, @Transpose int Trans, Float2 alpha, Allocation A, Allocation B, float beta, Allocation C) {
|
|
validateUplo(Uplo);
|
|
validateHER2K(Element.F32_2(mRS), Trans, A, B, C);
|
|
int k = 0;
|
|
if (Trans == NO_TRANSPOSE) {
|
|
k = A.getType().getX();
|
|
} else {
|
|
k = A.getType().getY();
|
|
}
|
|
mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_cher2k, Trans, 0, 0, Uplo, 0, 0, C.getType().getX(), k, alpha.x, alpha.y,
|
|
A.getID(mRS), B.getID(mRS), beta, 0, C.getID(mRS), 0, 0, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* ZHER2K performs one of the hermitian rank 2k operations
|
|
* C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C or C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C
|
|
*
|
|
* Details: http://www.netlib.org/lapack/explore-html/d7/dfa/zher2k_8f.html
|
|
*
|
|
* @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
|
|
* @param Trans The type of transpose applied to the operation.
|
|
* @param alpha The scalar alpha.
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}.
|
|
* @param B The input allocation contains matrix B, supported elements type {@link Element#F64_2}.
|
|
* @param beta The scalar beta.
|
|
* @param C The input allocation contains matrix C, supported elements type {@link Element#F64_2}.
|
|
*/
|
|
public void ZHER2K(@Uplo int Uplo, @Transpose int Trans, Double2 alpha, Allocation A, Allocation B, double beta, Allocation C) {
|
|
validateUplo(Uplo);
|
|
validateHER2K(Element.F64_2(mRS), Trans, A, B, C);
|
|
int k = 0;
|
|
if (Trans == NO_TRANSPOSE) {
|
|
k = A.getType().getX();
|
|
} else {
|
|
k = A.getType().getY();
|
|
}
|
|
mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zher2k, Trans, 0, 0, Uplo, 0, 0, C.getType().getX(), k, alpha.x, alpha.y,
|
|
A.getID(mRS), B.getID(mRS), beta, 0, C.getID(mRS), 0, 0, 0, 0);
|
|
}
|
|
|
|
|
|
/**
|
|
* 8-bit GEMM-like operation for neural networks: C = A * Transpose(B)
|
|
* Calculations are done in 1.10.21 fixed-point format for the final output,
|
|
* just before there's a shift down to drop the fractional parts. The output
|
|
* values are gated to 0 to 255 to fit in a byte, but the 10-bit format
|
|
* gives some headroom to avoid wrapping around on small overflows.
|
|
*
|
|
* @param A The input allocation contains matrix A, supported elements type {@link Element#U8}.
|
|
* @param a_offset The offset for all values in matrix A, e.g A[i,j] = A[i,j] - a_offset. Value should be from 0 to 255.
|
|
* @param B The input allocation contains matrix B, supported elements type {@link Element#U8}.
|
|
* @param b_offset The offset for all values in matrix B, e.g B[i,j] = B[i,j] - b_offset. Value should be from 0 to 255.
|
|
* @param C The input allocation contains matrix C, supported elements type {@link Element#U8}.
|
|
* @param c_offset The offset for all values in matrix C.
|
|
* @param c_mult The multiplier for all values in matrix C, e.g C[i,j] = (C[i,j] + c_offset) * c_mult.
|
|
**/
|
|
public void BNNM(Allocation A, int a_offset, Allocation B, int b_offset, Allocation C, int c_offset, int c_mult) {
|
|
validateL3(Element.U8(mRS), NO_TRANSPOSE, TRANSPOSE, 0, A, B, C);
|
|
|
|
if (a_offset < 0 || a_offset > 255) {
|
|
throw new RSRuntimeException("Invalid a_offset passed to BNNM");
|
|
}
|
|
if (b_offset < 0 || b_offset > 255) {
|
|
throw new RSRuntimeException("Invalid b_offset passed to BNNM");
|
|
}
|
|
int M = -1, N = -1, K = -1;
|
|
M = A.getType().getY();
|
|
N = B.getType().getY();
|
|
K = A.getType().getX();
|
|
|
|
|
|
mRS.nScriptIntrinsicBLAS_BNNM(getID(mRS), M, N, K, A.getID(mRS), a_offset, B.getID(mRS), b_offset, C.getID(mRS), c_offset, c_mult);
|
|
|
|
}
|
|
|
|
}
|