d0a0b2a314
Change-Id: Ic7de551f8843fd70a77f738e33028e25c020bb3c
537 lines
22 KiB
C++
537 lines
22 KiB
C++
/*
|
|
* Copyright (C) 2014 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define ATRACE_TAG ATRACE_TAG_VIEW
|
|
|
|
#include "RenderNode.h"
|
|
|
|
#include <SkCanvas.h>
|
|
#include <algorithm>
|
|
|
|
#include <utils/Trace.h>
|
|
|
|
#include "Debug.h"
|
|
#include "DisplayListOp.h"
|
|
#include "DisplayListLogBuffer.h"
|
|
|
|
namespace android {
|
|
namespace uirenderer {
|
|
|
|
void RenderNode::outputLogBuffer(int fd) {
|
|
DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance();
|
|
if (logBuffer.isEmpty()) {
|
|
return;
|
|
}
|
|
|
|
FILE *file = fdopen(fd, "a");
|
|
|
|
fprintf(file, "\nRecent DisplayList operations\n");
|
|
logBuffer.outputCommands(file);
|
|
|
|
String8 cachesLog;
|
|
Caches::getInstance().dumpMemoryUsage(cachesLog);
|
|
fprintf(file, "\nCaches:\n%s", cachesLog.string());
|
|
fprintf(file, "\n");
|
|
|
|
fflush(file);
|
|
}
|
|
|
|
RenderNode::RenderNode() : mDestroyed(false), mNeedsPropertiesSync(false), mDisplayListData(0) {
|
|
}
|
|
|
|
RenderNode::~RenderNode() {
|
|
LOG_ALWAYS_FATAL_IF(mDestroyed, "Double destroyed DisplayList %p", this);
|
|
|
|
mDestroyed = true;
|
|
delete mDisplayListData;
|
|
}
|
|
|
|
void RenderNode::destroyDisplayListDeferred(RenderNode* displayList) {
|
|
if (displayList) {
|
|
DISPLAY_LIST_LOGD("Deferring display list destruction");
|
|
Caches::getInstance().deleteDisplayListDeferred(displayList);
|
|
}
|
|
}
|
|
|
|
void RenderNode::setData(DisplayListData* data) {
|
|
delete mDisplayListData;
|
|
mDisplayListData = data;
|
|
if (mDisplayListData) {
|
|
Caches::getInstance().registerFunctors(mDisplayListData->functorCount);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This function is a simplified version of replay(), where we simply retrieve and log the
|
|
* display list. This function should remain in sync with the replay() function.
|
|
*/
|
|
void RenderNode::output(uint32_t level) {
|
|
ALOGD("%*sStart display list (%p, %s, render=%d)", (level - 1) * 2, "", this,
|
|
mName.string(), isRenderable());
|
|
ALOGD("%*s%s %d", level * 2, "", "Save",
|
|
SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag);
|
|
|
|
properties().debugOutputProperties(level);
|
|
int flags = DisplayListOp::kOpLogFlag_Recurse;
|
|
for (unsigned int i = 0; i < mDisplayListData->displayListOps.size(); i++) {
|
|
mDisplayListData->displayListOps[i]->output(level, flags);
|
|
}
|
|
|
|
ALOGD("%*sDone (%p, %s)", (level - 1) * 2, "", this, mName.string());
|
|
}
|
|
|
|
void RenderNode::updateProperties() {
|
|
if (mNeedsPropertiesSync) {
|
|
mNeedsPropertiesSync = false;
|
|
mProperties = mStagingProperties;
|
|
}
|
|
|
|
for (size_t i = 0; i < mDisplayListData->children.size(); i++) {
|
|
RenderNode* childNode = mDisplayListData->children[i]->mDisplayList;
|
|
childNode->updateProperties();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For property operations, we pass a savecount of 0, since the operations aren't part of the
|
|
* displaylist, and thus don't have to compensate for the record-time/playback-time discrepancy in
|
|
* base saveCount (i.e., how RestoreToCount uses saveCount + properties().getCount())
|
|
*/
|
|
#define PROPERTY_SAVECOUNT 0
|
|
|
|
template <class T>
|
|
void RenderNode::setViewProperties(OpenGLRenderer& renderer, T& handler,
|
|
const int level) {
|
|
#if DEBUG_DISPLAY_LIST
|
|
properties().debugOutputProperties(level);
|
|
#endif
|
|
if (properties().getLeft() != 0 || properties().getTop() != 0) {
|
|
renderer.translate(properties().getLeft(), properties().getTop());
|
|
}
|
|
if (properties().getStaticMatrix()) {
|
|
renderer.concatMatrix(properties().getStaticMatrix());
|
|
} else if (properties().getAnimationMatrix()) {
|
|
renderer.concatMatrix(properties().getAnimationMatrix());
|
|
}
|
|
if (properties().getMatrixFlags() != 0) {
|
|
if (properties().getMatrixFlags() == TRANSLATION) {
|
|
renderer.translate(properties().getTranslationX(), properties().getTranslationY());
|
|
} else {
|
|
renderer.concatMatrix(*properties().getTransformMatrix());
|
|
}
|
|
}
|
|
bool clipToBoundsNeeded = properties().getCaching() ? false : properties().getClipToBounds();
|
|
if (properties().getAlpha() < 1) {
|
|
if (properties().getCaching()) {
|
|
renderer.setOverrideLayerAlpha(properties().getAlpha());
|
|
} else if (!properties().getHasOverlappingRendering()) {
|
|
renderer.scaleAlpha(properties().getAlpha());
|
|
} else {
|
|
// TODO: should be able to store the size of a DL at record time and not
|
|
// have to pass it into this call. In fact, this information might be in the
|
|
// location/size info that we store with the new native transform data.
|
|
int saveFlags = SkCanvas::kHasAlphaLayer_SaveFlag;
|
|
if (clipToBoundsNeeded) {
|
|
saveFlags |= SkCanvas::kClipToLayer_SaveFlag;
|
|
clipToBoundsNeeded = false; // clipping done by saveLayer
|
|
}
|
|
|
|
SaveLayerOp* op = new (handler.allocator()) SaveLayerOp(
|
|
0, 0, properties().getWidth(), properties().getHeight(), properties().getAlpha() * 255, saveFlags);
|
|
handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds());
|
|
}
|
|
}
|
|
if (clipToBoundsNeeded) {
|
|
ClipRectOp* op = new (handler.allocator()) ClipRectOp(0, 0,
|
|
properties().getWidth(), properties().getHeight(), SkRegion::kIntersect_Op);
|
|
handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds());
|
|
}
|
|
if (CC_UNLIKELY(properties().getOutline().willClip())) {
|
|
ClipPathOp* op = new (handler.allocator()) ClipPathOp(properties().getOutline().getPath(),
|
|
SkRegion::kIntersect_Op);
|
|
handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds());
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Apply property-based transformations to input matrix
|
|
*
|
|
* If true3dTransform is set to true, the transform applied to the input matrix will use true 4x4
|
|
* matrix computation instead of the Skia 3x3 matrix + camera hackery.
|
|
*/
|
|
void RenderNode::applyViewPropertyTransforms(mat4& matrix, bool true3dTransform) {
|
|
if (properties().getLeft() != 0 || properties().getTop() != 0) {
|
|
matrix.translate(properties().getLeft(), properties().getTop());
|
|
}
|
|
if (properties().getStaticMatrix()) {
|
|
mat4 stat(*properties().getStaticMatrix());
|
|
matrix.multiply(stat);
|
|
} else if (properties().getAnimationMatrix()) {
|
|
mat4 anim(*properties().getAnimationMatrix());
|
|
matrix.multiply(anim);
|
|
}
|
|
if (properties().getMatrixFlags() != 0) {
|
|
if (properties().getMatrixFlags() == TRANSLATION) {
|
|
matrix.translate(properties().getTranslationX(), properties().getTranslationY(),
|
|
true3dTransform ? properties().getTranslationZ() : 0.0f);
|
|
} else {
|
|
if (!true3dTransform) {
|
|
matrix.multiply(*properties().getTransformMatrix());
|
|
} else {
|
|
mat4 true3dMat;
|
|
true3dMat.loadTranslate(
|
|
properties().getPivotX() + properties().getTranslationX(),
|
|
properties().getPivotY() + properties().getTranslationY(),
|
|
properties().getTranslationZ());
|
|
true3dMat.rotate(properties().getRotationX(), 1, 0, 0);
|
|
true3dMat.rotate(properties().getRotationY(), 0, 1, 0);
|
|
true3dMat.rotate(properties().getRotation(), 0, 0, 1);
|
|
true3dMat.scale(properties().getScaleX(), properties().getScaleY(), 1);
|
|
true3dMat.translate(-properties().getPivotX(), -properties().getPivotY());
|
|
|
|
matrix.multiply(true3dMat);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Organizes the DisplayList hierarchy to prepare for background projection reordering.
|
|
*
|
|
* This should be called before a call to defer() or drawDisplayList()
|
|
*
|
|
* Each DisplayList that serves as a 3d root builds its list of composited children,
|
|
* which are flagged to not draw in the standard draw loop.
|
|
*/
|
|
void RenderNode::computeOrdering() {
|
|
ATRACE_CALL();
|
|
mProjectedNodes.clear();
|
|
|
|
// TODO: create temporary DDLOp and call computeOrderingImpl on top DisplayList so that
|
|
// transform properties are applied correctly to top level children
|
|
if (mDisplayListData == NULL) return;
|
|
for (unsigned int i = 0; i < mDisplayListData->children.size(); i++) {
|
|
DrawDisplayListOp* childOp = mDisplayListData->children[i];
|
|
childOp->mDisplayList->computeOrderingImpl(childOp,
|
|
&mProjectedNodes, &mat4::identity());
|
|
}
|
|
}
|
|
|
|
void RenderNode::computeOrderingImpl(
|
|
DrawDisplayListOp* opState,
|
|
Vector<DrawDisplayListOp*>* compositedChildrenOfProjectionSurface,
|
|
const mat4* transformFromProjectionSurface) {
|
|
mProjectedNodes.clear();
|
|
if (mDisplayListData == NULL || mDisplayListData->isEmpty()) return;
|
|
|
|
// TODO: should avoid this calculation in most cases
|
|
// TODO: just calculate single matrix, down to all leaf composited elements
|
|
Matrix4 localTransformFromProjectionSurface(*transformFromProjectionSurface);
|
|
localTransformFromProjectionSurface.multiply(opState->mTransformFromParent);
|
|
|
|
if (properties().getProjectBackwards()) {
|
|
// composited projectee, flag for out of order draw, save matrix, and store in proj surface
|
|
opState->mSkipInOrderDraw = true;
|
|
opState->mTransformFromCompositingAncestor.load(localTransformFromProjectionSurface);
|
|
compositedChildrenOfProjectionSurface->add(opState);
|
|
} else {
|
|
// standard in order draw
|
|
opState->mSkipInOrderDraw = false;
|
|
}
|
|
|
|
if (mDisplayListData->children.size() > 0) {
|
|
const bool isProjectionReceiver = mDisplayListData->projectionReceiveIndex >= 0;
|
|
bool haveAppliedPropertiesToProjection = false;
|
|
for (unsigned int i = 0; i < mDisplayListData->children.size(); i++) {
|
|
DrawDisplayListOp* childOp = mDisplayListData->children[i];
|
|
RenderNode* child = childOp->mDisplayList;
|
|
|
|
Vector<DrawDisplayListOp*>* projectionChildren = NULL;
|
|
const mat4* projectionTransform = NULL;
|
|
if (isProjectionReceiver && !child->properties().getProjectBackwards()) {
|
|
// if receiving projections, collect projecting descendent
|
|
|
|
// Note that if a direct descendent is projecting backwards, we pass it's
|
|
// grandparent projection collection, since it shouldn't project onto it's
|
|
// parent, where it will already be drawing.
|
|
projectionChildren = &mProjectedNodes;
|
|
projectionTransform = &mat4::identity();
|
|
} else {
|
|
if (!haveAppliedPropertiesToProjection) {
|
|
applyViewPropertyTransforms(localTransformFromProjectionSurface);
|
|
haveAppliedPropertiesToProjection = true;
|
|
}
|
|
projectionChildren = compositedChildrenOfProjectionSurface;
|
|
projectionTransform = &localTransformFromProjectionSurface;
|
|
}
|
|
child->computeOrderingImpl(childOp, projectionChildren, projectionTransform);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
class DeferOperationHandler {
|
|
public:
|
|
DeferOperationHandler(DeferStateStruct& deferStruct, int level)
|
|
: mDeferStruct(deferStruct), mLevel(level) {}
|
|
inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) {
|
|
operation->defer(mDeferStruct, saveCount, mLevel, clipToBounds);
|
|
}
|
|
inline LinearAllocator& allocator() { return *(mDeferStruct.mAllocator); }
|
|
|
|
private:
|
|
DeferStateStruct& mDeferStruct;
|
|
const int mLevel;
|
|
};
|
|
|
|
void RenderNode::defer(DeferStateStruct& deferStruct, const int level) {
|
|
DeferOperationHandler handler(deferStruct, level);
|
|
iterate<DeferOperationHandler>(deferStruct.mRenderer, handler, level);
|
|
}
|
|
|
|
class ReplayOperationHandler {
|
|
public:
|
|
ReplayOperationHandler(ReplayStateStruct& replayStruct, int level)
|
|
: mReplayStruct(replayStruct), mLevel(level) {}
|
|
inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) {
|
|
#if DEBUG_DISPLAY_LIST_OPS_AS_EVENTS
|
|
properties().getReplayStruct().mRenderer.eventMark(operation->name());
|
|
#endif
|
|
operation->replay(mReplayStruct, saveCount, mLevel, clipToBounds);
|
|
}
|
|
inline LinearAllocator& allocator() { return *(mReplayStruct.mAllocator); }
|
|
|
|
private:
|
|
ReplayStateStruct& mReplayStruct;
|
|
const int mLevel;
|
|
};
|
|
|
|
void RenderNode::replay(ReplayStateStruct& replayStruct, const int level) {
|
|
ReplayOperationHandler handler(replayStruct, level);
|
|
|
|
replayStruct.mRenderer.startMark(mName.string());
|
|
iterate<ReplayOperationHandler>(replayStruct.mRenderer, handler, level);
|
|
replayStruct.mRenderer.endMark();
|
|
|
|
DISPLAY_LIST_LOGD("%*sDone (%p, %s), returning %d", level * 2, "", this, mName.string(),
|
|
replayStruct.mDrawGlStatus);
|
|
}
|
|
|
|
void RenderNode::buildZSortedChildList(Vector<ZDrawDisplayListOpPair>& zTranslatedNodes) {
|
|
if (mDisplayListData == NULL || mDisplayListData->children.size() == 0) return;
|
|
|
|
for (unsigned int i = 0; i < mDisplayListData->children.size(); i++) {
|
|
DrawDisplayListOp* childOp = mDisplayListData->children[i];
|
|
RenderNode* child = childOp->mDisplayList;
|
|
float childZ = child->properties().getTranslationZ();
|
|
|
|
if (childZ != 0.0f) {
|
|
zTranslatedNodes.add(ZDrawDisplayListOpPair(childZ, childOp));
|
|
childOp->mSkipInOrderDraw = true;
|
|
} else if (!child->properties().getProjectBackwards()) {
|
|
// regular, in order drawing DisplayList
|
|
childOp->mSkipInOrderDraw = false;
|
|
}
|
|
}
|
|
|
|
// Z sort 3d children (stable-ness makes z compare fall back to standard drawing order)
|
|
std::stable_sort(zTranslatedNodes.begin(), zTranslatedNodes.end());
|
|
}
|
|
|
|
#define SHADOW_DELTA 0.1f
|
|
|
|
template <class T>
|
|
void RenderNode::iterate3dChildren(const Vector<ZDrawDisplayListOpPair>& zTranslatedNodes,
|
|
ChildrenSelectMode mode, OpenGLRenderer& renderer, T& handler) {
|
|
const int size = zTranslatedNodes.size();
|
|
if (size == 0
|
|
|| (mode == kNegativeZChildren && zTranslatedNodes[0].key > 0.0f)
|
|
|| (mode == kPositiveZChildren && zTranslatedNodes[size - 1].key < 0.0f)) {
|
|
// no 3d children to draw
|
|
return;
|
|
}
|
|
|
|
int rootRestoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag);
|
|
LinearAllocator& alloc = handler.allocator();
|
|
ClipRectOp* clipOp = new (alloc) ClipRectOp(0, 0, properties().getWidth(), properties().getHeight(),
|
|
SkRegion::kIntersect_Op); // clip to 3d root bounds
|
|
handler(clipOp, PROPERTY_SAVECOUNT, properties().getClipToBounds());
|
|
|
|
/**
|
|
* Draw shadows and (potential) casters mostly in order, but allow the shadows of casters
|
|
* with very similar Z heights to draw together.
|
|
*
|
|
* This way, if Views A & B have the same Z height and are both casting shadows, the shadows are
|
|
* underneath both, and neither's shadow is drawn on top of the other.
|
|
*/
|
|
const size_t nonNegativeIndex = findNonNegativeIndex(zTranslatedNodes);
|
|
size_t drawIndex, shadowIndex, endIndex;
|
|
if (mode == kNegativeZChildren) {
|
|
drawIndex = 0;
|
|
endIndex = nonNegativeIndex;
|
|
shadowIndex = endIndex; // draw no shadows
|
|
} else {
|
|
drawIndex = nonNegativeIndex;
|
|
endIndex = size;
|
|
shadowIndex = drawIndex; // potentially draw shadow for each pos Z child
|
|
}
|
|
float lastCasterZ = 0.0f;
|
|
while (shadowIndex < endIndex || drawIndex < endIndex) {
|
|
if (shadowIndex < endIndex) {
|
|
DrawDisplayListOp* casterOp = zTranslatedNodes[shadowIndex].value;
|
|
RenderNode* caster = casterOp->mDisplayList;
|
|
const float casterZ = zTranslatedNodes[shadowIndex].key;
|
|
// attempt to render the shadow if the caster about to be drawn is its caster,
|
|
// OR if its caster's Z value is similar to the previous potential caster
|
|
if (shadowIndex == drawIndex || casterZ - lastCasterZ < SHADOW_DELTA) {
|
|
|
|
if (caster->properties().getAlpha() > 0.0f) {
|
|
mat4 shadowMatrixXY(casterOp->mTransformFromParent);
|
|
caster->applyViewPropertyTransforms(shadowMatrixXY);
|
|
|
|
// Z matrix needs actual 3d transformation, so mapped z values will be correct
|
|
mat4 shadowMatrixZ(casterOp->mTransformFromParent);
|
|
caster->applyViewPropertyTransforms(shadowMatrixZ, true);
|
|
|
|
DisplayListOp* shadowOp = new (alloc) DrawShadowOp(
|
|
shadowMatrixXY, shadowMatrixZ,
|
|
caster->properties().getAlpha(), caster->properties().getOutline().getPath(),
|
|
caster->properties().getWidth(), caster->properties().getHeight());
|
|
handler(shadowOp, PROPERTY_SAVECOUNT, properties().getClipToBounds());
|
|
}
|
|
|
|
lastCasterZ = casterZ; // must do this even if current caster not casting a shadow
|
|
shadowIndex++;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// only the actual child DL draw needs to be in save/restore,
|
|
// since it modifies the renderer's matrix
|
|
int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag);
|
|
|
|
DrawDisplayListOp* childOp = zTranslatedNodes[drawIndex].value;
|
|
RenderNode* child = childOp->mDisplayList;
|
|
|
|
renderer.concatMatrix(childOp->mTransformFromParent);
|
|
childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone
|
|
handler(childOp, renderer.getSaveCount() - 1, properties().getClipToBounds());
|
|
childOp->mSkipInOrderDraw = true;
|
|
|
|
renderer.restoreToCount(restoreTo);
|
|
drawIndex++;
|
|
}
|
|
handler(new (alloc) RestoreToCountOp(rootRestoreTo), PROPERTY_SAVECOUNT, properties().getClipToBounds());
|
|
}
|
|
|
|
template <class T>
|
|
void RenderNode::iterateProjectedChildren(OpenGLRenderer& renderer, T& handler, const int level) {
|
|
int rootRestoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag);
|
|
LinearAllocator& alloc = handler.allocator();
|
|
ClipRectOp* clipOp = new (alloc) ClipRectOp(0, 0, properties().getWidth(), properties().getHeight(),
|
|
SkRegion::kReplace_Op); // clip to projection surface root bounds
|
|
handler(clipOp, PROPERTY_SAVECOUNT, properties().getClipToBounds());
|
|
|
|
for (size_t i = 0; i < mProjectedNodes.size(); i++) {
|
|
DrawDisplayListOp* childOp = mProjectedNodes[i];
|
|
|
|
// matrix save, concat, and restore can be done safely without allocating operations
|
|
int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag);
|
|
renderer.concatMatrix(childOp->mTransformFromCompositingAncestor);
|
|
childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone
|
|
handler(childOp, renderer.getSaveCount() - 1, properties().getClipToBounds());
|
|
childOp->mSkipInOrderDraw = true;
|
|
renderer.restoreToCount(restoreTo);
|
|
}
|
|
handler(new (alloc) RestoreToCountOp(rootRestoreTo), PROPERTY_SAVECOUNT, properties().getClipToBounds());
|
|
}
|
|
|
|
/**
|
|
* This function serves both defer and replay modes, and will organize the displayList's component
|
|
* operations for a single frame:
|
|
*
|
|
* Every 'simple' state operation that affects just the matrix and alpha (or other factors of
|
|
* DeferredDisplayState) may be issued directly to the renderer, but complex operations (with custom
|
|
* defer logic) and operations in displayListOps are issued through the 'handler' which handles the
|
|
* defer vs replay logic, per operation
|
|
*/
|
|
template <class T>
|
|
void RenderNode::iterate(OpenGLRenderer& renderer, T& handler, const int level) {
|
|
if (CC_UNLIKELY(mDestroyed)) { // temporary debug logging
|
|
ALOGW("Error: %s is drawing after destruction", mName.string());
|
|
CRASH();
|
|
}
|
|
if (mDisplayListData->isEmpty() || properties().getAlpha() <= 0) {
|
|
DISPLAY_LIST_LOGD("%*sEmpty display list (%p, %s)", level * 2, "", this, mName.string());
|
|
return;
|
|
}
|
|
|
|
#if DEBUG_DISPLAY_LIST
|
|
Rect* clipRect = renderer.getClipRect();
|
|
DISPLAY_LIST_LOGD("%*sStart display list (%p, %s), clipRect: %.0f, %.0f, %.0f, %.0f",
|
|
level * 2, "", this, mName.string(), clipRect->left, clipRect->top,
|
|
clipRect->right, clipRect->bottom);
|
|
#endif
|
|
|
|
LinearAllocator& alloc = handler.allocator();
|
|
int restoreTo = renderer.getSaveCount();
|
|
handler(new (alloc) SaveOp(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag),
|
|
PROPERTY_SAVECOUNT, properties().getClipToBounds());
|
|
|
|
DISPLAY_LIST_LOGD("%*sSave %d %d", (level + 1) * 2, "",
|
|
SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag, restoreTo);
|
|
|
|
setViewProperties<T>(renderer, handler, level + 1);
|
|
|
|
bool quickRejected = properties().getClipToBounds() && renderer.quickRejectConservative(0, 0, properties().getWidth(), properties().getHeight());
|
|
if (!quickRejected) {
|
|
Vector<ZDrawDisplayListOpPair> zTranslatedNodes;
|
|
buildZSortedChildList(zTranslatedNodes);
|
|
|
|
// for 3d root, draw children with negative z values
|
|
iterate3dChildren(zTranslatedNodes, kNegativeZChildren, renderer, handler);
|
|
|
|
DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance();
|
|
const int saveCountOffset = renderer.getSaveCount() - 1;
|
|
const int projectionReceiveIndex = mDisplayListData->projectionReceiveIndex;
|
|
for (unsigned int i = 0; i < mDisplayListData->displayListOps.size(); i++) {
|
|
DisplayListOp *op = mDisplayListData->displayListOps[i];
|
|
|
|
#if DEBUG_DISPLAY_LIST
|
|
op->output(level + 1);
|
|
#endif
|
|
|
|
logBuffer.writeCommand(level, op->name());
|
|
handler(op, saveCountOffset, properties().getClipToBounds());
|
|
|
|
if (CC_UNLIKELY(i == projectionReceiveIndex && mProjectedNodes.size() > 0)) {
|
|
iterateProjectedChildren(renderer, handler, level);
|
|
}
|
|
}
|
|
|
|
// for 3d root, draw children with positive z values
|
|
iterate3dChildren(zTranslatedNodes, kPositiveZChildren, renderer, handler);
|
|
}
|
|
|
|
DISPLAY_LIST_LOGD("%*sRestoreToCount %d", (level + 1) * 2, "", restoreTo);
|
|
handler(new (alloc) RestoreToCountOp(restoreTo),
|
|
PROPERTY_SAVECOUNT, properties().getClipToBounds());
|
|
renderer.setOverrideLayerAlpha(1.0f);
|
|
}
|
|
|
|
} /* namespace uirenderer */
|
|
} /* namespace android */
|