Chris Craik b79a3e301a Fix orthographic shadows projection, simplify shadow reordering
Separate matrix passed to shadow system into two parts, one for
transforming the polygon XY points (using the actual draw matrix) and
a separate one which respects correct 4x4 3d rotations and
translations for determining Z values.

Change-Id: I7e30a84774a8709df6b2241e8f51fc5583648fe8
2014-03-12 09:44:41 -07:00

668 lines
18 KiB
C++

/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HWUI_DISPLAY_LIST_H
#define ANDROID_HWUI_DISPLAY_LIST_H
#ifndef LOG_TAG
#define LOG_TAG "OpenGLRenderer"
#endif
#include <SkCamera.h>
#include <SkMatrix.h>
#include <private/hwui/DrawGlInfo.h>
#include <utils/KeyedVector.h>
#include <utils/LinearAllocator.h>
#include <utils/RefBase.h>
#include <utils/SortedVector.h>
#include <utils/String8.h>
#include <utils/Vector.h>
#include <cutils/compiler.h>
#include <androidfw/ResourceTypes.h>
#include "Debug.h"
#include "Matrix.h"
#include "DeferredDisplayList.h"
#define TRANSLATION 0x0001
#define ROTATION 0x0002
#define ROTATION_3D 0x0004
#define SCALE 0x0008
#define PIVOT 0x0010
class SkBitmap;
class SkPaint;
class SkPath;
class SkRegion;
namespace android {
namespace uirenderer {
class DeferredDisplayList;
class DisplayListOp;
class DisplayListRenderer;
class OpenGLRenderer;
class Rect;
class Layer;
class SkiaShader;
class ClipRectOp;
class SaveLayerOp;
class SaveOp;
class RestoreToCountOp;
class DrawDisplayListOp;
/**
* Holds data used in the playback a tree of DisplayLists.
*/
class PlaybackStateStruct {
protected:
PlaybackStateStruct(OpenGLRenderer& renderer, int replayFlags, LinearAllocator* allocator)
: mRenderer(renderer), mReplayFlags(replayFlags), mAllocator(allocator){}
public:
OpenGLRenderer& mRenderer;
const int mReplayFlags;
// Allocator with the lifetime of a single frame.
// replay uses an Allocator owned by the struct, while defer shares the DeferredDisplayList's Allocator
LinearAllocator * const mAllocator;
};
class DeferStateStruct : public PlaybackStateStruct {
public:
DeferStateStruct(DeferredDisplayList& deferredList, OpenGLRenderer& renderer, int replayFlags)
: PlaybackStateStruct(renderer, replayFlags, &(deferredList.mAllocator)),
mDeferredList(deferredList) {}
DeferredDisplayList& mDeferredList;
};
class ReplayStateStruct : public PlaybackStateStruct {
public:
ReplayStateStruct(OpenGLRenderer& renderer, Rect& dirty, int replayFlags)
: PlaybackStateStruct(renderer, replayFlags, &mReplayAllocator),
mDirty(dirty), mDrawGlStatus(DrawGlInfo::kStatusDone) {}
Rect& mDirty;
status_t mDrawGlStatus;
LinearAllocator mReplayAllocator;
};
/**
* Data structure that holds the list of commands used in display list stream
*/
class DisplayListData {
public:
DisplayListData() : projectionReceiveIndex(-1), functorCount(0), hasDrawOps(false) {}
virtual ~DisplayListData() { cleanupResources(); }
// allocator into which all ops were allocated
LinearAllocator allocator;
// pointers to all ops within display list, pointing into allocator data
Vector<DisplayListOp*> displayListOps;
// list of children display lists for quick, non-drawing traversal
Vector<DrawDisplayListOp*> children;
// index of DisplayListOp restore, after which projected descendents should be drawn
int projectionReceiveIndex;
Vector<const SkBitmap*> bitmapResources;
Vector<const SkBitmap*> ownedBitmapResources;
Vector<const Res_png_9patch*> patchResources;
Vector<const SkPaint*> paints;
Vector<const SkPath*> paths;
SortedVector<const SkPath*> sourcePaths;
Vector<const SkRegion*> regions;
Vector<const SkMatrix*> matrices;
Vector<SkiaShader*> shaders;
Vector<Layer*> layers;
uint32_t functorCount;
bool hasDrawOps;
bool isEmpty() {
return !displayListOps.size();
}
private:
void cleanupResources();
};
/**
* Primary class for storing recorded canvas commands, as well as per-View/ViewGroup display properties.
*
* Recording of canvas commands is somewhat similar to SkPicture, except the canvas-recording
* functionality is split between DisplayListRenderer (which manages the recording), DisplayListData
* (which holds the actual data), and DisplayList (which holds properties and performs playback onto
* a renderer).
*
* Note that DisplayListData is swapped out from beneath an individual DisplayList when a view's
* recorded stream of canvas operations is refreshed. The DisplayList (and its properties) stay
* attached.
*/
class DisplayList {
public:
ANDROID_API DisplayList();
ANDROID_API ~DisplayList();
// See flags defined in DisplayList.java
enum ReplayFlag {
kReplayFlag_ClipChildren = 0x1
};
ANDROID_API static void destroyDisplayListDeferred(DisplayList* displayList);
ANDROID_API static void outputLogBuffer(int fd);
ANDROID_API void setData(DisplayListData* newData);
void computeOrdering();
void defer(DeferStateStruct& deferStruct, const int level);
void replay(ReplayStateStruct& replayStruct, const int level);
ANDROID_API void output(uint32_t level = 1);
bool isRenderable() const {
return mDisplayListData && mDisplayListData->hasDrawOps;
}
void setName(const char* name) {
if (name) {
char* lastPeriod = strrchr(name, '.');
if (lastPeriod) {
mName.setTo(lastPeriod + 1);
} else {
mName.setTo(name);
}
}
}
const char* getName() const {
return mName.string();
}
void setClipToBounds(bool clipToBounds) {
mClipToBounds = clipToBounds;
}
void setIsolatedZVolume(bool shouldIsolate) {
mIsolatedZVolume = shouldIsolate;
}
void setCastsShadow(bool castsShadow) {
mCastsShadow = castsShadow;
}
void setUsesGlobalCamera(bool usesGlobalCamera) {
mUsesGlobalCamera = usesGlobalCamera;
}
void setProjectBackwards(bool shouldProject) {
mProjectBackwards = shouldProject;
}
void setProjectionReceiver(bool shouldRecieve) {
mProjectionReceiver = shouldRecieve;
}
bool isProjectionReceiver() {
return mProjectionReceiver;
}
void setOutline(const SkPath* outline) {
if (!outline) {
mOutline.reset();
} else {
mOutline = *outline;
}
}
void setClipToOutline(bool clipToOutline) {
mClipToOutline = clipToOutline;
}
void setStaticMatrix(SkMatrix* matrix) {
delete mStaticMatrix;
mStaticMatrix = new SkMatrix(*matrix);
}
// Can return NULL
SkMatrix* getStaticMatrix() {
return mStaticMatrix;
}
void setAnimationMatrix(SkMatrix* matrix) {
delete mAnimationMatrix;
if (matrix) {
mAnimationMatrix = new SkMatrix(*matrix);
} else {
mAnimationMatrix = NULL;
}
}
void setAlpha(float alpha) {
alpha = fminf(1.0f, fmaxf(0.0f, alpha));
if (alpha != mAlpha) {
mAlpha = alpha;
}
}
float getAlpha() const {
return mAlpha;
}
void setHasOverlappingRendering(bool hasOverlappingRendering) {
mHasOverlappingRendering = hasOverlappingRendering;
}
bool hasOverlappingRendering() const {
return mHasOverlappingRendering;
}
void setTranslationX(float translationX) {
if (translationX != mTranslationX) {
mTranslationX = translationX;
onTranslationUpdate();
}
}
float getTranslationX() const {
return mTranslationX;
}
void setTranslationY(float translationY) {
if (translationY != mTranslationY) {
mTranslationY = translationY;
onTranslationUpdate();
}
}
float getTranslationY() const {
return mTranslationY;
}
void setTranslationZ(float translationZ) {
if (translationZ != mTranslationZ) {
mTranslationZ = translationZ;
onTranslationUpdate();
}
}
float getTranslationZ() const {
return mTranslationZ;
}
void setRotation(float rotation) {
if (rotation != mRotation) {
mRotation = rotation;
mMatrixDirty = true;
if (mRotation == 0.0f) {
mMatrixFlags &= ~ROTATION;
} else {
mMatrixFlags |= ROTATION;
}
}
}
float getRotation() const {
return mRotation;
}
void setRotationX(float rotationX) {
if (rotationX != mRotationX) {
mRotationX = rotationX;
mMatrixDirty = true;
if (mRotationX == 0.0f && mRotationY == 0.0f) {
mMatrixFlags &= ~ROTATION_3D;
} else {
mMatrixFlags |= ROTATION_3D;
}
}
}
float getRotationX() const {
return mRotationX;
}
void setRotationY(float rotationY) {
if (rotationY != mRotationY) {
mRotationY = rotationY;
mMatrixDirty = true;
if (mRotationX == 0.0f && mRotationY == 0.0f) {
mMatrixFlags &= ~ROTATION_3D;
} else {
mMatrixFlags |= ROTATION_3D;
}
}
}
float getRotationY() const {
return mRotationY;
}
void setScaleX(float scaleX) {
if (scaleX != mScaleX) {
mScaleX = scaleX;
mMatrixDirty = true;
if (mScaleX == 1.0f && mScaleY == 1.0f) {
mMatrixFlags &= ~SCALE;
} else {
mMatrixFlags |= SCALE;
}
}
}
float getScaleX() const {
return mScaleX;
}
void setScaleY(float scaleY) {
if (scaleY != mScaleY) {
mScaleY = scaleY;
mMatrixDirty = true;
if (mScaleX == 1.0f && mScaleY == 1.0f) {
mMatrixFlags &= ~SCALE;
} else {
mMatrixFlags |= SCALE;
}
}
}
float getScaleY() const {
return mScaleY;
}
void setPivotX(float pivotX) {
mPivotX = pivotX;
mMatrixDirty = true;
if (mPivotX == 0.0f && mPivotY == 0.0f) {
mMatrixFlags &= ~PIVOT;
} else {
mMatrixFlags |= PIVOT;
}
mPivotExplicitlySet = true;
}
ANDROID_API float getPivotX();
void setPivotY(float pivotY) {
mPivotY = pivotY;
mMatrixDirty = true;
if (mPivotX == 0.0f && mPivotY == 0.0f) {
mMatrixFlags &= ~PIVOT;
} else {
mMatrixFlags |= PIVOT;
}
mPivotExplicitlySet = true;
}
ANDROID_API float getPivotY();
void setCameraDistance(float distance) {
if (distance != mCameraDistance) {
mCameraDistance = distance;
mMatrixDirty = true;
if (!mTransformCamera) {
mTransformCamera = new Sk3DView();
mTransformMatrix3D = new SkMatrix();
}
mTransformCamera->setCameraLocation(0, 0, distance);
}
}
float getCameraDistance() const {
return mCameraDistance;
}
void setLeft(int left) {
if (left != mLeft) {
mLeft = left;
mWidth = mRight - mLeft;
if (mMatrixFlags > TRANSLATION && !mPivotExplicitlySet) {
mMatrixDirty = true;
}
}
}
float getLeft() const {
return mLeft;
}
void setTop(int top) {
if (top != mTop) {
mTop = top;
mHeight = mBottom - mTop;
if (mMatrixFlags > TRANSLATION && !mPivotExplicitlySet) {
mMatrixDirty = true;
}
}
}
float getTop() const {
return mTop;
}
void setRight(int right) {
if (right != mRight) {
mRight = right;
mWidth = mRight - mLeft;
if (mMatrixFlags > TRANSLATION && !mPivotExplicitlySet) {
mMatrixDirty = true;
}
}
}
float getRight() const {
return mRight;
}
void setBottom(int bottom) {
if (bottom != mBottom) {
mBottom = bottom;
mHeight = mBottom - mTop;
if (mMatrixFlags > TRANSLATION && !mPivotExplicitlySet) {
mMatrixDirty = true;
}
}
}
float getBottom() const {
return mBottom;
}
void setLeftTop(int left, int top) {
if (left != mLeft || top != mTop) {
mLeft = left;
mTop = top;
mWidth = mRight - mLeft;
mHeight = mBottom - mTop;
if (mMatrixFlags > TRANSLATION && !mPivotExplicitlySet) {
mMatrixDirty = true;
}
}
}
void setLeftTopRightBottom(int left, int top, int right, int bottom) {
if (left != mLeft || top != mTop || right != mRight || bottom != mBottom) {
mLeft = left;
mTop = top;
mRight = right;
mBottom = bottom;
mWidth = mRight - mLeft;
mHeight = mBottom - mTop;
if (mMatrixFlags > TRANSLATION && !mPivotExplicitlySet) {
mMatrixDirty = true;
}
}
}
void offsetLeftRight(float offset) {
if (offset != 0) {
mLeft += offset;
mRight += offset;
if (mMatrixFlags > TRANSLATION && !mPivotExplicitlySet) {
mMatrixDirty = true;
}
}
}
void offsetTopBottom(float offset) {
if (offset != 0) {
mTop += offset;
mBottom += offset;
if (mMatrixFlags > TRANSLATION && !mPivotExplicitlySet) {
mMatrixDirty = true;
}
}
}
void setCaching(bool caching) {
mCaching = caching;
}
int getWidth() {
return mWidth;
}
int getHeight() {
return mHeight;
}
private:
typedef key_value_pair_t<float, DrawDisplayListOp*> ZDrawDisplayListOpPair;
static size_t findNonNegativeIndex(const Vector<ZDrawDisplayListOpPair>& nodes) {
for (size_t i = 0; i < nodes.size(); i++) {
if (nodes[i].key >= 0.0f) return i;
}
return nodes.size();
}
enum ChildrenSelectMode {
kNegativeZChildren,
kPositiveZChildren
};
void onTranslationUpdate() {
mMatrixDirty = true;
if (mTranslationX == 0.0f && mTranslationY == 0.0f && mTranslationZ == 0.0f) {
mMatrixFlags &= ~TRANSLATION;
} else {
mMatrixFlags |= TRANSLATION;
}
}
void outputViewProperties(const int level);
void applyViewPropertyTransforms(mat4& matrix, bool true3dTransform = false);
void computeOrderingImpl(DrawDisplayListOp* opState,
Vector<DrawDisplayListOp*>* compositedChildrenOfProjectionSurface,
const mat4* transformFromProjectionSurface);
template <class T>
inline void setViewProperties(OpenGLRenderer& renderer, T& handler, const int level);
void buildZSortedChildList(Vector<ZDrawDisplayListOpPair>& zTranslatedNodes);
template <class T>
inline void iterate3dChildren(const Vector<ZDrawDisplayListOpPair>& zTranslatedNodes,
ChildrenSelectMode mode, OpenGLRenderer& renderer, T& handler);
template <class T>
inline void iterateProjectedChildren(OpenGLRenderer& renderer, T& handler, const int level);
template <class T>
inline void iterate(OpenGLRenderer& renderer, T& handler, const int level);
void updateMatrix();
class TextContainer {
public:
size_t length() const {
return mByteLength;
}
const char* text() const {
return (const char*) mText;
}
size_t mByteLength;
const char* mText;
};
DisplayListData* mDisplayListData;
String8 mName;
bool mDestroyed; // used for debugging crash, TODO: remove once invalid state crash fixed
// Rendering properties
bool mClipToBounds;
bool mIsolatedZVolume;
bool mProjectBackwards;
bool mProjectionReceiver;
SkPath mOutline;
bool mClipToOutline;
bool mCastsShadow;
bool mUsesGlobalCamera; // TODO: respect value when rendering
float mAlpha;
bool mHasOverlappingRendering;
float mTranslationX, mTranslationY, mTranslationZ;
float mRotation, mRotationX, mRotationY;
float mScaleX, mScaleY;
float mPivotX, mPivotY;
float mCameraDistance;
int mLeft, mTop, mRight, mBottom;
int mWidth, mHeight;
int mPrevWidth, mPrevHeight;
bool mPivotExplicitlySet;
bool mMatrixDirty;
bool mMatrixIsIdentity;
/**
* Stores the total transformation of the DisplayList based upon its scalar
* translate/rotate/scale properties.
*
* In the common translation-only case, the matrix isn't allocated and the mTranslation
* properties are used directly.
*/
Matrix4* mTransformMatrix;
uint32_t mMatrixFlags;
Sk3DView* mTransformCamera;
SkMatrix* mTransformMatrix3D;
SkMatrix* mStaticMatrix;
SkMatrix* mAnimationMatrix;
bool mCaching;
/**
* Draw time state - these properties are only set and used during rendering
*/
// for projection surfaces, contains a list of all children items
Vector<DrawDisplayListOp*> mProjectedNodes;
}; // class DisplayList
}; // namespace uirenderer
}; // namespace android
#endif // ANDROID_HWUI_OPENGL_RENDERER_H