1158 lines
42 KiB
C++
1158 lines
42 KiB
C++
/*
|
|
* Copyright (C) 2014 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "OpenGLRenderer"
|
|
|
|
#define SHADOW_SHRINK_SCALE 0.1f
|
|
#define CASTER_Z_CAP_RATIO 0.95f
|
|
#define FAKE_UMBRA_SIZE_RATIO 0.01f
|
|
#define OCLLUDED_UMBRA_SHRINK_FACTOR 0.95f
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <utils/Log.h>
|
|
|
|
#include "ShadowTessellator.h"
|
|
#include "SpotShadow.h"
|
|
#include "Vertex.h"
|
|
#include "utils/MathUtils.h"
|
|
|
|
// TODO: After we settle down the new algorithm, we can remove the old one and
|
|
// its utility functions.
|
|
// Right now, we still need to keep it for comparison purpose and future expansion.
|
|
namespace android {
|
|
namespace uirenderer {
|
|
|
|
static const double EPSILON = 1e-7;
|
|
|
|
/**
|
|
* For each polygon's vertex, the light center will project it to the receiver
|
|
* as one of the outline vertex.
|
|
* For each outline vertex, we need to store the position and normal.
|
|
* Normal here is defined against the edge by the current vertex and the next vertex.
|
|
*/
|
|
struct OutlineData {
|
|
Vector2 position;
|
|
Vector2 normal;
|
|
float radius;
|
|
};
|
|
|
|
/**
|
|
* Calculate the angle between and x and a y coordinate.
|
|
* The atan2 range from -PI to PI.
|
|
*/
|
|
static float angle(const Vector2& point, const Vector2& center) {
|
|
return atan2(point.y - center.y, point.x - center.x);
|
|
}
|
|
|
|
/**
|
|
* Calculate the intersection of a ray with the line segment defined by two points.
|
|
*
|
|
* Returns a negative value in error conditions.
|
|
|
|
* @param rayOrigin The start of the ray
|
|
* @param dx The x vector of the ray
|
|
* @param dy The y vector of the ray
|
|
* @param p1 The first point defining the line segment
|
|
* @param p2 The second point defining the line segment
|
|
* @return The distance along the ray if it intersects with the line segment, negative if otherwise
|
|
*/
|
|
static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy,
|
|
const Vector2& p1, const Vector2& p2) {
|
|
// The math below is derived from solving this formula, basically the
|
|
// intersection point should stay on both the ray and the edge of (p1, p2).
|
|
// solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
|
|
|
|
double divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
|
|
if (divisor == 0) return -1.0f; // error, invalid divisor
|
|
|
|
#if DEBUG_SHADOW
|
|
double interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
|
|
if (interpVal < 0 || interpVal > 1) {
|
|
ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal);
|
|
}
|
|
#endif
|
|
|
|
double distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
|
|
rayOrigin.x * (p2.y - p1.y)) / divisor;
|
|
|
|
return distance; // may be negative in error cases
|
|
}
|
|
|
|
/**
|
|
* Sort points by their X coordinates
|
|
*
|
|
* @param points the points as a Vector2 array.
|
|
* @param pointsLength the number of vertices of the polygon.
|
|
*/
|
|
void SpotShadow::xsort(Vector2* points, int pointsLength) {
|
|
quicksortX(points, 0, pointsLength - 1);
|
|
}
|
|
|
|
/**
|
|
* compute the convex hull of a collection of Points
|
|
*
|
|
* @param points the points as a Vector2 array.
|
|
* @param pointsLength the number of vertices of the polygon.
|
|
* @param retPoly pre allocated array of floats to put the vertices
|
|
* @return the number of points in the polygon 0 if no intersection
|
|
*/
|
|
int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
|
|
xsort(points, pointsLength);
|
|
int n = pointsLength;
|
|
Vector2 lUpper[n];
|
|
lUpper[0] = points[0];
|
|
lUpper[1] = points[1];
|
|
|
|
int lUpperSize = 2;
|
|
|
|
for (int i = 2; i < n; i++) {
|
|
lUpper[lUpperSize] = points[i];
|
|
lUpperSize++;
|
|
|
|
while (lUpperSize > 2 && !ccw(
|
|
lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y,
|
|
lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y,
|
|
lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
|
|
// Remove the middle point of the three last
|
|
lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
|
|
lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
|
|
lUpperSize--;
|
|
}
|
|
}
|
|
|
|
Vector2 lLower[n];
|
|
lLower[0] = points[n - 1];
|
|
lLower[1] = points[n - 2];
|
|
|
|
int lLowerSize = 2;
|
|
|
|
for (int i = n - 3; i >= 0; i--) {
|
|
lLower[lLowerSize] = points[i];
|
|
lLowerSize++;
|
|
|
|
while (lLowerSize > 2 && !ccw(
|
|
lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y,
|
|
lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y,
|
|
lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
|
|
// Remove the middle point of the three last
|
|
lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
|
|
lLowerSize--;
|
|
}
|
|
}
|
|
|
|
// output points in CW ordering
|
|
const int total = lUpperSize + lLowerSize - 2;
|
|
int outIndex = total - 1;
|
|
for (int i = 0; i < lUpperSize; i++) {
|
|
retPoly[outIndex] = lUpper[i];
|
|
outIndex--;
|
|
}
|
|
|
|
for (int i = 1; i < lLowerSize - 1; i++) {
|
|
retPoly[outIndex] = lLower[i];
|
|
outIndex--;
|
|
}
|
|
// TODO: Add test harness which verify that all the points are inside the hull.
|
|
return total;
|
|
}
|
|
|
|
/**
|
|
* Test whether the 3 points form a counter clockwise turn.
|
|
*
|
|
* @return true if a right hand turn
|
|
*/
|
|
bool SpotShadow::ccw(double ax, double ay, double bx, double by,
|
|
double cx, double cy) {
|
|
return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
|
|
}
|
|
|
|
/**
|
|
* Calculates the intersection of poly1 with poly2 and put in poly2.
|
|
* Note that both poly1 and poly2 must be in CW order already!
|
|
*
|
|
* @param poly1 The 1st polygon, as a Vector2 array.
|
|
* @param poly1Length The number of vertices of 1st polygon.
|
|
* @param poly2 The 2nd and output polygon, as a Vector2 array.
|
|
* @param poly2Length The number of vertices of 2nd polygon.
|
|
* @return number of vertices in output polygon as poly2.
|
|
*/
|
|
int SpotShadow::intersection(const Vector2* poly1, int poly1Length,
|
|
Vector2* poly2, int poly2Length) {
|
|
#if DEBUG_SHADOW
|
|
if (!ShadowTessellator::isClockwise(poly1, poly1Length)) {
|
|
ALOGW("Poly1 is not clockwise! Intersection is wrong!");
|
|
}
|
|
if (!ShadowTessellator::isClockwise(poly2, poly2Length)) {
|
|
ALOGW("Poly2 is not clockwise! Intersection is wrong!");
|
|
}
|
|
#endif
|
|
Vector2 poly[poly1Length * poly2Length + 2];
|
|
int count = 0;
|
|
int pcount = 0;
|
|
|
|
// If one vertex from one polygon sits inside another polygon, add it and
|
|
// count them.
|
|
for (int i = 0; i < poly1Length; i++) {
|
|
if (testPointInsidePolygon(poly1[i], poly2, poly2Length)) {
|
|
poly[count] = poly1[i];
|
|
count++;
|
|
pcount++;
|
|
|
|
}
|
|
}
|
|
|
|
int insidePoly2 = pcount;
|
|
for (int i = 0; i < poly2Length; i++) {
|
|
if (testPointInsidePolygon(poly2[i], poly1, poly1Length)) {
|
|
poly[count] = poly2[i];
|
|
count++;
|
|
}
|
|
}
|
|
|
|
int insidePoly1 = count - insidePoly2;
|
|
// If all vertices from poly1 are inside poly2, then just return poly1.
|
|
if (insidePoly2 == poly1Length) {
|
|
memcpy(poly2, poly1, poly1Length * sizeof(Vector2));
|
|
return poly1Length;
|
|
}
|
|
|
|
// If all vertices from poly2 are inside poly1, then just return poly2.
|
|
if (insidePoly1 == poly2Length) {
|
|
return poly2Length;
|
|
}
|
|
|
|
// Since neither polygon fully contain the other one, we need to add all the
|
|
// intersection points.
|
|
Vector2 intersection = {0, 0};
|
|
for (int i = 0; i < poly2Length; i++) {
|
|
for (int j = 0; j < poly1Length; j++) {
|
|
int poly2LineStart = i;
|
|
int poly2LineEnd = ((i + 1) % poly2Length);
|
|
int poly1LineStart = j;
|
|
int poly1LineEnd = ((j + 1) % poly1Length);
|
|
bool found = lineIntersection(
|
|
poly2[poly2LineStart].x, poly2[poly2LineStart].y,
|
|
poly2[poly2LineEnd].x, poly2[poly2LineEnd].y,
|
|
poly1[poly1LineStart].x, poly1[poly1LineStart].y,
|
|
poly1[poly1LineEnd].x, poly1[poly1LineEnd].y,
|
|
intersection);
|
|
if (found) {
|
|
poly[count].x = intersection.x;
|
|
poly[count].y = intersection.y;
|
|
count++;
|
|
} else {
|
|
Vector2 delta = poly2[i] - poly1[j];
|
|
if (delta.lengthSquared() < EPSILON) {
|
|
poly[count] = poly2[i];
|
|
count++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (count == 0) {
|
|
return 0;
|
|
}
|
|
|
|
// Sort the result polygon around the center.
|
|
Vector2 center = {0.0f, 0.0f};
|
|
for (int i = 0; i < count; i++) {
|
|
center += poly[i];
|
|
}
|
|
center /= count;
|
|
sort(poly, count, center);
|
|
|
|
#if DEBUG_SHADOW
|
|
// Since poly2 is overwritten as the result, we need to save a copy to do
|
|
// our verification.
|
|
Vector2 oldPoly2[poly2Length];
|
|
int oldPoly2Length = poly2Length;
|
|
memcpy(oldPoly2, poly2, sizeof(Vector2) * poly2Length);
|
|
#endif
|
|
|
|
// Filter the result out from poly and put it into poly2.
|
|
poly2[0] = poly[0];
|
|
int lastOutputIndex = 0;
|
|
for (int i = 1; i < count; i++) {
|
|
Vector2 delta = poly[i] - poly2[lastOutputIndex];
|
|
if (delta.lengthSquared() >= EPSILON) {
|
|
poly2[++lastOutputIndex] = poly[i];
|
|
} else {
|
|
// If the vertices are too close, pick the inner one, because the
|
|
// inner one is more likely to be an intersection point.
|
|
Vector2 delta1 = poly[i] - center;
|
|
Vector2 delta2 = poly2[lastOutputIndex] - center;
|
|
if (delta1.lengthSquared() < delta2.lengthSquared()) {
|
|
poly2[lastOutputIndex] = poly[i];
|
|
}
|
|
}
|
|
}
|
|
int resultLength = lastOutputIndex + 1;
|
|
|
|
#if DEBUG_SHADOW
|
|
testConvex(poly2, resultLength, "intersection");
|
|
testConvex(poly1, poly1Length, "input poly1");
|
|
testConvex(oldPoly2, oldPoly2Length, "input poly2");
|
|
|
|
testIntersection(poly1, poly1Length, oldPoly2, oldPoly2Length, poly2, resultLength);
|
|
#endif
|
|
|
|
return resultLength;
|
|
}
|
|
|
|
/**
|
|
* Sort points about a center point
|
|
*
|
|
* @param poly The in and out polyogon as a Vector2 array.
|
|
* @param polyLength The number of vertices of the polygon.
|
|
* @param center the center ctr[0] = x , ctr[1] = y to sort around.
|
|
*/
|
|
void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
|
|
quicksortCirc(poly, 0, polyLength - 1, center);
|
|
}
|
|
|
|
/**
|
|
* Swap points pointed to by i and j
|
|
*/
|
|
void SpotShadow::swap(Vector2* points, int i, int j) {
|
|
Vector2 temp = points[i];
|
|
points[i] = points[j];
|
|
points[j] = temp;
|
|
}
|
|
|
|
/**
|
|
* quick sort implementation about the center.
|
|
*/
|
|
void SpotShadow::quicksortCirc(Vector2* points, int low, int high,
|
|
const Vector2& center) {
|
|
int i = low, j = high;
|
|
int p = low + (high - low) / 2;
|
|
float pivot = angle(points[p], center);
|
|
while (i <= j) {
|
|
while (angle(points[i], center) > pivot) {
|
|
i++;
|
|
}
|
|
while (angle(points[j], center) < pivot) {
|
|
j--;
|
|
}
|
|
|
|
if (i <= j) {
|
|
swap(points, i, j);
|
|
i++;
|
|
j--;
|
|
}
|
|
}
|
|
if (low < j) quicksortCirc(points, low, j, center);
|
|
if (i < high) quicksortCirc(points, i, high, center);
|
|
}
|
|
|
|
/**
|
|
* Sort points by x axis
|
|
*
|
|
* @param points points to sort
|
|
* @param low start index
|
|
* @param high end index
|
|
*/
|
|
void SpotShadow::quicksortX(Vector2* points, int low, int high) {
|
|
int i = low, j = high;
|
|
int p = low + (high - low) / 2;
|
|
float pivot = points[p].x;
|
|
while (i <= j) {
|
|
while (points[i].x < pivot) {
|
|
i++;
|
|
}
|
|
while (points[j].x > pivot) {
|
|
j--;
|
|
}
|
|
|
|
if (i <= j) {
|
|
swap(points, i, j);
|
|
i++;
|
|
j--;
|
|
}
|
|
}
|
|
if (low < j) quicksortX(points, low, j);
|
|
if (i < high) quicksortX(points, i, high);
|
|
}
|
|
|
|
/**
|
|
* Test whether a point is inside the polygon.
|
|
*
|
|
* @param testPoint the point to test
|
|
* @param poly the polygon
|
|
* @return true if the testPoint is inside the poly.
|
|
*/
|
|
bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint,
|
|
const Vector2* poly, int len) {
|
|
bool c = false;
|
|
double testx = testPoint.x;
|
|
double testy = testPoint.y;
|
|
for (int i = 0, j = len - 1; i < len; j = i++) {
|
|
double startX = poly[j].x;
|
|
double startY = poly[j].y;
|
|
double endX = poly[i].x;
|
|
double endY = poly[i].y;
|
|
|
|
if (((endY > testy) != (startY > testy)) &&
|
|
(testx < (startX - endX) * (testy - endY)
|
|
/ (startY - endY) + endX)) {
|
|
c = !c;
|
|
}
|
|
}
|
|
return c;
|
|
}
|
|
|
|
/**
|
|
* Make the polygon turn clockwise.
|
|
*
|
|
* @param polygon the polygon as a Vector2 array.
|
|
* @param len the number of points of the polygon
|
|
*/
|
|
void SpotShadow::makeClockwise(Vector2* polygon, int len) {
|
|
if (polygon == 0 || len == 0) {
|
|
return;
|
|
}
|
|
if (!ShadowTessellator::isClockwise(polygon, len)) {
|
|
reverse(polygon, len);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Reverse the polygon
|
|
*
|
|
* @param polygon the polygon as a Vector2 array
|
|
* @param len the number of points of the polygon
|
|
*/
|
|
void SpotShadow::reverse(Vector2* polygon, int len) {
|
|
int n = len / 2;
|
|
for (int i = 0; i < n; i++) {
|
|
Vector2 tmp = polygon[i];
|
|
int k = len - 1 - i;
|
|
polygon[i] = polygon[k];
|
|
polygon[k] = tmp;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Intersects two lines in parametric form. This function is called in a tight
|
|
* loop, and we need double precision to get things right.
|
|
*
|
|
* @param x1 the x coordinate point 1 of line 1
|
|
* @param y1 the y coordinate point 1 of line 1
|
|
* @param x2 the x coordinate point 2 of line 1
|
|
* @param y2 the y coordinate point 2 of line 1
|
|
* @param x3 the x coordinate point 1 of line 2
|
|
* @param y3 the y coordinate point 1 of line 2
|
|
* @param x4 the x coordinate point 2 of line 2
|
|
* @param y4 the y coordinate point 2 of line 2
|
|
* @param ret the x,y location of the intersection
|
|
* @return true if it found an intersection
|
|
*/
|
|
inline bool SpotShadow::lineIntersection(double x1, double y1, double x2, double y2,
|
|
double x3, double y3, double x4, double y4, Vector2& ret) {
|
|
double d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4);
|
|
if (d == 0.0) return false;
|
|
|
|
double dx = (x1 * y2 - y1 * x2);
|
|
double dy = (x3 * y4 - y3 * x4);
|
|
double x = (dx * (x3 - x4) - (x1 - x2) * dy) / d;
|
|
double y = (dx * (y3 - y4) - (y1 - y2) * dy) / d;
|
|
|
|
// The intersection should be in the middle of the point 1 and point 2,
|
|
// likewise point 3 and point 4.
|
|
if (((x - x1) * (x - x2) > EPSILON)
|
|
|| ((x - x3) * (x - x4) > EPSILON)
|
|
|| ((y - y1) * (y - y2) > EPSILON)
|
|
|| ((y - y3) * (y - y4) > EPSILON)) {
|
|
// Not interesected
|
|
return false;
|
|
}
|
|
ret.x = x;
|
|
ret.y = y;
|
|
return true;
|
|
|
|
}
|
|
|
|
/**
|
|
* Compute a horizontal circular polygon about point (x , y , height) of radius
|
|
* (size)
|
|
*
|
|
* @param points number of the points of the output polygon.
|
|
* @param lightCenter the center of the light.
|
|
* @param size the light size.
|
|
* @param ret result polygon.
|
|
*/
|
|
void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter,
|
|
float size, Vector3* ret) {
|
|
// TODO: Caching all the sin / cos values and store them in a look up table.
|
|
for (int i = 0; i < points; i++) {
|
|
double angle = 2 * i * M_PI / points;
|
|
ret[i].x = cosf(angle) * size + lightCenter.x;
|
|
ret[i].y = sinf(angle) * size + lightCenter.y;
|
|
ret[i].z = lightCenter.z;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Generate the shadow from a spot light.
|
|
*
|
|
* @param poly x,y,z vertexes of a convex polygon that occludes the light source
|
|
* @param polyLength number of vertexes of the occluding polygon
|
|
* @param lightCenter the center of the light
|
|
* @param lightSize the radius of the light source
|
|
* @param lightVertexCount the vertex counter for the light polygon
|
|
* @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
|
|
* empty strip if error.
|
|
*
|
|
*/
|
|
|
|
void SpotShadow::createSpotShadow_old(bool isCasterOpaque, const Vector3* poly,
|
|
int polyLength, const Vector3& lightCenter, float lightSize,
|
|
int lightVertexCount, VertexBuffer& retStrips) {
|
|
Vector3 light[lightVertexCount * 3];
|
|
computeLightPolygon(lightVertexCount, lightCenter, lightSize, light);
|
|
computeSpotShadow_old(isCasterOpaque, light, lightVertexCount, lightCenter, poly,
|
|
polyLength, retStrips);
|
|
}
|
|
|
|
/**
|
|
* Generate the shadow spot light of shape lightPoly and a object poly
|
|
*
|
|
* @param lightPoly x,y,z vertex of a convex polygon that is the light source
|
|
* @param lightPolyLength number of vertexes of the light source polygon
|
|
* @param poly x,y,z vertexes of a convex polygon that occludes the light source
|
|
* @param polyLength number of vertexes of the occluding polygon
|
|
* @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
|
|
* empty strip if error.
|
|
*/
|
|
void SpotShadow::computeSpotShadow_old(bool isCasterOpaque, const Vector3* lightPoly,
|
|
int lightPolyLength, const Vector3& lightCenter, const Vector3* poly, int polyLength,
|
|
VertexBuffer& shadowTriangleStrip) {
|
|
// Point clouds for all the shadowed vertices
|
|
Vector2 shadowRegion[lightPolyLength * polyLength];
|
|
// Shadow polygon from one point light.
|
|
Vector2 outline[polyLength];
|
|
Vector2 umbraMem[polyLength * lightPolyLength];
|
|
Vector2* umbra = umbraMem;
|
|
|
|
int umbraLength = 0;
|
|
|
|
// Validate input, receiver is always at z = 0 plane.
|
|
bool inputPolyPositionValid = true;
|
|
for (int i = 0; i < polyLength; i++) {
|
|
if (poly[i].z >= lightPoly[0].z) {
|
|
inputPolyPositionValid = false;
|
|
ALOGW("polygon above the light");
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If the caster's position is invalid, don't draw anything.
|
|
if (!inputPolyPositionValid) {
|
|
return;
|
|
}
|
|
|
|
// Calculate the umbra polygon based on intersections of all outlines
|
|
int k = 0;
|
|
for (int j = 0; j < lightPolyLength; j++) {
|
|
int m = 0;
|
|
for (int i = 0; i < polyLength; i++) {
|
|
// After validating the input, deltaZ is guaranteed to be positive.
|
|
float deltaZ = lightPoly[j].z - poly[i].z;
|
|
float ratioZ = lightPoly[j].z / deltaZ;
|
|
float x = lightPoly[j].x - ratioZ * (lightPoly[j].x - poly[i].x);
|
|
float y = lightPoly[j].y - ratioZ * (lightPoly[j].y - poly[i].y);
|
|
|
|
Vector2 newPoint = {x, y};
|
|
shadowRegion[k] = newPoint;
|
|
outline[m] = newPoint;
|
|
|
|
k++;
|
|
m++;
|
|
}
|
|
|
|
// For the first light polygon's vertex, use the outline as the umbra.
|
|
// Later on, use the intersection of the outline and existing umbra.
|
|
if (umbraLength == 0) {
|
|
for (int i = 0; i < polyLength; i++) {
|
|
umbra[i] = outline[i];
|
|
}
|
|
umbraLength = polyLength;
|
|
} else {
|
|
int col = ((j * 255) / lightPolyLength);
|
|
umbraLength = intersection(outline, polyLength, umbra, umbraLength);
|
|
if (umbraLength == 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Generate the penumbra area using the hull of all shadow regions.
|
|
int shadowRegionLength = k;
|
|
Vector2 penumbra[k];
|
|
int penumbraLength = hull(shadowRegion, shadowRegionLength, penumbra);
|
|
|
|
Vector2 fakeUmbra[polyLength];
|
|
if (umbraLength < 3) {
|
|
// If there is no real umbra, make a fake one.
|
|
for (int i = 0; i < polyLength; i++) {
|
|
float deltaZ = lightCenter.z - poly[i].z;
|
|
float ratioZ = lightCenter.z / deltaZ;
|
|
float x = lightCenter.x - ratioZ * (lightCenter.x - poly[i].x);
|
|
float y = lightCenter.y - ratioZ * (lightCenter.y - poly[i].y);
|
|
|
|
fakeUmbra[i].x = x;
|
|
fakeUmbra[i].y = y;
|
|
}
|
|
|
|
// Shrink the centroid's shadow by 10%.
|
|
// TODO: Study the magic number of 10%.
|
|
Vector2 shadowCentroid =
|
|
ShadowTessellator::centroid2d(fakeUmbra, polyLength);
|
|
for (int i = 0; i < polyLength; i++) {
|
|
fakeUmbra[i] = shadowCentroid * (1.0f - SHADOW_SHRINK_SCALE) +
|
|
fakeUmbra[i] * SHADOW_SHRINK_SCALE;
|
|
}
|
|
#if DEBUG_SHADOW
|
|
ALOGD("No real umbra make a fake one, centroid2d = %f , %f",
|
|
shadowCentroid.x, shadowCentroid.y);
|
|
#endif
|
|
// Set the fake umbra, whose size is the same as the original polygon.
|
|
umbra = fakeUmbra;
|
|
umbraLength = polyLength;
|
|
}
|
|
|
|
generateTriangleStrip(isCasterOpaque, 1.0, penumbra, penumbraLength, umbra,
|
|
umbraLength, poly, polyLength, shadowTriangleStrip);
|
|
}
|
|
|
|
float SpotShadow::projectCasterToOutline(Vector2& outline,
|
|
const Vector3& lightCenter, const Vector3& polyVertex) {
|
|
float lightToPolyZ = lightCenter.z - polyVertex.z;
|
|
float ratioZ = CASTER_Z_CAP_RATIO;
|
|
if (lightToPolyZ != 0) {
|
|
// If any caster's vertex is almost above the light, we just keep it as 95%
|
|
// of the height of the light.
|
|
ratioZ = MathUtils::clamp(polyVertex.z / lightToPolyZ, 0.0f, CASTER_Z_CAP_RATIO);
|
|
}
|
|
|
|
outline.x = polyVertex.x - ratioZ * (lightCenter.x - polyVertex.x);
|
|
outline.y = polyVertex.y - ratioZ * (lightCenter.y - polyVertex.y);
|
|
return ratioZ;
|
|
}
|
|
|
|
/**
|
|
* Generate the shadow spot light of shape lightPoly and a object poly
|
|
*
|
|
* @param isCasterOpaque whether the caster is opaque
|
|
* @param lightCenter the center of the light
|
|
* @param lightSize the radius of the light
|
|
* @param poly x,y,z vertexes of a convex polygon that occludes the light source
|
|
* @param polyLength number of vertexes of the occluding polygon
|
|
* @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
|
|
* empty strip if error.
|
|
*/
|
|
void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCenter,
|
|
float lightSize, const Vector3* poly, int polyLength, const Vector3& polyCentroid,
|
|
VertexBuffer& shadowTriangleStrip) {
|
|
if (CC_UNLIKELY(lightCenter.z <= 0)) {
|
|
ALOGW("Relative Light Z is not positive. No spot shadow!");
|
|
return;
|
|
}
|
|
OutlineData outlineData[polyLength];
|
|
Vector2 outlineCentroid;
|
|
// Calculate the projected outline for each polygon's vertices from the light center.
|
|
//
|
|
// O Light
|
|
// /
|
|
// /
|
|
// . Polygon vertex
|
|
// /
|
|
// /
|
|
// O Outline vertices
|
|
//
|
|
// Ratio = (Poly - Outline) / (Light - Poly)
|
|
// Outline.x = Poly.x - Ratio * (Light.x - Poly.x)
|
|
// Outline's radius / Light's radius = Ratio
|
|
|
|
// Compute the last outline vertex to make sure we can get the normal and outline
|
|
// in one single loop.
|
|
projectCasterToOutline(outlineData[polyLength - 1].position, lightCenter,
|
|
poly[polyLength - 1]);
|
|
|
|
// Take the outline's polygon, calculate the normal for each outline edge.
|
|
int currentNormalIndex = polyLength - 1;
|
|
int nextNormalIndex = 0;
|
|
|
|
for (int i = 0; i < polyLength; i++) {
|
|
float ratioZ = projectCasterToOutline(outlineData[i].position,
|
|
lightCenter, poly[i]);
|
|
outlineData[i].radius = ratioZ * lightSize;
|
|
|
|
outlineData[currentNormalIndex].normal = ShadowTessellator::calculateNormal(
|
|
outlineData[currentNormalIndex].position,
|
|
outlineData[nextNormalIndex].position);
|
|
currentNormalIndex = (currentNormalIndex + 1) % polyLength;
|
|
nextNormalIndex++;
|
|
}
|
|
|
|
projectCasterToOutline(outlineCentroid, lightCenter, polyCentroid);
|
|
|
|
int penumbraIndex = 0;
|
|
int penumbraLength = polyLength * 3;
|
|
Vector2 penumbra[penumbraLength];
|
|
|
|
Vector2 umbra[polyLength];
|
|
float distOutline = 0;
|
|
float ratioVI = 0;
|
|
|
|
bool hasValidUmbra = true;
|
|
// We need the maxRatioVI to decrease the spot shadow strength accordingly.
|
|
float maxRaitoVI = 1.0;
|
|
|
|
for (int i = 0; i < polyLength; i++) {
|
|
// Generate all the penumbra's vertices only using the (outline vertex + normal * radius)
|
|
// There is no guarantee that the penumbra is still convex, but for
|
|
// each outline vertex, it will connect to all its corresponding penumbra vertices as
|
|
// triangle fans. And for neighber penumbra vertex, it will be a trapezoid.
|
|
//
|
|
// Penumbra Vertices marked as Pi
|
|
// Outline Vertices marked as Vi
|
|
// (P3)
|
|
// (P2) | ' (P4)
|
|
// (P1)' | | '
|
|
// ' | | '
|
|
// (P0) ------------------------------------------------(P5)
|
|
// | (V0) |(V1)
|
|
// | |
|
|
// | |
|
|
// | |
|
|
// | |
|
|
// | |
|
|
// | |
|
|
// | |
|
|
// | |
|
|
// (V3)-----------------------------------(V2)
|
|
int preNormalIndex = (i + polyLength - 1) % polyLength;
|
|
penumbra[penumbraIndex++] = outlineData[i].position +
|
|
outlineData[preNormalIndex].normal * outlineData[i].radius;
|
|
|
|
int currentNormalIndex = i;
|
|
// (TODO) Depending on how roundness we want for each corner, we can subdivide
|
|
// further here and/or introduce some heuristic to decide how much the
|
|
// subdivision should be.
|
|
Vector2 avgNormal =
|
|
(outlineData[preNormalIndex].normal + outlineData[currentNormalIndex].normal) / 2;
|
|
|
|
penumbra[penumbraIndex++] = outlineData[i].position +
|
|
avgNormal * outlineData[i].radius;
|
|
|
|
penumbra[penumbraIndex++] = outlineData[i].position +
|
|
outlineData[currentNormalIndex].normal * outlineData[i].radius;
|
|
|
|
// Compute the umbra by the intersection from the outline's centroid!
|
|
//
|
|
// (V) ------------------------------------
|
|
// | ' |
|
|
// | ' |
|
|
// | ' (I) |
|
|
// | ' |
|
|
// | ' (C) |
|
|
// | |
|
|
// | |
|
|
// | |
|
|
// | |
|
|
// ------------------------------------
|
|
//
|
|
// Connect a line b/t the outline vertex (V) and the centroid (C), it will
|
|
// intersect with the outline vertex's circle at point (I).
|
|
// Now, ratioVI = VI / VC, ratioIC = IC / VC
|
|
// Then the intersetion point can be computed as Ixy = Vxy * ratioIC + Cxy * ratioVI;
|
|
//
|
|
// When one of the outline circle cover the the outline centroid, (like I is
|
|
// on the other side of C), there is no real umbra any more, so we just fake
|
|
// a small area around the centroid as the umbra, and tune down the spot
|
|
// shadow's umbra strength to simulate the effect the whole shadow will
|
|
// become lighter in this case.
|
|
// The ratio can be simulated by using the inverse of maximum of ratioVI for
|
|
// all (V).
|
|
distOutline = (outlineData[i].position - outlineCentroid).length();
|
|
if (CC_UNLIKELY(distOutline == 0)) {
|
|
// If the outline has 0 area, then there is no spot shadow anyway.
|
|
ALOGW("Outline has 0 area, no spot shadow!");
|
|
return;
|
|
}
|
|
ratioVI = outlineData[i].radius / distOutline;
|
|
if (ratioVI >= 1.0) {
|
|
maxRaitoVI = ratioVI;
|
|
hasValidUmbra = false;
|
|
}
|
|
// When we know we don't have valid umbra, don't bother to compute the
|
|
// values below. But we can't skip the loop yet since we want to know the
|
|
// maximum ratio.
|
|
if (hasValidUmbra) {
|
|
float ratioIC = (distOutline - outlineData[i].radius) / distOutline;
|
|
umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI;
|
|
}
|
|
}
|
|
|
|
float shadowStrengthScale = 1.0;
|
|
if (!hasValidUmbra) {
|
|
ALOGW("The object is too close to the light or too small, no real umbra!");
|
|
for (int i = 0; i < polyLength; i++) {
|
|
umbra[i] = outlineData[i].position * FAKE_UMBRA_SIZE_RATIO +
|
|
outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO);
|
|
}
|
|
shadowStrengthScale = 1.0 / maxRaitoVI;
|
|
}
|
|
|
|
#if DEBUG_SHADOW
|
|
dumpPolygon(poly, polyLength, "input poly");
|
|
dumpPolygon(outline, polyLength, "outline");
|
|
dumpPolygon(penumbra, penumbraLength, "penumbra");
|
|
dumpPolygon(umbra, polyLength, "umbra");
|
|
ALOGD("hasValidUmbra is %d and shadowStrengthScale is %f", hasValidUmbra, shadowStrengthScale);
|
|
#endif
|
|
|
|
generateTriangleStrip(isCasterOpaque, shadowStrengthScale, penumbra,
|
|
penumbraLength, umbra, polyLength, poly, polyLength, shadowTriangleStrip);
|
|
}
|
|
|
|
/**
|
|
* Converts a polygon specified with CW vertices into an array of distance-from-centroid values.
|
|
*
|
|
* Returns false in error conditions
|
|
*
|
|
* @param poly Array of vertices. Note that these *must* be CW.
|
|
* @param polyLength The number of vertices in the polygon.
|
|
* @param polyCentroid The centroid of the polygon, from which rays will be cast
|
|
* @param rayDist The output array for the calculated distances, must be SHADOW_RAY_COUNT in size
|
|
*/
|
|
bool convertPolyToRayDist(const Vector2* poly, int polyLength, const Vector2& polyCentroid,
|
|
float* rayDist) {
|
|
const int rays = SHADOW_RAY_COUNT;
|
|
const float step = M_PI * 2 / rays;
|
|
|
|
const Vector2* lastVertex = &(poly[polyLength - 1]);
|
|
float startAngle = angle(*lastVertex, polyCentroid);
|
|
|
|
// Start with the ray that's closest to and less than startAngle
|
|
int rayIndex = floor((startAngle - EPSILON) / step);
|
|
rayIndex = (rayIndex + rays) % rays; // ensure positive
|
|
|
|
for (int polyIndex = 0; polyIndex < polyLength; polyIndex++) {
|
|
/*
|
|
* For a given pair of vertices on the polygon, poly[i-1] and poly[i], the rays that
|
|
* intersect these will be those that are between the two angles from the centroid that the
|
|
* vertices define.
|
|
*
|
|
* Because the polygon vertices are stored clockwise, the closest ray with an angle
|
|
* *smaller* than that defined by angle(poly[i], centroid) will be the first ray that does
|
|
* not intersect with poly[i-1], poly[i].
|
|
*/
|
|
float currentAngle = angle(poly[polyIndex], polyCentroid);
|
|
|
|
// find first ray that will not intersect the line segment poly[i-1] & poly[i]
|
|
int firstRayIndexOnNextSegment = floor((currentAngle - EPSILON) / step);
|
|
firstRayIndexOnNextSegment = (firstRayIndexOnNextSegment + rays) % rays; // ensure positive
|
|
|
|
// Iterate through all rays that intersect with poly[i-1], poly[i] line segment.
|
|
// This may be 0 rays.
|
|
while (rayIndex != firstRayIndexOnNextSegment) {
|
|
float distanceToIntersect = rayIntersectPoints(polyCentroid,
|
|
cos(rayIndex * step),
|
|
sin(rayIndex * step),
|
|
*lastVertex, poly[polyIndex]);
|
|
if (distanceToIntersect < 0) {
|
|
#if DEBUG_SHADOW
|
|
ALOGW("ERROR: convertPolyToRayDist failed");
|
|
#endif
|
|
return false; // error case, abort
|
|
}
|
|
|
|
rayDist[rayIndex] = distanceToIntersect;
|
|
|
|
rayIndex = (rayIndex - 1 + rays) % rays;
|
|
}
|
|
lastVertex = &poly[polyIndex];
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int SpotShadow::calculateOccludedUmbra(const Vector2* umbra, int umbraLength,
|
|
const Vector3* poly, int polyLength, Vector2* occludedUmbra) {
|
|
// Occluded umbra area is computed as the intersection of the projected 2D
|
|
// poly and umbra.
|
|
for (int i = 0; i < polyLength; i++) {
|
|
occludedUmbra[i].x = poly[i].x;
|
|
occludedUmbra[i].y = poly[i].y;
|
|
}
|
|
|
|
// Both umbra and incoming polygon are guaranteed to be CW, so we can call
|
|
// intersection() directly.
|
|
return intersection(umbra, umbraLength,
|
|
occludedUmbra, polyLength);
|
|
}
|
|
|
|
/**
|
|
* Generate a triangle strip given two convex polygons
|
|
*
|
|
* @param penumbra The outer polygon x,y vertexes
|
|
* @param penumbraLength The number of vertexes in the outer polygon
|
|
* @param umbra The inner outer polygon x,y vertexes
|
|
* @param umbraLength The number of vertexes in the inner polygon
|
|
* @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
|
|
* empty strip if error.
|
|
**/
|
|
void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale,
|
|
const Vector2* penumbra, int penumbraLength, const Vector2* umbra, int umbraLength,
|
|
const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip) {
|
|
const int rays = SHADOW_RAY_COUNT;
|
|
const int size = 2 * rays;
|
|
const float step = M_PI * 2 / rays;
|
|
// Centroid of the umbra.
|
|
Vector2 centroid = ShadowTessellator::centroid2d(umbra, umbraLength);
|
|
#if DEBUG_SHADOW
|
|
ALOGD("centroid2d = %f , %f", centroid.x, centroid.y);
|
|
#endif
|
|
// Intersection to the penumbra.
|
|
float penumbraDistPerRay[rays];
|
|
// Intersection to the umbra.
|
|
float umbraDistPerRay[rays];
|
|
// Intersection to the occluded umbra area.
|
|
float occludedUmbraDistPerRay[rays];
|
|
|
|
// convert CW polygons to ray distance encoding, aborting on conversion failure
|
|
if (!convertPolyToRayDist(umbra, umbraLength, centroid, umbraDistPerRay)) return;
|
|
if (!convertPolyToRayDist(penumbra, penumbraLength, centroid, penumbraDistPerRay)) return;
|
|
|
|
bool hasOccludedUmbraArea = false;
|
|
if (isCasterOpaque) {
|
|
Vector2 occludedUmbra[polyLength + umbraLength];
|
|
int occludedUmbraLength = calculateOccludedUmbra(umbra, umbraLength, poly, polyLength,
|
|
occludedUmbra);
|
|
// Make sure the centroid is inside the umbra, otherwise, fall back to the
|
|
// approach as if there is no occluded umbra area.
|
|
if (testPointInsidePolygon(centroid, occludedUmbra, occludedUmbraLength)) {
|
|
hasOccludedUmbraArea = true;
|
|
// Shrink the occluded umbra area to avoid pixel level artifacts.
|
|
for (int i = 0; i < occludedUmbraLength; i ++) {
|
|
occludedUmbra[i] = centroid + (occludedUmbra[i] - centroid) *
|
|
OCLLUDED_UMBRA_SHRINK_FACTOR;
|
|
}
|
|
if (!convertPolyToRayDist(occludedUmbra, occludedUmbraLength, centroid,
|
|
occludedUmbraDistPerRay)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
AlphaVertex* shadowVertices =
|
|
shadowTriangleStrip.alloc<AlphaVertex>(SHADOW_VERTEX_COUNT);
|
|
|
|
// NOTE: Shadow alpha values are transformed when stored in alphavertices,
|
|
// so that they can be consumed directly by gFS_Main_ApplyVertexAlphaShadowInterp
|
|
float transformedMaxAlpha = M_PI * shadowStrengthScale;
|
|
|
|
// Calculate the vertices (x, y, alpha) in the shadow area.
|
|
AlphaVertex centroidXYA;
|
|
AlphaVertex::set(¢roidXYA, centroid.x, centroid.y, transformedMaxAlpha);
|
|
for (int rayIndex = 0; rayIndex < rays; rayIndex++) {
|
|
float dx = cosf(step * rayIndex);
|
|
float dy = sinf(step * rayIndex);
|
|
|
|
// penumbra ring
|
|
float penumbraDistance = penumbraDistPerRay[rayIndex];
|
|
AlphaVertex::set(&shadowVertices[rayIndex],
|
|
dx * penumbraDistance + centroid.x,
|
|
dy * penumbraDistance + centroid.y, 0.0f);
|
|
|
|
// umbra ring
|
|
float umbraDistance = umbraDistPerRay[rayIndex];
|
|
AlphaVertex::set(&shadowVertices[rays + rayIndex],
|
|
dx * umbraDistance + centroid.x,
|
|
dy * umbraDistance + centroid.y,
|
|
transformedMaxAlpha);
|
|
|
|
// occluded umbra ring
|
|
if (hasOccludedUmbraArea) {
|
|
float occludedUmbraDistance = occludedUmbraDistPerRay[rayIndex];
|
|
AlphaVertex::set(&shadowVertices[2 * rays + rayIndex],
|
|
dx * occludedUmbraDistance + centroid.x,
|
|
dy * occludedUmbraDistance + centroid.y, transformedMaxAlpha);
|
|
} else {
|
|
// Put all vertices of the occluded umbra ring at the centroid.
|
|
shadowVertices[2 * rays + rayIndex] = centroidXYA;
|
|
}
|
|
}
|
|
shadowTriangleStrip.setMode(VertexBuffer::kTwoPolyRingShadow);
|
|
shadowTriangleStrip.computeBounds<AlphaVertex>();
|
|
}
|
|
|
|
/**
|
|
* This is only for experimental purpose.
|
|
* After intersections are calculated, we could smooth the polygon if needed.
|
|
* So far, we don't think it is more appealing yet.
|
|
*
|
|
* @param level The level of smoothness.
|
|
* @param rays The total number of rays.
|
|
* @param rayDist (In and Out) The distance for each ray.
|
|
*
|
|
*/
|
|
void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
|
|
for (int k = 0; k < level; k++) {
|
|
for (int i = 0; i < rays; i++) {
|
|
float p1 = rayDist[(rays - 1 + i) % rays];
|
|
float p2 = rayDist[i];
|
|
float p3 = rayDist[(i + 1) % rays];
|
|
rayDist[i] = (p1 + p2 * 2 + p3) / 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if DEBUG_SHADOW
|
|
|
|
#define TEST_POINT_NUMBER 128
|
|
|
|
/**
|
|
* Calculate the bounds for generating random test points.
|
|
*/
|
|
void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound,
|
|
Vector2& upperBound ) {
|
|
if (inVector.x < lowerBound.x) {
|
|
lowerBound.x = inVector.x;
|
|
}
|
|
|
|
if (inVector.y < lowerBound.y) {
|
|
lowerBound.y = inVector.y;
|
|
}
|
|
|
|
if (inVector.x > upperBound.x) {
|
|
upperBound.x = inVector.x;
|
|
}
|
|
|
|
if (inVector.y > upperBound.y) {
|
|
upperBound.y = inVector.y;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* For debug purpose, when things go wrong, dump the whole polygon data.
|
|
*/
|
|
void SpotShadow::dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
|
|
for (int i = 0; i < polyLength; i++) {
|
|
ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* For debug purpose, when things go wrong, dump the whole polygon data.
|
|
*/
|
|
void SpotShadow::dumpPolygon(const Vector3* poly, int polyLength, const char* polyName) {
|
|
for (int i = 0; i < polyLength; i++) {
|
|
ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Test whether the polygon is convex.
|
|
*/
|
|
bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength,
|
|
const char* name) {
|
|
bool isConvex = true;
|
|
for (int i = 0; i < polygonLength; i++) {
|
|
Vector2 start = polygon[i];
|
|
Vector2 middle = polygon[(i + 1) % polygonLength];
|
|
Vector2 end = polygon[(i + 2) % polygonLength];
|
|
|
|
double delta = (double(middle.x) - start.x) * (double(end.y) - start.y) -
|
|
(double(middle.y) - start.y) * (double(end.x) - start.x);
|
|
bool isCCWOrCoLinear = (delta >= EPSILON);
|
|
|
|
if (isCCWOrCoLinear) {
|
|
ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
|
|
"middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
|
|
name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
|
|
isConvex = false;
|
|
break;
|
|
}
|
|
}
|
|
return isConvex;
|
|
}
|
|
|
|
/**
|
|
* Test whether or not the polygon (intersection) is within the 2 input polygons.
|
|
* Using Marte Carlo method, we generate a random point, and if it is inside the
|
|
* intersection, then it must be inside both source polygons.
|
|
*/
|
|
void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length,
|
|
const Vector2* poly2, int poly2Length,
|
|
const Vector2* intersection, int intersectionLength) {
|
|
// Find the min and max of x and y.
|
|
Vector2 lowerBound = {FLT_MAX, FLT_MAX};
|
|
Vector2 upperBound = {-FLT_MAX, -FLT_MAX};
|
|
for (int i = 0; i < poly1Length; i++) {
|
|
updateBound(poly1[i], lowerBound, upperBound);
|
|
}
|
|
for (int i = 0; i < poly2Length; i++) {
|
|
updateBound(poly2[i], lowerBound, upperBound);
|
|
}
|
|
|
|
bool dumpPoly = false;
|
|
for (int k = 0; k < TEST_POINT_NUMBER; k++) {
|
|
// Generate a random point between minX, minY and maxX, maxY.
|
|
double randomX = rand() / double(RAND_MAX);
|
|
double randomY = rand() / double(RAND_MAX);
|
|
|
|
Vector2 testPoint;
|
|
testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
|
|
testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
|
|
|
|
// If the random point is in both poly 1 and 2, then it must be intersection.
|
|
if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
|
|
if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
|
|
dumpPoly = true;
|
|
ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
|
|
" not in the poly1",
|
|
testPoint.x, testPoint.y);
|
|
}
|
|
|
|
if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
|
|
dumpPoly = true;
|
|
ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
|
|
" not in the poly2",
|
|
testPoint.x, testPoint.y);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dumpPoly) {
|
|
dumpPolygon(intersection, intersectionLength, "intersection");
|
|
for (int i = 1; i < intersectionLength; i++) {
|
|
Vector2 delta = intersection[i] - intersection[i - 1];
|
|
ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
|
|
}
|
|
|
|
dumpPolygon(poly1, poly1Length, "poly 1");
|
|
dumpPolygon(poly2, poly2Length, "poly 2");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
}; // namespace uirenderer
|
|
}; // namespace android
|