android_frameworks_base/libs/hwui/ShadowTessellator.cpp
ztenghui 2e023f3827 Make sure the theta is correctly represented and incoming polygon is CW for shadow.
Now the theta = 0 should be on +x axis.
And cos(theta) should correctly represent x value.
Without this fix, the poly theta (from atan2) can be wrongly rotated 90 degrees.

Also, make sure the incoming polygon is CW for the shadow system.
This fix visual artifacts in recent regression for spot shadows.

bug:13553955

Change-Id: I9bbf54db094e7f133326da4dae4610962da849c1
2014-04-28 16:43:13 -07:00

236 lines
7.7 KiB
C++

/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "OpenGLRenderer"
#define ATRACE_TAG ATRACE_TAG_VIEW
#include <math.h>
#include <utils/Log.h>
#include <utils/Trace.h>
#include "AmbientShadow.h"
#include "ShadowTessellator.h"
#include "SpotShadow.h"
namespace android {
namespace uirenderer {
template<typename T>
static inline T max(T a, T b) {
return a > b ? a : b;
}
VertexBufferMode ShadowTessellator::tessellateAmbientShadow(bool isCasterOpaque,
const Vector3* casterPolygon, int casterVertexCount,
const Vector3& centroid3d, const Rect& casterBounds,
const Rect& localClip, float maxZ, VertexBuffer& shadowVertexBuffer) {
ATRACE_CALL();
// A bunch of parameters to tweak the shadow.
// TODO: Allow some of these changable by debug settings or APIs.
const float heightFactor = 1.0f / 128;
const float geomFactor = 64;
Rect ambientShadowBounds(casterBounds);
ambientShadowBounds.outset(maxZ * geomFactor * heightFactor);
if (!localClip.intersects(ambientShadowBounds)) {
#if DEBUG_SHADOW
ALOGD("Ambient shadow is out of clip rect!");
#endif
return kVertexBufferMode_OnePolyRingShadow;
}
return AmbientShadow::createAmbientShadow(isCasterOpaque, casterPolygon,
casterVertexCount, centroid3d, heightFactor, geomFactor,
shadowVertexBuffer);
}
VertexBufferMode ShadowTessellator::tessellateSpotShadow(bool isCasterOpaque,
const Vector3* casterPolygon, int casterVertexCount,
const Vector3& lightPosScale, const mat4& receiverTransform,
int screenWidth, int screenHeight, const Rect& casterBounds,
const Rect& localClip, VertexBuffer& shadowVertexBuffer) {
ATRACE_CALL();
// A bunch of parameters to tweak the shadow.
// TODO: Allow some of these changable by debug settings or APIs.
int maximal = max(screenWidth, screenHeight);
Vector3 lightCenter(screenWidth * lightPosScale.x, screenHeight * lightPosScale.y,
maximal * lightPosScale.z);
#if DEBUG_SHADOW
ALOGD("light center %f %f %f", lightCenter.x, lightCenter.y, lightCenter.z);
#endif
// light position (because it's in local space) needs to compensate for receiver transform
// TODO: should apply to light orientation, not just position
Matrix4 reverseReceiverTransform;
reverseReceiverTransform.loadInverse(receiverTransform);
reverseReceiverTransform.mapPoint3d(lightCenter);
const float lightSize = maximal / 4;
const int lightVertexCount = 8;
// Now light and caster are both in local space, we will check whether
// the shadow is within the clip area.
Rect lightRect = Rect(lightCenter.x - lightSize, lightCenter.y - lightSize,
lightCenter.x + lightSize, lightCenter.y + lightSize);
lightRect.unionWith(localClip);
if (!lightRect.intersects(casterBounds)) {
#if DEBUG_SHADOW
ALOGD("Spot shadow is out of clip rect!");
#endif
return kVertexBufferMode_OnePolyRingShadow;
}
VertexBufferMode mode = SpotShadow::createSpotShadow(isCasterOpaque,
casterPolygon, casterVertexCount, lightCenter, lightSize,
lightVertexCount, shadowVertexBuffer);
#if DEBUG_SHADOW
if(shadowVertexBuffer.getVertexCount() <= 0) {
ALOGD("Spot shadow generation failed %d", shadowVertexBuffer.getVertexCount());
}
#endif
return mode;
}
void ShadowTessellator::generateShadowIndices(uint16_t* shadowIndices) {
int currentIndex = 0;
const int rays = SHADOW_RAY_COUNT;
// For the penumbra area.
for (int layer = 0; layer < 2; layer ++) {
int baseIndex = layer * rays;
for (int i = 0; i < rays; i++) {
shadowIndices[currentIndex++] = i + baseIndex;
shadowIndices[currentIndex++] = rays + i + baseIndex;
}
// To close the loop, back to the ray 0.
shadowIndices[currentIndex++] = 0 + baseIndex;
// Note this is the same as the first index of next layer loop.
shadowIndices[currentIndex++] = rays + baseIndex;
}
#if DEBUG_SHADOW
if (currentIndex != MAX_SHADOW_INDEX_COUNT) {
ALOGW("vertex index count is wrong. current %d, expected %d",
currentIndex, MAX_SHADOW_INDEX_COUNT);
}
for (int i = 0; i < MAX_SHADOW_INDEX_COUNT; i++) {
ALOGD("vertex index is (%d, %d)", i, shadowIndices[i]);
}
#endif
}
/**
* Calculate the centroid of a 2d polygon.
*
* @param poly The polygon, which is represented in a Vector2 array.
* @param polyLength The length of the polygon in terms of number of vertices.
* @return the centroid of the polygon.
*/
Vector2 ShadowTessellator::centroid2d(const Vector2* poly, int polyLength) {
double sumx = 0;
double sumy = 0;
int p1 = polyLength - 1;
double area = 0;
for (int p2 = 0; p2 < polyLength; p2++) {
double x1 = poly[p1].x;
double y1 = poly[p1].y;
double x2 = poly[p2].x;
double y2 = poly[p2].y;
double a = (x1 * y2 - x2 * y1);
sumx += (x1 + x2) * a;
sumy += (y1 + y2) * a;
area += a;
p1 = p2;
}
Vector2 centroid = poly[0];
if (area != 0) {
centroid = Vector2(sumx / (3 * area), sumy / (3 * area));
} else {
ALOGW("Area is 0 while computing centroid!");
}
return centroid;
}
/**
* Test whether the polygon is order in clockwise.
*
* @param polygon the polygon as a Vector2 array
* @param len the number of points of the polygon
*/
bool ShadowTessellator::isClockwise(const Vector2* polygon, int len) {
double sum = 0;
double p1x = polygon[len - 1].x;
double p1y = polygon[len - 1].y;
for (int i = 0; i < len; i++) {
double p2x = polygon[i].x;
double p2y = polygon[i].y;
sum += p1x * p2y - p2x * p1y;
p1x = p2x;
p1y = p2y;
}
return sum < 0;
}
bool ShadowTessellator::isClockwisePath(const SkPath& path) {
SkPath::Iter iter(path, false);
SkPoint pts[4];
SkPath::Verb v;
Vector<Vector2> arrayForDirection;
while (SkPath::kDone_Verb != (v = iter.next(pts))) {
switch (v) {
case SkPath::kMove_Verb:
arrayForDirection.add(Vector2(pts[0].x(), pts[0].y()));
break;
case SkPath::kLine_Verb:
arrayForDirection.add(Vector2(pts[1].x(), pts[1].y()));
break;
case SkPath::kQuad_Verb:
arrayForDirection.add(Vector2(pts[1].x(), pts[1].y()));
arrayForDirection.add(Vector2(pts[2].x(), pts[2].y()));
break;
case SkPath::kCubic_Verb:
arrayForDirection.add(Vector2(pts[1].x(), pts[1].y()));
arrayForDirection.add(Vector2(pts[2].x(), pts[2].y()));
arrayForDirection.add(Vector2(pts[3].x(), pts[3].y()));
break;
default:
break;
}
}
return isClockwise(arrayForDirection.array(), arrayForDirection.size());
}
void ShadowTessellator::reverseVertexArray(Vertex* polygon, int len) {
int n = len / 2;
for (int i = 0; i < n; i++) {
Vertex tmp = polygon[i];
int k = len - 1 - i;
polygon[i] = polygon[k];
polygon[k] = tmp;
}
}
}; // namespace uirenderer
}; // namespace android