android_frameworks_base/libs/hwui/FrameBuilder.cpp
Chris Craik 9cd1bbe5c9 Improve multi-window render clipping logic
Fixes: 28125010

Restructures 'scene defer', to implement window backdrop overdraw
avoidance in new render pipeline, and disable clipping to content draw
bounds.

Also restructures FrameBuilder's constructors, to separate out into
multiple defer methods.

Change-Id: I53facb904c1a4a4acc493d8a489921a79a50494e
2016-04-18 10:39:02 -07:00

955 lines
40 KiB
C++

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "FrameBuilder.h"
#include "LayerUpdateQueue.h"
#include "RenderNode.h"
#include "VectorDrawable.h"
#include "renderstate/OffscreenBufferPool.h"
#include "hwui/Canvas.h"
#include "utils/FatVector.h"
#include "utils/PaintUtils.h"
#include "utils/TraceUtils.h"
#include <SkPathOps.h>
#include <utils/TypeHelpers.h>
namespace android {
namespace uirenderer {
FrameBuilder::FrameBuilder(const SkRect& clip,
uint32_t viewportWidth, uint32_t viewportHeight,
const LightGeometry& lightGeometry, Caches& caches)
: mStdAllocator(mAllocator)
, mLayerBuilders(mStdAllocator)
, mLayerStack(mStdAllocator)
, mCanvasState(*this)
, mCaches(caches)
, mLightRadius(lightGeometry.radius)
, mDrawFbo0(true) {
// Prepare to defer Fbo0
auto fbo0 = mAllocator.create<LayerBuilder>(viewportWidth, viewportHeight, Rect(clip));
mLayerBuilders.push_back(fbo0);
mLayerStack.push_back(0);
mCanvasState.initializeSaveStack(viewportWidth, viewportHeight,
clip.fLeft, clip.fTop, clip.fRight, clip.fBottom,
lightGeometry.center);
}
FrameBuilder::FrameBuilder(const LayerUpdateQueue& layers,
const LightGeometry& lightGeometry, Caches& caches)
: mStdAllocator(mAllocator)
, mLayerBuilders(mStdAllocator)
, mLayerStack(mStdAllocator)
, mCanvasState(*this)
, mCaches(caches)
, mLightRadius(lightGeometry.radius)
, mDrawFbo0(false) {
// TODO: remove, with each layer on its own save stack
// Prepare to defer Fbo0 (which will be empty)
auto fbo0 = mAllocator.create<LayerBuilder>(1, 1, Rect(1, 1));
mLayerBuilders.push_back(fbo0);
mLayerStack.push_back(0);
mCanvasState.initializeSaveStack(1, 1,
0, 0, 1, 1,
lightGeometry.center);
deferLayers(layers);
}
void FrameBuilder::deferLayers(const LayerUpdateQueue& layers) {
// Render all layers to be updated, in order. Defer in reverse order, so that they'll be
// updated in the order they're passed in (mLayerBuilders are issued to Renderer in reverse)
for (int i = layers.entries().size() - 1; i >= 0; i--) {
RenderNode* layerNode = layers.entries()[i].renderNode;
// only schedule repaint if node still on layer - possible it may have been
// removed during a dropped frame, but layers may still remain scheduled so
// as not to lose info on what portion is damaged
if (CC_LIKELY(layerNode->getLayer() != nullptr)) {
const Rect& layerDamage = layers.entries()[i].damage;
layerNode->computeOrdering();
// map current light center into RenderNode's coordinate space
Vector3 lightCenter = mCanvasState.currentSnapshot()->getRelativeLightCenter();
layerNode->getLayer()->inverseTransformInWindow.mapPoint3d(lightCenter);
saveForLayer(layerNode->getWidth(), layerNode->getHeight(), 0, 0,
layerDamage, lightCenter, nullptr, layerNode);
if (layerNode->getDisplayList()) {
deferNodeOps(*layerNode);
}
restoreForLayer();
}
}
}
void FrameBuilder::deferRenderNode(RenderNode& renderNode) {
renderNode.computeOrdering();
mCanvasState.save(SaveFlags::MatrixClip);
deferNodePropsAndOps(renderNode);
mCanvasState.restore();
}
void FrameBuilder::deferRenderNode(float tx, float ty, Rect clipRect, RenderNode& renderNode) {
renderNode.computeOrdering();
mCanvasState.save(SaveFlags::MatrixClip);
mCanvasState.translate(tx, ty);
mCanvasState.clipRect(clipRect.left, clipRect.top, clipRect.right, clipRect.bottom,
SkRegion::kIntersect_Op);
deferNodePropsAndOps(renderNode);
mCanvasState.restore();
}
static Rect nodeBounds(RenderNode& node) {
auto& props = node.properties();
return Rect(props.getLeft(), props.getTop(),
props.getRight(), props.getBottom());
}
void FrameBuilder::deferRenderNodeScene(const std::vector< sp<RenderNode> >& nodes,
const Rect& contentDrawBounds) {
if (nodes.size() < 1) return;
if (nodes.size() == 1) {
if (!nodes[0]->nothingToDraw()) {
deferRenderNode(*nodes[0]);
}
return;
}
// It there are multiple render nodes, they are laid out as follows:
// #0 - backdrop (content + caption)
// #1 - content (local bounds are at (0,0), will be translated and clipped to backdrop)
// #2 - additional overlay nodes
// Usually the backdrop cannot be seen since it will be entirely covered by the content. While
// resizing however it might become partially visible. The following render loop will crop the
// backdrop against the content and draw the remaining part of it. It will then draw the content
// cropped to the backdrop (since that indicates a shrinking of the window).
//
// Additional nodes will be drawn on top with no particular clipping semantics.
// Usually the contents bounds should be mContentDrawBounds - however - we will
// move it towards the fixed edge to give it a more stable appearance (for the moment).
// If there is no content bounds we ignore the layering as stated above and start with 2.
// Backdrop bounds in render target space
const Rect backdrop = nodeBounds(*nodes[0]);
// Bounds that content will fill in render target space (note content node bounds may be bigger)
Rect content(contentDrawBounds.getWidth(), contentDrawBounds.getHeight());
content.translate(backdrop.left, backdrop.top);
if (!content.contains(backdrop) && !nodes[0]->nothingToDraw()) {
// Content doesn't entirely overlap backdrop, so fill around content (right/bottom)
// Note: in the future, if content doesn't snap to backdrop's left/top, this may need to
// also fill left/top. Currently, both 2up and freeform position content at the top/left of
// the backdrop, so this isn't necessary.
if (content.right < backdrop.right) {
// draw backdrop to right side of content
deferRenderNode(0, 0, Rect(content.right, backdrop.top,
backdrop.right, backdrop.bottom), *nodes[0]);
}
if (content.bottom < backdrop.bottom) {
// draw backdrop to bottom of content
// Note: bottom fill uses content left/right, to avoid overdrawing left/right fill
deferRenderNode(0, 0, Rect(content.left, content.bottom,
content.right, backdrop.bottom), *nodes[0]);
}
}
if (!backdrop.isEmpty()) {
// content node translation to catch up with backdrop
float dx = contentDrawBounds.left - backdrop.left;
float dy = contentDrawBounds.top - backdrop.top;
Rect contentLocalClip = backdrop;
contentLocalClip.translate(dx, dy);
deferRenderNode(-dx, -dy, contentLocalClip, *nodes[1]);
} else {
deferRenderNode(*nodes[1]);
}
// remaining overlay nodes, simply defer
for (size_t index = 2; index < nodes.size(); index++) {
if (!nodes[index]->nothingToDraw()) {
deferRenderNode(*nodes[index]);
}
}
}
void FrameBuilder::onViewportInitialized() {}
void FrameBuilder::onSnapshotRestored(const Snapshot& removed, const Snapshot& restored) {}
void FrameBuilder::deferNodePropsAndOps(RenderNode& node) {
const RenderProperties& properties = node.properties();
const Outline& outline = properties.getOutline();
if (properties.getAlpha() <= 0
|| (outline.getShouldClip() && outline.isEmpty())
|| properties.getScaleX() == 0
|| properties.getScaleY() == 0) {
return; // rejected
}
if (properties.getLeft() != 0 || properties.getTop() != 0) {
mCanvasState.translate(properties.getLeft(), properties.getTop());
}
if (properties.getStaticMatrix()) {
mCanvasState.concatMatrix(*properties.getStaticMatrix());
} else if (properties.getAnimationMatrix()) {
mCanvasState.concatMatrix(*properties.getAnimationMatrix());
}
if (properties.hasTransformMatrix()) {
if (properties.isTransformTranslateOnly()) {
mCanvasState.translate(properties.getTranslationX(), properties.getTranslationY());
} else {
mCanvasState.concatMatrix(*properties.getTransformMatrix());
}
}
const int width = properties.getWidth();
const int height = properties.getHeight();
Rect saveLayerBounds; // will be set to non-empty if saveLayer needed
const bool isLayer = properties.effectiveLayerType() != LayerType::None;
int clipFlags = properties.getClippingFlags();
if (properties.getAlpha() < 1) {
if (isLayer) {
clipFlags &= ~CLIP_TO_BOUNDS; // bounds clipping done by layer
}
if (CC_LIKELY(isLayer || !properties.getHasOverlappingRendering())) {
// simply scale rendering content's alpha
mCanvasState.scaleAlpha(properties.getAlpha());
} else {
// schedule saveLayer by initializing saveLayerBounds
saveLayerBounds.set(0, 0, width, height);
if (clipFlags) {
properties.getClippingRectForFlags(clipFlags, &saveLayerBounds);
clipFlags = 0; // all clipping done by savelayer
}
}
if (CC_UNLIKELY(ATRACE_ENABLED() && properties.promotedToLayer())) {
// pretend alpha always causes savelayer to warn about
// performance problem affecting old versions
ATRACE_FORMAT("%s alpha caused saveLayer %dx%d", node.getName(), width, height);
}
}
if (clipFlags) {
Rect clipRect;
properties.getClippingRectForFlags(clipFlags, &clipRect);
mCanvasState.clipRect(clipRect.left, clipRect.top, clipRect.right, clipRect.bottom,
SkRegion::kIntersect_Op);
}
if (properties.getRevealClip().willClip()) {
Rect bounds;
properties.getRevealClip().getBounds(&bounds);
mCanvasState.setClippingRoundRect(mAllocator,
bounds, properties.getRevealClip().getRadius());
} else if (properties.getOutline().willClip()) {
mCanvasState.setClippingOutline(mAllocator, &(properties.getOutline()));
}
bool quickRejected = mCanvasState.currentSnapshot()->getRenderTargetClip().isEmpty()
|| (properties.getClipToBounds()
&& mCanvasState.quickRejectConservative(0, 0, width, height));
if (!quickRejected) {
// not rejected, so defer render as either Layer, or direct (possibly wrapped in saveLayer)
if (node.getLayer()) {
// HW layer
LayerOp* drawLayerOp = mAllocator.create_trivial<LayerOp>(node);
BakedOpState* bakedOpState = tryBakeOpState(*drawLayerOp);
if (bakedOpState) {
// Node's layer already deferred, schedule it to render into parent layer
currentLayer().deferUnmergeableOp(mAllocator, bakedOpState, OpBatchType::Bitmap);
}
} else if (CC_UNLIKELY(!saveLayerBounds.isEmpty())) {
// draw DisplayList contents within temporary, since persisted layer could not be used.
// (temp layers are clipped to viewport, since they don't persist offscreen content)
SkPaint saveLayerPaint;
saveLayerPaint.setAlpha(properties.getAlpha());
deferBeginLayerOp(*mAllocator.create_trivial<BeginLayerOp>(
saveLayerBounds,
Matrix4::identity(),
nullptr, // no record-time clip - need only respect defer-time one
&saveLayerPaint));
deferNodeOps(node);
deferEndLayerOp(*mAllocator.create_trivial<EndLayerOp>());
} else {
deferNodeOps(node);
}
}
}
typedef key_value_pair_t<float, const RenderNodeOp*> ZRenderNodeOpPair;
template <typename V>
static void buildZSortedChildList(V* zTranslatedNodes,
const DisplayList& displayList, const DisplayList::Chunk& chunk) {
if (chunk.beginChildIndex == chunk.endChildIndex) return;
for (size_t i = chunk.beginChildIndex; i < chunk.endChildIndex; i++) {
RenderNodeOp* childOp = displayList.getChildren()[i];
RenderNode* child = childOp->renderNode;
float childZ = child->properties().getZ();
if (!MathUtils::isZero(childZ) && chunk.reorderChildren) {
zTranslatedNodes->push_back(ZRenderNodeOpPair(childZ, childOp));
childOp->skipInOrderDraw = true;
} else if (!child->properties().getProjectBackwards()) {
// regular, in order drawing DisplayList
childOp->skipInOrderDraw = false;
}
}
// Z sort any 3d children (stable-ness makes z compare fall back to standard drawing order)
std::stable_sort(zTranslatedNodes->begin(), zTranslatedNodes->end());
}
template <typename V>
static size_t findNonNegativeIndex(const V& zTranslatedNodes) {
for (size_t i = 0; i < zTranslatedNodes.size(); i++) {
if (zTranslatedNodes[i].key >= 0.0f) return i;
}
return zTranslatedNodes.size();
}
template <typename V>
void FrameBuilder::defer3dChildren(const ClipBase* reorderClip, ChildrenSelectMode mode,
const V& zTranslatedNodes) {
const int size = zTranslatedNodes.size();
if (size == 0
|| (mode == ChildrenSelectMode::Negative&& zTranslatedNodes[0].key > 0.0f)
|| (mode == ChildrenSelectMode::Positive && zTranslatedNodes[size - 1].key < 0.0f)) {
// no 3d children to draw
return;
}
/**
* Draw shadows and (potential) casters mostly in order, but allow the shadows of casters
* with very similar Z heights to draw together.
*
* This way, if Views A & B have the same Z height and are both casting shadows, the shadows are
* underneath both, and neither's shadow is drawn on top of the other.
*/
const size_t nonNegativeIndex = findNonNegativeIndex(zTranslatedNodes);
size_t drawIndex, shadowIndex, endIndex;
if (mode == ChildrenSelectMode::Negative) {
drawIndex = 0;
endIndex = nonNegativeIndex;
shadowIndex = endIndex; // draw no shadows
} else {
drawIndex = nonNegativeIndex;
endIndex = size;
shadowIndex = drawIndex; // potentially draw shadow for each pos Z child
}
float lastCasterZ = 0.0f;
while (shadowIndex < endIndex || drawIndex < endIndex) {
if (shadowIndex < endIndex) {
const RenderNodeOp* casterNodeOp = zTranslatedNodes[shadowIndex].value;
const float casterZ = zTranslatedNodes[shadowIndex].key;
// attempt to render the shadow if the caster about to be drawn is its caster,
// OR if its caster's Z value is similar to the previous potential caster
if (shadowIndex == drawIndex || casterZ - lastCasterZ < 0.1f) {
deferShadow(reorderClip, *casterNodeOp);
lastCasterZ = casterZ; // must do this even if current caster not casting a shadow
shadowIndex++;
continue;
}
}
const RenderNodeOp* childOp = zTranslatedNodes[drawIndex].value;
deferRenderNodeOpImpl(*childOp);
drawIndex++;
}
}
void FrameBuilder::deferShadow(const ClipBase* reorderClip, const RenderNodeOp& casterNodeOp) {
auto& node = *casterNodeOp.renderNode;
auto& properties = node.properties();
if (properties.getAlpha() <= 0.0f
|| properties.getOutline().getAlpha() <= 0.0f
|| !properties.getOutline().getPath()
|| properties.getScaleX() == 0
|| properties.getScaleY() == 0) {
// no shadow to draw
return;
}
const SkPath* casterOutlinePath = properties.getOutline().getPath();
const SkPath* revealClipPath = properties.getRevealClip().getPath();
if (revealClipPath && revealClipPath->isEmpty()) return;
float casterAlpha = properties.getAlpha() * properties.getOutline().getAlpha();
// holds temporary SkPath to store the result of intersections
SkPath* frameAllocatedPath = nullptr;
const SkPath* casterPath = casterOutlinePath;
// intersect the shadow-casting path with the reveal, if present
if (revealClipPath) {
frameAllocatedPath = createFrameAllocatedPath();
Op(*casterPath, *revealClipPath, kIntersect_SkPathOp, frameAllocatedPath);
casterPath = frameAllocatedPath;
}
// intersect the shadow-casting path with the clipBounds, if present
if (properties.getClippingFlags() & CLIP_TO_CLIP_BOUNDS) {
if (!frameAllocatedPath) {
frameAllocatedPath = createFrameAllocatedPath();
}
Rect clipBounds;
properties.getClippingRectForFlags(CLIP_TO_CLIP_BOUNDS, &clipBounds);
SkPath clipBoundsPath;
clipBoundsPath.addRect(clipBounds.left, clipBounds.top,
clipBounds.right, clipBounds.bottom);
Op(*casterPath, clipBoundsPath, kIntersect_SkPathOp, frameAllocatedPath);
casterPath = frameAllocatedPath;
}
// apply reorder clip to shadow, so it respects clip at beginning of reorderable chunk
int restoreTo = mCanvasState.save(SaveFlags::MatrixClip);
mCanvasState.writableSnapshot()->applyClip(reorderClip,
*mCanvasState.currentSnapshot()->transform);
if (CC_LIKELY(!mCanvasState.getRenderTargetClipBounds().isEmpty())) {
Matrix4 shadowMatrixXY(casterNodeOp.localMatrix);
Matrix4 shadowMatrixZ(casterNodeOp.localMatrix);
node.applyViewPropertyTransforms(shadowMatrixXY, false);
node.applyViewPropertyTransforms(shadowMatrixZ, true);
sp<TessellationCache::ShadowTask> task = mCaches.tessellationCache.getShadowTask(
mCanvasState.currentTransform(),
mCanvasState.getLocalClipBounds(),
casterAlpha >= 1.0f,
casterPath,
&shadowMatrixXY, &shadowMatrixZ,
mCanvasState.currentSnapshot()->getRelativeLightCenter(),
mLightRadius);
ShadowOp* shadowOp = mAllocator.create<ShadowOp>(task, casterAlpha);
BakedOpState* bakedOpState = BakedOpState::tryShadowOpConstruct(
mAllocator, *mCanvasState.writableSnapshot(), shadowOp);
if (CC_LIKELY(bakedOpState)) {
currentLayer().deferUnmergeableOp(mAllocator, bakedOpState, OpBatchType::Shadow);
}
}
mCanvasState.restoreToCount(restoreTo);
}
void FrameBuilder::deferProjectedChildren(const RenderNode& renderNode) {
int count = mCanvasState.save(SaveFlags::MatrixClip);
const SkPath* projectionReceiverOutline = renderNode.properties().getOutline().getPath();
SkPath transformedMaskPath; // on stack, since BakedOpState makes a deep copy
if (projectionReceiverOutline) {
// transform the mask for this projector into render target space
// TODO: consider combining both transforms by stashing transform instead of applying
SkMatrix skCurrentTransform;
mCanvasState.currentTransform()->copyTo(skCurrentTransform);
projectionReceiverOutline->transform(
skCurrentTransform,
&transformedMaskPath);
mCanvasState.setProjectionPathMask(mAllocator, &transformedMaskPath);
}
for (size_t i = 0; i < renderNode.mProjectedNodes.size(); i++) {
RenderNodeOp* childOp = renderNode.mProjectedNodes[i];
RenderNode& childNode = *childOp->renderNode;
// Draw child if it has content, but ignore state in childOp - matrix already applied to
// transformFromCompositingAncestor, and record-time clip is ignored when projecting
if (!childNode.nothingToDraw()) {
int restoreTo = mCanvasState.save(SaveFlags::MatrixClip);
// Apply transform between ancestor and projected descendant
mCanvasState.concatMatrix(childOp->transformFromCompositingAncestor);
deferNodePropsAndOps(childNode);
mCanvasState.restoreToCount(restoreTo);
}
}
mCanvasState.restoreToCount(count);
}
/**
* Used to define a list of lambdas referencing private FrameBuilder::onXX::defer() methods.
*
* This allows opIds embedded in the RecordedOps to be used for dispatching to these lambdas.
* E.g. a BitmapOp op then would be dispatched to FrameBuilder::onBitmapOp(const BitmapOp&)
*/
#define OP_RECEIVER(Type) \
[](FrameBuilder& frameBuilder, const RecordedOp& op) { frameBuilder.defer##Type(static_cast<const Type&>(op)); },
void FrameBuilder::deferNodeOps(const RenderNode& renderNode) {
typedef void (*OpDispatcher) (FrameBuilder& frameBuilder, const RecordedOp& op);
static OpDispatcher receivers[] = BUILD_DEFERRABLE_OP_LUT(OP_RECEIVER);
// can't be null, since DL=null node rejection happens before deferNodePropsAndOps
const DisplayList& displayList = *(renderNode.getDisplayList());
for (auto& chunk : displayList.getChunks()) {
FatVector<ZRenderNodeOpPair, 16> zTranslatedNodes;
buildZSortedChildList(&zTranslatedNodes, displayList, chunk);
defer3dChildren(chunk.reorderClip, ChildrenSelectMode::Negative, zTranslatedNodes);
for (size_t opIndex = chunk.beginOpIndex; opIndex < chunk.endOpIndex; opIndex++) {
const RecordedOp* op = displayList.getOps()[opIndex];
receivers[op->opId](*this, *op);
if (CC_UNLIKELY(!renderNode.mProjectedNodes.empty()
&& displayList.projectionReceiveIndex >= 0
&& static_cast<int>(opIndex) == displayList.projectionReceiveIndex)) {
deferProjectedChildren(renderNode);
}
}
defer3dChildren(chunk.reorderClip, ChildrenSelectMode::Positive, zTranslatedNodes);
}
}
void FrameBuilder::deferRenderNodeOpImpl(const RenderNodeOp& op) {
if (op.renderNode->nothingToDraw()) return;
int count = mCanvasState.save(SaveFlags::MatrixClip);
// apply state from RecordedOp (clip first, since op's clip is transformed by current matrix)
mCanvasState.writableSnapshot()->applyClip(op.localClip,
*mCanvasState.currentSnapshot()->transform);
mCanvasState.concatMatrix(op.localMatrix);
// then apply state from node properties, and defer ops
deferNodePropsAndOps(*op.renderNode);
mCanvasState.restoreToCount(count);
}
void FrameBuilder::deferRenderNodeOp(const RenderNodeOp& op) {
if (!op.skipInOrderDraw) {
deferRenderNodeOpImpl(op);
}
}
/**
* Defers an unmergeable, strokeable op, accounting correctly
* for paint's style on the bounds being computed.
*/
BakedOpState* FrameBuilder::deferStrokeableOp(const RecordedOp& op, batchid_t batchId,
BakedOpState::StrokeBehavior strokeBehavior) {
// Note: here we account for stroke when baking the op
BakedOpState* bakedState = BakedOpState::tryStrokeableOpConstruct(
mAllocator, *mCanvasState.writableSnapshot(), op, strokeBehavior);
if (!bakedState) return nullptr; // quick rejected
if (op.opId == RecordedOpId::RectOp && op.paint->getStyle() != SkPaint::kStroke_Style) {
bakedState->setupOpacity(op.paint);
}
currentLayer().deferUnmergeableOp(mAllocator, bakedState, batchId);
return bakedState;
}
/**
* Returns batch id for tessellatable shapes, based on paint. Checks to see if path effect/AA will
* be used, since they trigger significantly different rendering paths.
*
* Note: not used for lines/points, since they don't currently support path effects.
*/
static batchid_t tessBatchId(const RecordedOp& op) {
const SkPaint& paint = *(op.paint);
return paint.getPathEffect()
? OpBatchType::AlphaMaskTexture
: (paint.isAntiAlias() ? OpBatchType::AlphaVertices : OpBatchType::Vertices);
}
void FrameBuilder::deferArcOp(const ArcOp& op) {
deferStrokeableOp(op, tessBatchId(op));
}
static bool hasMergeableClip(const BakedOpState& state) {
return state.computedState.clipState
|| state.computedState.clipState->mode == ClipMode::Rectangle;
}
void FrameBuilder::deferBitmapOp(const BitmapOp& op) {
BakedOpState* bakedState = tryBakeOpState(op);
if (!bakedState) return; // quick rejected
if (op.bitmap->isOpaque()) {
bakedState->setupOpacity(op.paint);
}
// Don't merge non-simply transformed or neg scale ops, SET_TEXTURE doesn't handle rotation
// Don't merge A8 bitmaps - the paint's color isn't compared by mergeId, or in
// MergingDrawBatch::canMergeWith()
if (bakedState->computedState.transform.isSimple()
&& bakedState->computedState.transform.positiveScale()
&& PaintUtils::getXfermodeDirect(op.paint) == SkXfermode::kSrcOver_Mode
&& op.bitmap->colorType() != kAlpha_8_SkColorType
&& hasMergeableClip(*bakedState)) {
mergeid_t mergeId = reinterpret_cast<mergeid_t>(op.bitmap->getGenerationID());
// TODO: AssetAtlas in mergeId
currentLayer().deferMergeableOp(mAllocator, bakedState, OpBatchType::Bitmap, mergeId);
} else {
currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::Bitmap);
}
}
void FrameBuilder::deferBitmapMeshOp(const BitmapMeshOp& op) {
BakedOpState* bakedState = tryBakeOpState(op);
if (!bakedState) return; // quick rejected
currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::Bitmap);
}
void FrameBuilder::deferBitmapRectOp(const BitmapRectOp& op) {
BakedOpState* bakedState = tryBakeOpState(op);
if (!bakedState) return; // quick rejected
currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::Bitmap);
}
void FrameBuilder::deferVectorDrawableOp(const VectorDrawableOp& op) {
const SkBitmap& bitmap = op.vectorDrawable->getBitmapUpdateIfDirty();
SkPaint* paint = op.vectorDrawable->getPaint();
const BitmapRectOp* resolvedOp = mAllocator.create_trivial<BitmapRectOp>(op.unmappedBounds,
op.localMatrix,
op.localClip,
paint,
&bitmap,
Rect(bitmap.width(), bitmap.height()));
deferBitmapRectOp(*resolvedOp);
}
void FrameBuilder::deferCirclePropsOp(const CirclePropsOp& op) {
// allocate a temporary oval op (with mAllocator, so it persists until render), so the
// renderer doesn't have to handle the RoundRectPropsOp type, and so state baking is simple.
float x = *(op.x);
float y = *(op.y);
float radius = *(op.radius);
Rect unmappedBounds(x - radius, y - radius, x + radius, y + radius);
const OvalOp* resolvedOp = mAllocator.create_trivial<OvalOp>(
unmappedBounds,
op.localMatrix,
op.localClip,
op.paint);
deferOvalOp(*resolvedOp);
}
void FrameBuilder::deferColorOp(const ColorOp& op) {
BakedOpState* bakedState = tryBakeUnboundedOpState(op);
if (!bakedState) return; // quick rejected
currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::Vertices);
}
void FrameBuilder::deferFunctorOp(const FunctorOp& op) {
BakedOpState* bakedState = tryBakeUnboundedOpState(op);
if (!bakedState) return; // quick rejected
currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::Functor);
}
void FrameBuilder::deferLinesOp(const LinesOp& op) {
batchid_t batch = op.paint->isAntiAlias() ? OpBatchType::AlphaVertices : OpBatchType::Vertices;
deferStrokeableOp(op, batch, BakedOpState::StrokeBehavior::Forced);
}
void FrameBuilder::deferOvalOp(const OvalOp& op) {
deferStrokeableOp(op, tessBatchId(op));
}
void FrameBuilder::deferPatchOp(const PatchOp& op) {
BakedOpState* bakedState = tryBakeOpState(op);
if (!bakedState) return; // quick rejected
if (bakedState->computedState.transform.isPureTranslate()
&& PaintUtils::getXfermodeDirect(op.paint) == SkXfermode::kSrcOver_Mode
&& hasMergeableClip(*bakedState)) {
mergeid_t mergeId = reinterpret_cast<mergeid_t>(op.bitmap->getGenerationID());
// TODO: AssetAtlas in mergeId
// Only use the MergedPatch batchId when merged, so Bitmap+Patch don't try to merge together
currentLayer().deferMergeableOp(mAllocator, bakedState, OpBatchType::MergedPatch, mergeId);
} else {
// Use Bitmap batchId since Bitmap+Patch use same shader
currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::Bitmap);
}
}
void FrameBuilder::deferPathOp(const PathOp& op) {
auto state = deferStrokeableOp(op, OpBatchType::AlphaMaskTexture);
if (CC_LIKELY(state)) {
mCaches.pathCache.precache(op.path, op.paint);
}
}
void FrameBuilder::deferPointsOp(const PointsOp& op) {
batchid_t batch = op.paint->isAntiAlias() ? OpBatchType::AlphaVertices : OpBatchType::Vertices;
deferStrokeableOp(op, batch, BakedOpState::StrokeBehavior::Forced);
}
void FrameBuilder::deferRectOp(const RectOp& op) {
deferStrokeableOp(op, tessBatchId(op));
}
void FrameBuilder::deferRoundRectOp(const RoundRectOp& op) {
auto state = deferStrokeableOp(op, tessBatchId(op));
if (CC_LIKELY(state && !op.paint->getPathEffect())) {
// TODO: consider storing tessellation task in BakedOpState
mCaches.tessellationCache.precacheRoundRect(state->computedState.transform, *(op.paint),
op.unmappedBounds.getWidth(), op.unmappedBounds.getHeight(), op.rx, op.ry);
}
}
void FrameBuilder::deferRoundRectPropsOp(const RoundRectPropsOp& op) {
// allocate a temporary round rect op (with mAllocator, so it persists until render), so the
// renderer doesn't have to handle the RoundRectPropsOp type, and so state baking is simple.
const RoundRectOp* resolvedOp = mAllocator.create_trivial<RoundRectOp>(
Rect(*(op.left), *(op.top), *(op.right), *(op.bottom)),
op.localMatrix,
op.localClip,
op.paint, *op.rx, *op.ry);
deferRoundRectOp(*resolvedOp);
}
void FrameBuilder::deferSimpleRectsOp(const SimpleRectsOp& op) {
BakedOpState* bakedState = tryBakeOpState(op);
if (!bakedState) return; // quick rejected
currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::Vertices);
}
static batchid_t textBatchId(const SkPaint& paint) {
// TODO: better handling of shader (since we won't care about color then)
return paint.getColor() == SK_ColorBLACK ? OpBatchType::Text : OpBatchType::ColorText;
}
void FrameBuilder::deferTextOp(const TextOp& op) {
BakedOpState* bakedState = BakedOpState::tryStrokeableOpConstruct(
mAllocator, *mCanvasState.writableSnapshot(), op,
BakedOpState::StrokeBehavior::StyleDefined);
if (!bakedState) return; // quick rejected
batchid_t batchId = textBatchId(*(op.paint));
if (bakedState->computedState.transform.isPureTranslate()
&& PaintUtils::getXfermodeDirect(op.paint) == SkXfermode::kSrcOver_Mode
&& hasMergeableClip(*bakedState)) {
mergeid_t mergeId = reinterpret_cast<mergeid_t>(op.paint->getColor());
currentLayer().deferMergeableOp(mAllocator, bakedState, batchId, mergeId);
} else {
currentLayer().deferUnmergeableOp(mAllocator, bakedState, batchId);
}
FontRenderer& fontRenderer = mCaches.fontRenderer.getFontRenderer();
auto& totalTransform = bakedState->computedState.transform;
if (totalTransform.isPureTranslate() || totalTransform.isPerspective()) {
fontRenderer.precache(op.paint, op.glyphs, op.glyphCount, SkMatrix::I());
} else {
// Partial transform case, see BakedOpDispatcher::renderTextOp
float sx, sy;
totalTransform.decomposeScale(sx, sy);
fontRenderer.precache(op.paint, op.glyphs, op.glyphCount, SkMatrix::MakeScale(
roundf(std::max(1.0f, sx)),
roundf(std::max(1.0f, sy))));
}
}
void FrameBuilder::deferTextOnPathOp(const TextOnPathOp& op) {
BakedOpState* bakedState = tryBakeUnboundedOpState(op);
if (!bakedState) return; // quick rejected
currentLayer().deferUnmergeableOp(mAllocator, bakedState, textBatchId(*(op.paint)));
mCaches.fontRenderer.getFontRenderer().precache(
op.paint, op.glyphs, op.glyphCount, SkMatrix::I());
}
void FrameBuilder::deferTextureLayerOp(const TextureLayerOp& op) {
if (CC_UNLIKELY(!op.layer->isRenderable())) return;
const TextureLayerOp* textureLayerOp = &op;
// Now safe to access transform (which was potentially unready at record time)
if (!op.layer->getTransform().isIdentity()) {
// non-identity transform present, so 'inject it' into op by copying + replacing matrix
Matrix4 combinedMatrix(op.localMatrix);
combinedMatrix.multiply(op.layer->getTransform());
textureLayerOp = mAllocator.create<TextureLayerOp>(op, combinedMatrix);
}
BakedOpState* bakedState = tryBakeOpState(*textureLayerOp);
if (!bakedState) return; // quick rejected
currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::TextureLayer);
}
void FrameBuilder::saveForLayer(uint32_t layerWidth, uint32_t layerHeight,
float contentTranslateX, float contentTranslateY,
const Rect& repaintRect,
const Vector3& lightCenter,
const BeginLayerOp* beginLayerOp, RenderNode* renderNode) {
mCanvasState.save(SaveFlags::MatrixClip);
mCanvasState.writableSnapshot()->initializeViewport(layerWidth, layerHeight);
mCanvasState.writableSnapshot()->roundRectClipState = nullptr;
mCanvasState.writableSnapshot()->setRelativeLightCenter(lightCenter);
mCanvasState.writableSnapshot()->transform->loadTranslate(
contentTranslateX, contentTranslateY, 0);
mCanvasState.writableSnapshot()->setClip(
repaintRect.left, repaintRect.top, repaintRect.right, repaintRect.bottom);
// create a new layer repaint, and push its index on the stack
mLayerStack.push_back(mLayerBuilders.size());
auto newFbo = mAllocator.create<LayerBuilder>(layerWidth, layerHeight,
repaintRect, beginLayerOp, renderNode);
mLayerBuilders.push_back(newFbo);
}
void FrameBuilder::restoreForLayer() {
// restore canvas, and pop finished layer off of the stack
mCanvasState.restore();
mLayerStack.pop_back();
}
// TODO: defer time rejection (when bounds become empty) + tests
// Option - just skip layers with no bounds at playback + defer?
void FrameBuilder::deferBeginLayerOp(const BeginLayerOp& op) {
uint32_t layerWidth = (uint32_t) op.unmappedBounds.getWidth();
uint32_t layerHeight = (uint32_t) op.unmappedBounds.getHeight();
auto previous = mCanvasState.currentSnapshot();
Vector3 lightCenter = previous->getRelativeLightCenter();
// Combine all transforms used to present saveLayer content:
// parent content transform * canvas transform * bounds offset
Matrix4 contentTransform(*(previous->transform));
contentTransform.multiply(op.localMatrix);
contentTransform.translate(op.unmappedBounds.left, op.unmappedBounds.top);
Matrix4 inverseContentTransform;
inverseContentTransform.loadInverse(contentTransform);
// map the light center into layer-relative space
inverseContentTransform.mapPoint3d(lightCenter);
// Clip bounds of temporary layer to parent's clip rect, so:
Rect saveLayerBounds(layerWidth, layerHeight);
// 1) transform Rect(width, height) into parent's space
// note: left/top offsets put in contentTransform above
contentTransform.mapRect(saveLayerBounds);
// 2) intersect with parent's clip
saveLayerBounds.doIntersect(previous->getRenderTargetClip());
// 3) and transform back
inverseContentTransform.mapRect(saveLayerBounds);
saveLayerBounds.doIntersect(Rect(layerWidth, layerHeight));
saveLayerBounds.roundOut();
// if bounds are reduced, will clip the layer's area by reducing required bounds...
layerWidth = saveLayerBounds.getWidth();
layerHeight = saveLayerBounds.getHeight();
// ...and shifting drawing content to account for left/top side clipping
float contentTranslateX = -saveLayerBounds.left;
float contentTranslateY = -saveLayerBounds.top;
saveForLayer(layerWidth, layerHeight,
contentTranslateX, contentTranslateY,
Rect(layerWidth, layerHeight),
lightCenter,
&op, nullptr);
}
void FrameBuilder::deferEndLayerOp(const EndLayerOp& /* ignored */) {
const BeginLayerOp& beginLayerOp = *currentLayer().beginLayerOp;
int finishedLayerIndex = mLayerStack.back();
restoreForLayer();
// record the draw operation into the previous layer's list of draw commands
// uses state from the associated beginLayerOp, since it has all the state needed for drawing
LayerOp* drawLayerOp = mAllocator.create_trivial<LayerOp>(
beginLayerOp.unmappedBounds,
beginLayerOp.localMatrix,
beginLayerOp.localClip,
beginLayerOp.paint,
&(mLayerBuilders[finishedLayerIndex]->offscreenBuffer));
BakedOpState* bakedOpState = tryBakeOpState(*drawLayerOp);
if (bakedOpState) {
// Layer will be drawn into parent layer (which is now current, since we popped mLayerStack)
currentLayer().deferUnmergeableOp(mAllocator, bakedOpState, OpBatchType::Bitmap);
} else {
// Layer won't be drawn - delete its drawing batches to prevent it from doing any work
// TODO: need to prevent any render work from being done
// - create layerop earlier for reject purposes?
mLayerBuilders[finishedLayerIndex]->clear();
return;
}
}
void FrameBuilder::deferBeginUnclippedLayerOp(const BeginUnclippedLayerOp& op) {
Matrix4 boundsTransform(*(mCanvasState.currentSnapshot()->transform));
boundsTransform.multiply(op.localMatrix);
Rect dstRect(op.unmappedBounds);
boundsTransform.mapRect(dstRect);
dstRect.doIntersect(mCanvasState.currentSnapshot()->getRenderTargetClip());
if (dstRect.isEmpty()) {
// Unclipped layer rejected - push a null op, so next EndUnclippedLayerOp is ignored
currentLayer().activeUnclippedSaveLayers.push_back(nullptr);
} else {
// Allocate a holding position for the layer object (copyTo will produce, copyFrom will consume)
OffscreenBuffer** layerHandle = mAllocator.create<OffscreenBuffer*>(nullptr);
/**
* First, defer an operation to copy out the content from the rendertarget into a layer.
*/
auto copyToOp = mAllocator.create_trivial<CopyToLayerOp>(op, layerHandle);
BakedOpState* bakedState = BakedOpState::directConstruct(mAllocator,
&(currentLayer().repaintClip), dstRect, *copyToOp);
currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::CopyToLayer);
/**
* Defer a clear rect, so that clears from multiple unclipped layers can be drawn
* both 1) simultaneously, and 2) as long after the copyToLayer executes as possible
*/
currentLayer().deferLayerClear(dstRect);
/**
* And stash an operation to copy that layer back under the rendertarget until
* a balanced EndUnclippedLayerOp is seen
*/
auto copyFromOp = mAllocator.create_trivial<CopyFromLayerOp>(op, layerHandle);
bakedState = BakedOpState::directConstruct(mAllocator,
&(currentLayer().repaintClip), dstRect, *copyFromOp);
currentLayer().activeUnclippedSaveLayers.push_back(bakedState);
}
}
void FrameBuilder::deferEndUnclippedLayerOp(const EndUnclippedLayerOp& /* ignored */) {
LOG_ALWAYS_FATAL_IF(currentLayer().activeUnclippedSaveLayers.empty(), "no layer to end!");
BakedOpState* copyFromLayerOp = currentLayer().activeUnclippedSaveLayers.back();
currentLayer().activeUnclippedSaveLayers.pop_back();
if (copyFromLayerOp) {
currentLayer().deferUnmergeableOp(mAllocator, copyFromLayerOp, OpBatchType::CopyFromLayer);
}
}
void FrameBuilder::finishDefer() {
mCaches.fontRenderer.endPrecaching();
}
} // namespace uirenderer
} // namespace android