8a90e6e317
Bug: 6413587 Change-Id: I5eba2bb57193bff78cb3740de5f87aca0b31d154
445 lines
14 KiB
C++
445 lines
14 KiB
C++
/*
|
|
* Copyright (C) 2012 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "VelocityTracker"
|
|
//#define LOG_NDEBUG 0
|
|
|
|
// Log debug messages about velocity tracking.
|
|
#define DEBUG_VELOCITY 0
|
|
|
|
// Log debug messages about least squares fitting.
|
|
#define DEBUG_LEAST_SQUARES 0
|
|
|
|
#include <math.h>
|
|
#include <limits.h>
|
|
|
|
#include <androidfw/VelocityTracker.h>
|
|
#include <utils/BitSet.h>
|
|
#include <utils/String8.h>
|
|
#include <utils/Timers.h>
|
|
|
|
namespace android {
|
|
|
|
// --- VelocityTracker ---
|
|
|
|
const uint32_t VelocityTracker::DEFAULT_DEGREE;
|
|
const nsecs_t VelocityTracker::DEFAULT_HORIZON;
|
|
const uint32_t VelocityTracker::HISTORY_SIZE;
|
|
|
|
static inline float vectorDot(const float* a, const float* b, uint32_t m) {
|
|
float r = 0;
|
|
while (m--) {
|
|
r += *(a++) * *(b++);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static inline float vectorNorm(const float* a, uint32_t m) {
|
|
float r = 0;
|
|
while (m--) {
|
|
float t = *(a++);
|
|
r += t * t;
|
|
}
|
|
return sqrtf(r);
|
|
}
|
|
|
|
#if DEBUG_LEAST_SQUARES || DEBUG_VELOCITY
|
|
static String8 vectorToString(const float* a, uint32_t m) {
|
|
String8 str;
|
|
str.append("[");
|
|
while (m--) {
|
|
str.appendFormat(" %f", *(a++));
|
|
if (m) {
|
|
str.append(",");
|
|
}
|
|
}
|
|
str.append(" ]");
|
|
return str;
|
|
}
|
|
|
|
static String8 matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) {
|
|
String8 str;
|
|
str.append("[");
|
|
for (size_t i = 0; i < m; i++) {
|
|
if (i) {
|
|
str.append(",");
|
|
}
|
|
str.append(" [");
|
|
for (size_t j = 0; j < n; j++) {
|
|
if (j) {
|
|
str.append(",");
|
|
}
|
|
str.appendFormat(" %f", a[rowMajor ? i * n + j : j * m + i]);
|
|
}
|
|
str.append(" ]");
|
|
}
|
|
str.append(" ]");
|
|
return str;
|
|
}
|
|
#endif
|
|
|
|
VelocityTracker::VelocityTracker() {
|
|
clear();
|
|
}
|
|
|
|
void VelocityTracker::clear() {
|
|
mIndex = 0;
|
|
mMovements[0].idBits.clear();
|
|
mActivePointerId = -1;
|
|
}
|
|
|
|
void VelocityTracker::clearPointers(BitSet32 idBits) {
|
|
BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
|
|
mMovements[mIndex].idBits = remainingIdBits;
|
|
|
|
if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) {
|
|
mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1;
|
|
}
|
|
}
|
|
|
|
void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) {
|
|
if (++mIndex == HISTORY_SIZE) {
|
|
mIndex = 0;
|
|
}
|
|
|
|
while (idBits.count() > MAX_POINTERS) {
|
|
idBits.clearLastMarkedBit();
|
|
}
|
|
|
|
Movement& movement = mMovements[mIndex];
|
|
movement.eventTime = eventTime;
|
|
movement.idBits = idBits;
|
|
uint32_t count = idBits.count();
|
|
for (uint32_t i = 0; i < count; i++) {
|
|
movement.positions[i] = positions[i];
|
|
}
|
|
|
|
if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) {
|
|
mActivePointerId = count != 0 ? idBits.firstMarkedBit() : -1;
|
|
}
|
|
|
|
#if DEBUG_VELOCITY
|
|
ALOGD("VelocityTracker: addMovement eventTime=%lld, idBits=0x%08x, activePointerId=%d",
|
|
eventTime, idBits.value, mActivePointerId);
|
|
for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) {
|
|
uint32_t id = iterBits.firstMarkedBit();
|
|
uint32_t index = idBits.getIndexOfBit(id);
|
|
iterBits.clearBit(id);
|
|
Estimator estimator;
|
|
getEstimator(id, DEFAULT_DEGREE, DEFAULT_HORIZON, &estimator);
|
|
ALOGD(" %d: position (%0.3f, %0.3f), "
|
|
"estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)",
|
|
id, positions[index].x, positions[index].y,
|
|
int(estimator.degree),
|
|
vectorToString(estimator.xCoeff, estimator.degree).string(),
|
|
vectorToString(estimator.yCoeff, estimator.degree).string(),
|
|
estimator.confidence);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void VelocityTracker::addMovement(const MotionEvent* event) {
|
|
int32_t actionMasked = event->getActionMasked();
|
|
|
|
switch (actionMasked) {
|
|
case AMOTION_EVENT_ACTION_DOWN:
|
|
case AMOTION_EVENT_ACTION_HOVER_ENTER:
|
|
// Clear all pointers on down before adding the new movement.
|
|
clear();
|
|
break;
|
|
case AMOTION_EVENT_ACTION_POINTER_DOWN: {
|
|
// Start a new movement trace for a pointer that just went down.
|
|
// We do this on down instead of on up because the client may want to query the
|
|
// final velocity for a pointer that just went up.
|
|
BitSet32 downIdBits;
|
|
downIdBits.markBit(event->getPointerId(event->getActionIndex()));
|
|
clearPointers(downIdBits);
|
|
break;
|
|
}
|
|
case AMOTION_EVENT_ACTION_MOVE:
|
|
case AMOTION_EVENT_ACTION_HOVER_MOVE:
|
|
break;
|
|
default:
|
|
// Ignore all other actions because they do not convey any new information about
|
|
// pointer movement. We also want to preserve the last known velocity of the pointers.
|
|
// Note that ACTION_UP and ACTION_POINTER_UP always report the last known position
|
|
// of the pointers that went up. ACTION_POINTER_UP does include the new position of
|
|
// pointers that remained down but we will also receive an ACTION_MOVE with this
|
|
// information if any of them actually moved. Since we don't know how many pointers
|
|
// will be going up at once it makes sense to just wait for the following ACTION_MOVE
|
|
// before adding the movement.
|
|
return;
|
|
}
|
|
|
|
size_t pointerCount = event->getPointerCount();
|
|
if (pointerCount > MAX_POINTERS) {
|
|
pointerCount = MAX_POINTERS;
|
|
}
|
|
|
|
BitSet32 idBits;
|
|
for (size_t i = 0; i < pointerCount; i++) {
|
|
idBits.markBit(event->getPointerId(i));
|
|
}
|
|
|
|
nsecs_t eventTime;
|
|
Position positions[pointerCount];
|
|
|
|
size_t historySize = event->getHistorySize();
|
|
for (size_t h = 0; h < historySize; h++) {
|
|
eventTime = event->getHistoricalEventTime(h);
|
|
for (size_t i = 0; i < pointerCount; i++) {
|
|
positions[i].x = event->getHistoricalX(i, h);
|
|
positions[i].y = event->getHistoricalY(i, h);
|
|
}
|
|
addMovement(eventTime, idBits, positions);
|
|
}
|
|
|
|
eventTime = event->getEventTime();
|
|
for (size_t i = 0; i < pointerCount; i++) {
|
|
positions[i].x = event->getX(i);
|
|
positions[i].y = event->getY(i);
|
|
}
|
|
addMovement(eventTime, idBits, positions);
|
|
}
|
|
|
|
/**
|
|
* Solves a linear least squares problem to obtain a N degree polynomial that fits
|
|
* the specified input data as nearly as possible.
|
|
*
|
|
* Returns true if a solution is found, false otherwise.
|
|
*
|
|
* The input consists of two vectors of data points X and Y with indices 0..m-1.
|
|
* The output is a vector B with indices 0..n-1 that describes a polynomial
|
|
* that fits the data, such the sum of abs(Y[i] - (B[0] + B[1] X[i] + B[2] X[i]^2 ... B[n] X[i]^n))
|
|
* for all i between 0 and m-1 is minimized.
|
|
*
|
|
* That is to say, the function that generated the input data can be approximated
|
|
* by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n.
|
|
*
|
|
* The coefficient of determination (R^2) is also returned to describe the goodness
|
|
* of fit of the model for the given data. It is a value between 0 and 1, where 1
|
|
* indicates perfect correspondence.
|
|
*
|
|
* This function first expands the X vector to a m by n matrix A such that
|
|
* A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n.
|
|
*
|
|
* Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q
|
|
* and an m by n upper triangular matrix R. Because R is upper triangular (lower
|
|
* part is all zeroes), we can simplify the decomposition into an m by n matrix
|
|
* Q1 and a n by n matrix R1 such that A = Q1 R1.
|
|
*
|
|
* Finally we solve the system of linear equations given by R1 B = (Qtranspose Y)
|
|
* to find B.
|
|
*
|
|
* For efficiency, we lay out A and Q column-wise in memory because we frequently
|
|
* operate on the column vectors. Conversely, we lay out R row-wise.
|
|
*
|
|
* http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
|
|
* http://en.wikipedia.org/wiki/Gram-Schmidt
|
|
*/
|
|
static bool solveLeastSquares(const float* x, const float* y, uint32_t m, uint32_t n,
|
|
float* outB, float* outDet) {
|
|
#if DEBUG_LEAST_SQUARES
|
|
ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s", int(m), int(n),
|
|
vectorToString(x, m).string(), vectorToString(y, m).string());
|
|
#endif
|
|
|
|
// Expand the X vector to a matrix A.
|
|
float a[n][m]; // column-major order
|
|
for (uint32_t h = 0; h < m; h++) {
|
|
a[0][h] = 1;
|
|
for (uint32_t i = 1; i < n; i++) {
|
|
a[i][h] = a[i - 1][h] * x[h];
|
|
}
|
|
}
|
|
#if DEBUG_LEAST_SQUARES
|
|
ALOGD(" - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).string());
|
|
#endif
|
|
|
|
// Apply the Gram-Schmidt process to A to obtain its QR decomposition.
|
|
float q[n][m]; // orthonormal basis, column-major order
|
|
float r[n][n]; // upper triangular matrix, row-major order
|
|
for (uint32_t j = 0; j < n; j++) {
|
|
for (uint32_t h = 0; h < m; h++) {
|
|
q[j][h] = a[j][h];
|
|
}
|
|
for (uint32_t i = 0; i < j; i++) {
|
|
float dot = vectorDot(&q[j][0], &q[i][0], m);
|
|
for (uint32_t h = 0; h < m; h++) {
|
|
q[j][h] -= dot * q[i][h];
|
|
}
|
|
}
|
|
|
|
float norm = vectorNorm(&q[j][0], m);
|
|
if (norm < 0.000001f) {
|
|
// vectors are linearly dependent or zero so no solution
|
|
#if DEBUG_LEAST_SQUARES
|
|
ALOGD(" - no solution, norm=%f", norm);
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
float invNorm = 1.0f / norm;
|
|
for (uint32_t h = 0; h < m; h++) {
|
|
q[j][h] *= invNorm;
|
|
}
|
|
for (uint32_t i = 0; i < n; i++) {
|
|
r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m);
|
|
}
|
|
}
|
|
#if DEBUG_LEAST_SQUARES
|
|
ALOGD(" - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).string());
|
|
ALOGD(" - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).string());
|
|
|
|
// calculate QR, if we factored A correctly then QR should equal A
|
|
float qr[n][m];
|
|
for (uint32_t h = 0; h < m; h++) {
|
|
for (uint32_t i = 0; i < n; i++) {
|
|
qr[i][h] = 0;
|
|
for (uint32_t j = 0; j < n; j++) {
|
|
qr[i][h] += q[j][h] * r[j][i];
|
|
}
|
|
}
|
|
}
|
|
ALOGD(" - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).string());
|
|
#endif
|
|
|
|
// Solve R B = Qt Y to find B. This is easy because R is upper triangular.
|
|
// We just work from bottom-right to top-left calculating B's coefficients.
|
|
for (uint32_t i = n; i-- != 0; ) {
|
|
outB[i] = vectorDot(&q[i][0], y, m);
|
|
for (uint32_t j = n - 1; j > i; j--) {
|
|
outB[i] -= r[i][j] * outB[j];
|
|
}
|
|
outB[i] /= r[i][i];
|
|
}
|
|
#if DEBUG_LEAST_SQUARES
|
|
ALOGD(" - b=%s", vectorToString(outB, n).string());
|
|
#endif
|
|
|
|
// Calculate the coefficient of determination as 1 - (SSerr / SStot) where
|
|
// SSerr is the residual sum of squares (squared variance of the error),
|
|
// and SStot is the total sum of squares (squared variance of the data).
|
|
float ymean = 0;
|
|
for (uint32_t h = 0; h < m; h++) {
|
|
ymean += y[h];
|
|
}
|
|
ymean /= m;
|
|
|
|
float sserr = 0;
|
|
float sstot = 0;
|
|
for (uint32_t h = 0; h < m; h++) {
|
|
float err = y[h] - outB[0];
|
|
float term = 1;
|
|
for (uint32_t i = 1; i < n; i++) {
|
|
term *= x[h];
|
|
err -= term * outB[i];
|
|
}
|
|
sserr += err * err;
|
|
float var = y[h] - ymean;
|
|
sstot += var * var;
|
|
}
|
|
*outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1;
|
|
#if DEBUG_LEAST_SQUARES
|
|
ALOGD(" - sserr=%f", sserr);
|
|
ALOGD(" - sstot=%f", sstot);
|
|
ALOGD(" - det=%f", *outDet);
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const {
|
|
Estimator estimator;
|
|
if (getEstimator(id, DEFAULT_DEGREE, DEFAULT_HORIZON, &estimator)) {
|
|
if (estimator.degree >= 1) {
|
|
*outVx = estimator.xCoeff[1];
|
|
*outVy = estimator.yCoeff[1];
|
|
return true;
|
|
}
|
|
}
|
|
*outVx = 0;
|
|
*outVy = 0;
|
|
return false;
|
|
}
|
|
|
|
bool VelocityTracker::getEstimator(uint32_t id, uint32_t degree, nsecs_t horizon,
|
|
Estimator* outEstimator) const {
|
|
outEstimator->clear();
|
|
|
|
// Iterate over movement samples in reverse time order and collect samples.
|
|
float x[HISTORY_SIZE];
|
|
float y[HISTORY_SIZE];
|
|
float time[HISTORY_SIZE];
|
|
uint32_t m = 0;
|
|
uint32_t index = mIndex;
|
|
const Movement& newestMovement = mMovements[mIndex];
|
|
do {
|
|
const Movement& movement = mMovements[index];
|
|
if (!movement.idBits.hasBit(id)) {
|
|
break;
|
|
}
|
|
|
|
nsecs_t age = newestMovement.eventTime - movement.eventTime;
|
|
if (age > horizon) {
|
|
break;
|
|
}
|
|
|
|
const Position& position = movement.getPosition(id);
|
|
x[m] = position.x;
|
|
y[m] = position.y;
|
|
time[m] = -age * 0.000000001f;
|
|
index = (index == 0 ? HISTORY_SIZE : index) - 1;
|
|
} while (++m < HISTORY_SIZE);
|
|
|
|
if (m == 0) {
|
|
return false; // no data
|
|
}
|
|
|
|
// Calculate a least squares polynomial fit.
|
|
if (degree > Estimator::MAX_DEGREE) {
|
|
degree = Estimator::MAX_DEGREE;
|
|
}
|
|
if (degree > m - 1) {
|
|
degree = m - 1;
|
|
}
|
|
if (degree >= 1) {
|
|
float xdet, ydet;
|
|
uint32_t n = degree + 1;
|
|
if (solveLeastSquares(time, x, m, n, outEstimator->xCoeff, &xdet)
|
|
&& solveLeastSquares(time, y, m, n, outEstimator->yCoeff, &ydet)) {
|
|
outEstimator->degree = degree;
|
|
outEstimator->confidence = xdet * ydet;
|
|
#if DEBUG_LEAST_SQUARES
|
|
ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f",
|
|
int(outEstimator->degree),
|
|
vectorToString(outEstimator->xCoeff, n).string(),
|
|
vectorToString(outEstimator->yCoeff, n).string(),
|
|
outEstimator->confidence);
|
|
#endif
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// No velocity data available for this pointer, but we do have its current position.
|
|
outEstimator->xCoeff[0] = x[0];
|
|
outEstimator->yCoeff[0] = y[0];
|
|
outEstimator->degree = 0;
|
|
outEstimator->confidence = 1;
|
|
return true;
|
|
}
|
|
|
|
} // namespace android
|