Doris Liu 718cd3eb70 Handle hidden RT VectorDrawable animators
This CL changes the target of VD specific animators to VectorDrawable,
instead of RenderNode. The benefit of doing so is that animators can
now detect whether the animation is meaningful by checking whether
their VD target is in the display list. If not, that means the VD is
not drawing for the current frame, in which case we can be smarter
and more power efficient by removing the animator from the list and
posting a delayed onFinished listener callback.

By setting VD as the animation target, when an ImageView decides to
update its drawable from one AVD to something else, we'll be able
to detect that the previous AVD is no longer in the display list,
and stop providing animation pulse to the stale AVD, which is
something we couldn't do previously.  This change also
handles the case where one AVD instance could be drawn in two
different views.

Bug: 27441375
Change-Id: Iaad1ed09cfd526276b95db0dd695275c28e074e8
2016-06-09 10:27:59 -07:00

1136 lines
45 KiB
C++

/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "RenderNode.h"
#include "DamageAccumulator.h"
#include "Debug.h"
#if HWUI_NEW_OPS
#include "BakedOpRenderer.h"
#include "RecordedOp.h"
#include "OpDumper.h"
#endif
#include "DisplayListOp.h"
#include "LayerRenderer.h"
#include "OpenGLRenderer.h"
#include "TreeInfo.h"
#include "utils/MathUtils.h"
#include "utils/TraceUtils.h"
#include "renderthread/CanvasContext.h"
#include "protos/hwui.pb.h"
#include "protos/ProtoHelpers.h"
#include <algorithm>
#include <sstream>
#include <string>
namespace android {
namespace uirenderer {
void RenderNode::debugDumpLayers(const char* prefix) {
#if HWUI_NEW_OPS
LOG_ALWAYS_FATAL("TODO: dump layer");
#else
if (mLayer) {
ALOGD("%sNode %p (%s) has layer %p (fbo = %u, wasBuildLayered = %s)",
prefix, this, getName(), mLayer, mLayer->getFbo(),
mLayer->wasBuildLayered ? "true" : "false");
}
#endif
if (mDisplayList) {
for (auto&& child : mDisplayList->getChildren()) {
child->renderNode->debugDumpLayers(prefix);
}
}
}
RenderNode::RenderNode()
: mDirtyPropertyFields(0)
, mNeedsDisplayListSync(false)
, mDisplayList(nullptr)
, mStagingDisplayList(nullptr)
, mAnimatorManager(*this)
, mParentCount(0) {
}
RenderNode::~RenderNode() {
deleteDisplayList(nullptr);
delete mStagingDisplayList;
#if HWUI_NEW_OPS
LOG_ALWAYS_FATAL_IF(mLayer, "layer missed detachment!");
#else
if (mLayer) {
ALOGW("Memory Warning: Layer %p missed its detachment, held on to for far too long!", mLayer);
mLayer->postDecStrong();
mLayer = nullptr;
}
#endif
}
void RenderNode::setStagingDisplayList(DisplayList* displayList, TreeObserver* observer) {
mNeedsDisplayListSync = true;
delete mStagingDisplayList;
mStagingDisplayList = displayList;
// If mParentCount == 0 we are the sole reference to this RenderNode,
// so immediately free the old display list
if (!mParentCount && !mStagingDisplayList) {
deleteDisplayList(observer);
}
}
/**
* This function is a simplified version of replay(), where we simply retrieve and log the
* display list. This function should remain in sync with the replay() function.
*/
#if HWUI_NEW_OPS
void RenderNode::output(uint32_t level, const char* label) {
ALOGD("%s (%s %p%s%s%s%s%s)",
label,
getName(),
this,
(MathUtils::isZero(properties().getAlpha()) ? ", zero alpha" : ""),
(properties().hasShadow() ? ", casting shadow" : ""),
(isRenderable() ? "" : ", empty"),
(properties().getProjectBackwards() ? ", projected" : ""),
(mLayer != nullptr ? ", on HW Layer" : ""));
properties().debugOutputProperties(level + 1);
if (mDisplayList) {
for (auto&& op : mDisplayList->getOps()) {
std::stringstream strout;
OpDumper::dump(*op, strout, level + 1);
if (op->opId == RecordedOpId::RenderNodeOp) {
auto rnOp = reinterpret_cast<const RenderNodeOp*>(op);
rnOp->renderNode->output(level + 1, strout.str().c_str());
} else {
ALOGD("%s", strout.str().c_str());
}
}
}
ALOGD("%*s/RenderNode(%s %p)", level * 2, "", getName(), this);
}
#else
void RenderNode::output(uint32_t level) {
ALOGD("%*sStart display list (%p, %s%s%s%s%s%s)", (level - 1) * 2, "", this,
getName(),
(MathUtils::isZero(properties().getAlpha()) ? ", zero alpha" : ""),
(properties().hasShadow() ? ", casting shadow" : ""),
(isRenderable() ? "" : ", empty"),
(properties().getProjectBackwards() ? ", projected" : ""),
(mLayer != nullptr ? ", on HW Layer" : ""));
ALOGD("%*s%s %d", level * 2, "", "Save", SaveFlags::MatrixClip);
properties().debugOutputProperties(level);
if (mDisplayList) {
// TODO: consider printing the chunk boundaries here
for (auto&& op : mDisplayList->getOps()) {
op->output(level, DisplayListOp::kOpLogFlag_Recurse);
}
}
ALOGD("%*sDone (%p, %s)", (level - 1) * 2, "", this, getName());
}
#endif
void RenderNode::copyTo(proto::RenderNode *pnode) {
pnode->set_id(static_cast<uint64_t>(
reinterpret_cast<uintptr_t>(this)));
pnode->set_name(mName.string(), mName.length());
proto::RenderProperties* pprops = pnode->mutable_properties();
pprops->set_left(properties().getLeft());
pprops->set_top(properties().getTop());
pprops->set_right(properties().getRight());
pprops->set_bottom(properties().getBottom());
pprops->set_clip_flags(properties().getClippingFlags());
pprops->set_alpha(properties().getAlpha());
pprops->set_translation_x(properties().getTranslationX());
pprops->set_translation_y(properties().getTranslationY());
pprops->set_translation_z(properties().getTranslationZ());
pprops->set_elevation(properties().getElevation());
pprops->set_rotation(properties().getRotation());
pprops->set_rotation_x(properties().getRotationX());
pprops->set_rotation_y(properties().getRotationY());
pprops->set_scale_x(properties().getScaleX());
pprops->set_scale_y(properties().getScaleY());
pprops->set_pivot_x(properties().getPivotX());
pprops->set_pivot_y(properties().getPivotY());
pprops->set_has_overlapping_rendering(properties().getHasOverlappingRendering());
pprops->set_pivot_explicitly_set(properties().isPivotExplicitlySet());
pprops->set_project_backwards(properties().getProjectBackwards());
pprops->set_projection_receiver(properties().isProjectionReceiver());
set(pprops->mutable_clip_bounds(), properties().getClipBounds());
const Outline& outline = properties().getOutline();
if (outline.getType() != Outline::Type::None) {
proto::Outline* poutline = pprops->mutable_outline();
poutline->clear_path();
if (outline.getType() == Outline::Type::Empty) {
poutline->set_type(proto::Outline_Type_Empty);
} else if (outline.getType() == Outline::Type::ConvexPath) {
poutline->set_type(proto::Outline_Type_ConvexPath);
if (const SkPath* path = outline.getPath()) {
set(poutline->mutable_path(), *path);
}
} else if (outline.getType() == Outline::Type::RoundRect) {
poutline->set_type(proto::Outline_Type_RoundRect);
} else {
ALOGW("Uknown outline type! %d", static_cast<int>(outline.getType()));
poutline->set_type(proto::Outline_Type_None);
}
poutline->set_should_clip(outline.getShouldClip());
poutline->set_alpha(outline.getAlpha());
poutline->set_radius(outline.getRadius());
set(poutline->mutable_bounds(), outline.getBounds());
} else {
pprops->clear_outline();
}
const RevealClip& revealClip = properties().getRevealClip();
if (revealClip.willClip()) {
proto::RevealClip* prevealClip = pprops->mutable_reveal_clip();
prevealClip->set_x(revealClip.getX());
prevealClip->set_y(revealClip.getY());
prevealClip->set_radius(revealClip.getRadius());
} else {
pprops->clear_reveal_clip();
}
pnode->clear_children();
if (mDisplayList) {
for (auto&& child : mDisplayList->getChildren()) {
child->renderNode->copyTo(pnode->add_children());
}
}
}
int RenderNode::getDebugSize() {
int size = sizeof(RenderNode);
if (mStagingDisplayList) {
size += mStagingDisplayList->getUsedSize();
}
if (mDisplayList && mDisplayList != mStagingDisplayList) {
size += mDisplayList->getUsedSize();
}
return size;
}
void RenderNode::prepareTree(TreeInfo& info) {
ATRACE_CALL();
LOG_ALWAYS_FATAL_IF(!info.damageAccumulator, "DamageAccumulator missing");
// Functors don't correctly handle stencil usage of overdraw debugging - shove 'em in a layer.
bool functorsNeedLayer = Properties::debugOverdraw;
prepareTreeImpl(info, functorsNeedLayer);
}
void RenderNode::addAnimator(const sp<BaseRenderNodeAnimator>& animator) {
mAnimatorManager.addAnimator(animator);
}
void RenderNode::removeAnimator(const sp<BaseRenderNodeAnimator>& animator) {
mAnimatorManager.removeAnimator(animator);
}
void RenderNode::damageSelf(TreeInfo& info) {
if (isRenderable()) {
if (properties().getClipDamageToBounds()) {
info.damageAccumulator->dirty(0, 0, properties().getWidth(), properties().getHeight());
} else {
// Hope this is big enough?
// TODO: Get this from the display list ops or something
info.damageAccumulator->dirty(DIRTY_MIN, DIRTY_MIN, DIRTY_MAX, DIRTY_MAX);
}
}
}
void RenderNode::prepareLayer(TreeInfo& info, uint32_t dirtyMask) {
LayerType layerType = properties().effectiveLayerType();
if (CC_UNLIKELY(layerType == LayerType::RenderLayer)) {
// Damage applied so far needs to affect our parent, but does not require
// the layer to be updated. So we pop/push here to clear out the current
// damage and get a clean state for display list or children updates to
// affect, which will require the layer to be updated
info.damageAccumulator->popTransform();
info.damageAccumulator->pushTransform(this);
if (dirtyMask & DISPLAY_LIST) {
damageSelf(info);
}
}
}
static layer_t* createLayer(RenderState& renderState, uint32_t width, uint32_t height) {
#if HWUI_NEW_OPS
return renderState.layerPool().get(renderState, width, height);
#else
return LayerRenderer::createRenderLayer(renderState, width, height);
#endif
}
static void destroyLayer(layer_t* layer) {
#if HWUI_NEW_OPS
RenderState& renderState = layer->renderState;
renderState.layerPool().putOrDelete(layer);
#else
LayerRenderer::destroyLayer(layer);
#endif
}
static bool layerMatchesWidthAndHeight(layer_t* layer, int width, int height) {
#if HWUI_NEW_OPS
return layer->viewportWidth == (uint32_t) width && layer->viewportHeight == (uint32_t)height;
#else
return layer->layer.getWidth() == width && layer->layer.getHeight() == height;
#endif
}
void RenderNode::pushLayerUpdate(TreeInfo& info) {
LayerType layerType = properties().effectiveLayerType();
// If we are not a layer OR we cannot be rendered (eg, view was detached)
// we need to destroy any Layers we may have had previously
if (CC_LIKELY(layerType != LayerType::RenderLayer) || CC_UNLIKELY(!isRenderable())) {
if (CC_UNLIKELY(mLayer)) {
destroyLayer(mLayer);
mLayer = nullptr;
}
return;
}
bool transformUpdateNeeded = false;
if (!mLayer) {
mLayer = createLayer(info.canvasContext.getRenderState(), getWidth(), getHeight());
#if !HWUI_NEW_OPS
applyLayerPropertiesToLayer(info);
#endif
damageSelf(info);
transformUpdateNeeded = true;
} else if (!layerMatchesWidthAndHeight(mLayer, getWidth(), getHeight())) {
#if HWUI_NEW_OPS
RenderState& renderState = mLayer->renderState;
if (properties().fitsOnLayer()) {
mLayer = renderState.layerPool().resize(mLayer, getWidth(), getHeight());
} else {
#else
if (!LayerRenderer::resizeLayer(mLayer, getWidth(), getHeight())) {
#endif
destroyLayer(mLayer);
mLayer = nullptr;
}
damageSelf(info);
transformUpdateNeeded = true;
}
SkRect dirty;
info.damageAccumulator->peekAtDirty(&dirty);
if (!mLayer) {
Caches::getInstance().dumpMemoryUsage();
if (info.errorHandler) {
std::ostringstream err;
err << "Unable to create layer for " << getName();
const int maxTextureSize = Caches::getInstance().maxTextureSize;
if (getWidth() > maxTextureSize || getHeight() > maxTextureSize) {
err << ", size " << getWidth() << "x" << getHeight()
<< " exceeds max size " << maxTextureSize;
} else {
err << ", see logcat for more info";
}
info.errorHandler->onError(err.str());
}
return;
}
if (transformUpdateNeeded && mLayer) {
// update the transform in window of the layer to reset its origin wrt light source position
Matrix4 windowTransform;
info.damageAccumulator->computeCurrentTransform(&windowTransform);
mLayer->setWindowTransform(windowTransform);
}
#if HWUI_NEW_OPS
info.layerUpdateQueue->enqueueLayerWithDamage(this, dirty);
#else
if (dirty.intersect(0, 0, getWidth(), getHeight())) {
dirty.roundOut(&dirty);
mLayer->updateDeferred(this, dirty.fLeft, dirty.fTop, dirty.fRight, dirty.fBottom);
}
// This is not inside the above if because we may have called
// updateDeferred on a previous prepare pass that didn't have a renderer
if (info.renderer && mLayer->deferredUpdateScheduled) {
info.renderer->pushLayerUpdate(mLayer);
}
#endif
// There might be prefetched layers that need to be accounted for.
// That might be us, so tell CanvasContext that this layer is in the
// tree and should not be destroyed.
info.canvasContext.markLayerInUse(this);
}
/**
* Traverse down the the draw tree to prepare for a frame.
*
* MODE_FULL = UI Thread-driven (thus properties must be synced), otherwise RT driven
*
* While traversing down the tree, functorsNeedLayer flag is set to true if anything that uses the
* stencil buffer may be needed. Views that use a functor to draw will be forced onto a layer.
*/
void RenderNode::prepareTreeImpl(TreeInfo& info, bool functorsNeedLayer) {
info.damageAccumulator->pushTransform(this);
if (info.mode == TreeInfo::MODE_FULL) {
pushStagingPropertiesChanges(info);
}
uint32_t animatorDirtyMask = 0;
if (CC_LIKELY(info.runAnimations)) {
animatorDirtyMask = mAnimatorManager.animate(info);
}
bool willHaveFunctor = false;
if (info.mode == TreeInfo::MODE_FULL && mStagingDisplayList) {
willHaveFunctor = !mStagingDisplayList->getFunctors().empty();
} else if (mDisplayList) {
willHaveFunctor = !mDisplayList->getFunctors().empty();
}
bool childFunctorsNeedLayer = mProperties.prepareForFunctorPresence(
willHaveFunctor, functorsNeedLayer);
if (CC_UNLIKELY(mPositionListener.get())) {
mPositionListener->onPositionUpdated(*this, info);
}
prepareLayer(info, animatorDirtyMask);
if (info.mode == TreeInfo::MODE_FULL) {
pushStagingDisplayListChanges(info);
}
prepareSubTree(info, childFunctorsNeedLayer, mDisplayList);
pushLayerUpdate(info);
for (auto& vectorDrawable : mDisplayList->getVectorDrawables()) {
// If any vector drawable in the display list needs update, damage the node.
if (vectorDrawable->isDirty()) {
damageSelf(info);
}
vectorDrawable->setPropertyChangeWillBeConsumed(true);
}
info.damageAccumulator->popTransform();
}
void RenderNode::syncProperties() {
mProperties = mStagingProperties;
}
void RenderNode::pushStagingPropertiesChanges(TreeInfo& info) {
// Push the animators first so that setupStartValueIfNecessary() is called
// before properties() is trampled by stagingProperties(), as they are
// required by some animators.
if (CC_LIKELY(info.runAnimations)) {
mAnimatorManager.pushStaging();
}
if (mDirtyPropertyFields) {
mDirtyPropertyFields = 0;
damageSelf(info);
info.damageAccumulator->popTransform();
syncProperties();
#if !HWUI_NEW_OPS
applyLayerPropertiesToLayer(info);
#endif
// We could try to be clever and only re-damage if the matrix changed.
// However, we don't need to worry about that. The cost of over-damaging
// here is only going to be a single additional map rect of this node
// plus a rect join(). The parent's transform (and up) will only be
// performed once.
info.damageAccumulator->pushTransform(this);
damageSelf(info);
}
}
#if !HWUI_NEW_OPS
void RenderNode::applyLayerPropertiesToLayer(TreeInfo& info) {
if (CC_LIKELY(!mLayer)) return;
const LayerProperties& props = properties().layerProperties();
mLayer->setAlpha(props.alpha(), props.xferMode());
mLayer->setColorFilter(props.colorFilter());
mLayer->setBlend(props.needsBlending());
}
#endif
void RenderNode::syncDisplayList(TreeObserver* observer) {
// Make sure we inc first so that we don't fluctuate between 0 and 1,
// which would thrash the layer cache
if (mStagingDisplayList) {
for (auto&& child : mStagingDisplayList->getChildren()) {
child->renderNode->incParentRefCount();
}
}
deleteDisplayList(observer);
mDisplayList = mStagingDisplayList;
mStagingDisplayList = nullptr;
if (mDisplayList) {
for (auto& iter : mDisplayList->getFunctors()) {
(*iter.functor)(DrawGlInfo::kModeSync, nullptr);
}
for (auto& vectorDrawable : mDisplayList->getVectorDrawables()) {
vectorDrawable->syncProperties();
}
}
}
void RenderNode::pushStagingDisplayListChanges(TreeInfo& info) {
if (mNeedsDisplayListSync) {
mNeedsDisplayListSync = false;
// Damage with the old display list first then the new one to catch any
// changes in isRenderable or, in the future, bounds
damageSelf(info);
syncDisplayList(info.observer);
damageSelf(info);
}
}
void RenderNode::deleteDisplayList(TreeObserver* observer) {
if (mDisplayList) {
for (auto&& child : mDisplayList->getChildren()) {
child->renderNode->decParentRefCount(observer);
}
}
delete mDisplayList;
mDisplayList = nullptr;
}
void RenderNode::prepareSubTree(TreeInfo& info, bool functorsNeedLayer, DisplayList* subtree) {
if (subtree) {
TextureCache& cache = Caches::getInstance().textureCache;
info.out.hasFunctors |= subtree->getFunctors().size();
for (auto&& bitmapResource : subtree->getBitmapResources()) {
void* ownerToken = &info.canvasContext;
info.prepareTextures = cache.prefetchAndMarkInUse(ownerToken, bitmapResource);
}
for (auto&& op : subtree->getChildren()) {
RenderNode* childNode = op->renderNode;
#if HWUI_NEW_OPS
info.damageAccumulator->pushTransform(&op->localMatrix);
bool childFunctorsNeedLayer = functorsNeedLayer; // TODO! || op->mRecordedWithPotentialStencilClip;
#else
info.damageAccumulator->pushTransform(&op->localMatrix);
bool childFunctorsNeedLayer = functorsNeedLayer
// Recorded with non-rect clip, or canvas-rotated by parent
|| op->mRecordedWithPotentialStencilClip;
#endif
childNode->prepareTreeImpl(info, childFunctorsNeedLayer);
info.damageAccumulator->popTransform();
}
}
}
void RenderNode::destroyHardwareResources(TreeObserver* observer) {
if (mLayer) {
destroyLayer(mLayer);
mLayer = nullptr;
}
if (mDisplayList) {
for (auto&& child : mDisplayList->getChildren()) {
child->renderNode->destroyHardwareResources(observer);
}
if (mNeedsDisplayListSync) {
// Next prepare tree we are going to push a new display list, so we can
// drop our current one now
deleteDisplayList(observer);
}
}
}
void RenderNode::decParentRefCount(TreeObserver* observer) {
LOG_ALWAYS_FATAL_IF(!mParentCount, "already 0!");
mParentCount--;
if (!mParentCount) {
if (observer) {
observer->onMaybeRemovedFromTree(this);
}
// If a child of ours is being attached to our parent then this will incorrectly
// destroy its hardware resources. However, this situation is highly unlikely
// and the failure is "just" that the layer is re-created, so this should
// be safe enough
destroyHardwareResources(observer);
}
}
/*
* For property operations, we pass a savecount of 0, since the operations aren't part of the
* displaylist, and thus don't have to compensate for the record-time/playback-time discrepancy in
* base saveCount (i.e., how RestoreToCount uses saveCount + properties().getCount())
*/
#define PROPERTY_SAVECOUNT 0
template <class T>
void RenderNode::setViewProperties(OpenGLRenderer& renderer, T& handler) {
#if DEBUG_DISPLAY_LIST
properties().debugOutputProperties(handler.level() + 1);
#endif
if (properties().getLeft() != 0 || properties().getTop() != 0) {
renderer.translate(properties().getLeft(), properties().getTop());
}
if (properties().getStaticMatrix()) {
renderer.concatMatrix(*properties().getStaticMatrix());
} else if (properties().getAnimationMatrix()) {
renderer.concatMatrix(*properties().getAnimationMatrix());
}
if (properties().hasTransformMatrix()) {
if (properties().isTransformTranslateOnly()) {
renderer.translate(properties().getTranslationX(), properties().getTranslationY());
} else {
renderer.concatMatrix(*properties().getTransformMatrix());
}
}
const bool isLayer = properties().effectiveLayerType() != LayerType::None;
int clipFlags = properties().getClippingFlags();
if (properties().getAlpha() < 1) {
if (isLayer) {
clipFlags &= ~CLIP_TO_BOUNDS; // bounds clipping done by layer
}
if (CC_LIKELY(isLayer || !properties().getHasOverlappingRendering())) {
// simply scale rendering content's alpha
renderer.scaleAlpha(properties().getAlpha());
} else {
// savelayer needed to create an offscreen buffer
Rect layerBounds(0, 0, getWidth(), getHeight());
if (clipFlags) {
properties().getClippingRectForFlags(clipFlags, &layerBounds);
clipFlags = 0; // all clipping done by savelayer
}
SaveLayerOp* op = new (handler.allocator()) SaveLayerOp(
layerBounds.left, layerBounds.top,
layerBounds.right, layerBounds.bottom,
(int) (properties().getAlpha() * 255),
SaveFlags::HasAlphaLayer | SaveFlags::ClipToLayer);
handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds());
}
if (CC_UNLIKELY(ATRACE_ENABLED() && properties().promotedToLayer())) {
// pretend alpha always causes savelayer to warn about
// performance problem affecting old versions
ATRACE_FORMAT("%s alpha caused saveLayer %dx%d", getName(),
static_cast<int>(getWidth()),
static_cast<int>(getHeight()));
}
}
if (clipFlags) {
Rect clipRect;
properties().getClippingRectForFlags(clipFlags, &clipRect);
ClipRectOp* op = new (handler.allocator()) ClipRectOp(
clipRect.left, clipRect.top, clipRect.right, clipRect.bottom,
SkRegion::kIntersect_Op);
handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds());
}
// TODO: support nesting round rect clips
if (mProperties.getRevealClip().willClip()) {
Rect bounds;
mProperties.getRevealClip().getBounds(&bounds);
renderer.setClippingRoundRect(handler.allocator(), bounds, mProperties.getRevealClip().getRadius());
} else if (mProperties.getOutline().willClip()) {
renderer.setClippingOutline(handler.allocator(), &(mProperties.getOutline()));
}
}
/**
* Apply property-based transformations to input matrix
*
* If true3dTransform is set to true, the transform applied to the input matrix will use true 4x4
* matrix computation instead of the Skia 3x3 matrix + camera hackery.
*/
void RenderNode::applyViewPropertyTransforms(mat4& matrix, bool true3dTransform) const {
if (properties().getLeft() != 0 || properties().getTop() != 0) {
matrix.translate(properties().getLeft(), properties().getTop());
}
if (properties().getStaticMatrix()) {
mat4 stat(*properties().getStaticMatrix());
matrix.multiply(stat);
} else if (properties().getAnimationMatrix()) {
mat4 anim(*properties().getAnimationMatrix());
matrix.multiply(anim);
}
bool applyTranslationZ = true3dTransform && !MathUtils::isZero(properties().getZ());
if (properties().hasTransformMatrix() || applyTranslationZ) {
if (properties().isTransformTranslateOnly()) {
matrix.translate(properties().getTranslationX(), properties().getTranslationY(),
true3dTransform ? properties().getZ() : 0.0f);
} else {
if (!true3dTransform) {
matrix.multiply(*properties().getTransformMatrix());
} else {
mat4 true3dMat;
true3dMat.loadTranslate(
properties().getPivotX() + properties().getTranslationX(),
properties().getPivotY() + properties().getTranslationY(),
properties().getZ());
true3dMat.rotate(properties().getRotationX(), 1, 0, 0);
true3dMat.rotate(properties().getRotationY(), 0, 1, 0);
true3dMat.rotate(properties().getRotation(), 0, 0, 1);
true3dMat.scale(properties().getScaleX(), properties().getScaleY(), 1);
true3dMat.translate(-properties().getPivotX(), -properties().getPivotY());
matrix.multiply(true3dMat);
}
}
}
}
/**
* Organizes the DisplayList hierarchy to prepare for background projection reordering.
*
* This should be called before a call to defer() or drawDisplayList()
*
* Each DisplayList that serves as a 3d root builds its list of composited children,
* which are flagged to not draw in the standard draw loop.
*/
void RenderNode::computeOrdering() {
ATRACE_CALL();
mProjectedNodes.clear();
// TODO: create temporary DDLOp and call computeOrderingImpl on top DisplayList so that
// transform properties are applied correctly to top level children
if (mDisplayList == nullptr) return;
for (unsigned int i = 0; i < mDisplayList->getChildren().size(); i++) {
renderNodeOp_t* childOp = mDisplayList->getChildren()[i];
childOp->renderNode->computeOrderingImpl(childOp, &mProjectedNodes, &mat4::identity());
}
}
void RenderNode::computeOrderingImpl(
renderNodeOp_t* opState,
std::vector<renderNodeOp_t*>* compositedChildrenOfProjectionSurface,
const mat4* transformFromProjectionSurface) {
mProjectedNodes.clear();
if (mDisplayList == nullptr || mDisplayList->isEmpty()) return;
// TODO: should avoid this calculation in most cases
// TODO: just calculate single matrix, down to all leaf composited elements
Matrix4 localTransformFromProjectionSurface(*transformFromProjectionSurface);
localTransformFromProjectionSurface.multiply(opState->localMatrix);
if (properties().getProjectBackwards()) {
// composited projectee, flag for out of order draw, save matrix, and store in proj surface
opState->skipInOrderDraw = true;
opState->transformFromCompositingAncestor = localTransformFromProjectionSurface;
compositedChildrenOfProjectionSurface->push_back(opState);
} else {
// standard in order draw
opState->skipInOrderDraw = false;
}
if (mDisplayList->getChildren().size() > 0) {
const bool isProjectionReceiver = mDisplayList->projectionReceiveIndex >= 0;
bool haveAppliedPropertiesToProjection = false;
for (unsigned int i = 0; i < mDisplayList->getChildren().size(); i++) {
renderNodeOp_t* childOp = mDisplayList->getChildren()[i];
RenderNode* child = childOp->renderNode;
std::vector<renderNodeOp_t*>* projectionChildren = nullptr;
const mat4* projectionTransform = nullptr;
if (isProjectionReceiver && !child->properties().getProjectBackwards()) {
// if receiving projections, collect projecting descendant
// Note that if a direct descendant is projecting backwards, we pass its
// grandparent projection collection, since it shouldn't project onto its
// parent, where it will already be drawing.
projectionChildren = &mProjectedNodes;
projectionTransform = &mat4::identity();
} else {
if (!haveAppliedPropertiesToProjection) {
applyViewPropertyTransforms(localTransformFromProjectionSurface);
haveAppliedPropertiesToProjection = true;
}
projectionChildren = compositedChildrenOfProjectionSurface;
projectionTransform = &localTransformFromProjectionSurface;
}
child->computeOrderingImpl(childOp, projectionChildren, projectionTransform);
}
}
}
class DeferOperationHandler {
public:
DeferOperationHandler(DeferStateStruct& deferStruct, int level)
: mDeferStruct(deferStruct), mLevel(level) {}
inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) {
operation->defer(mDeferStruct, saveCount, mLevel, clipToBounds);
}
inline LinearAllocator& allocator() { return *(mDeferStruct.mAllocator); }
inline void startMark(const char* name) {} // do nothing
inline void endMark() {}
inline int level() { return mLevel; }
inline int replayFlags() { return mDeferStruct.mReplayFlags; }
inline SkPath* allocPathForFrame() { return mDeferStruct.allocPathForFrame(); }
private:
DeferStateStruct& mDeferStruct;
const int mLevel;
};
void RenderNode::defer(DeferStateStruct& deferStruct, const int level) {
DeferOperationHandler handler(deferStruct, level);
issueOperations<DeferOperationHandler>(deferStruct.mRenderer, handler);
}
class ReplayOperationHandler {
public:
ReplayOperationHandler(ReplayStateStruct& replayStruct, int level)
: mReplayStruct(replayStruct), mLevel(level) {}
inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) {
#if DEBUG_DISPLAY_LIST_OPS_AS_EVENTS
mReplayStruct.mRenderer.eventMark(operation->name());
#endif
operation->replay(mReplayStruct, saveCount, mLevel, clipToBounds);
}
inline LinearAllocator& allocator() { return *(mReplayStruct.mAllocator); }
inline void startMark(const char* name) {
mReplayStruct.mRenderer.startMark(name);
}
inline void endMark() {
mReplayStruct.mRenderer.endMark();
}
inline int level() { return mLevel; }
inline int replayFlags() { return mReplayStruct.mReplayFlags; }
inline SkPath* allocPathForFrame() { return mReplayStruct.allocPathForFrame(); }
private:
ReplayStateStruct& mReplayStruct;
const int mLevel;
};
void RenderNode::replay(ReplayStateStruct& replayStruct, const int level) {
ReplayOperationHandler handler(replayStruct, level);
issueOperations<ReplayOperationHandler>(replayStruct.mRenderer, handler);
}
void RenderNode::buildZSortedChildList(const DisplayList::Chunk& chunk,
std::vector<ZDrawRenderNodeOpPair>& zTranslatedNodes) {
#if !HWUI_NEW_OPS
if (chunk.beginChildIndex == chunk.endChildIndex) return;
for (unsigned int i = chunk.beginChildIndex; i < chunk.endChildIndex; i++) {
DrawRenderNodeOp* childOp = mDisplayList->getChildren()[i];
RenderNode* child = childOp->renderNode;
float childZ = child->properties().getZ();
if (!MathUtils::isZero(childZ) && chunk.reorderChildren) {
zTranslatedNodes.push_back(ZDrawRenderNodeOpPair(childZ, childOp));
childOp->skipInOrderDraw = true;
} else if (!child->properties().getProjectBackwards()) {
// regular, in order drawing DisplayList
childOp->skipInOrderDraw = false;
}
}
// Z sort any 3d children (stable-ness makes z compare fall back to standard drawing order)
std::stable_sort(zTranslatedNodes.begin(), zTranslatedNodes.end());
#endif
}
template <class T>
void RenderNode::issueDrawShadowOperation(const Matrix4& transformFromParent, T& handler) {
if (properties().getAlpha() <= 0.0f
|| properties().getOutline().getAlpha() <= 0.0f
|| !properties().getOutline().getPath()
|| properties().getScaleX() == 0
|| properties().getScaleY() == 0) {
// no shadow to draw
return;
}
mat4 shadowMatrixXY(transformFromParent);
applyViewPropertyTransforms(shadowMatrixXY);
// Z matrix needs actual 3d transformation, so mapped z values will be correct
mat4 shadowMatrixZ(transformFromParent);
applyViewPropertyTransforms(shadowMatrixZ, true);
const SkPath* casterOutlinePath = properties().getOutline().getPath();
const SkPath* revealClipPath = properties().getRevealClip().getPath();
if (revealClipPath && revealClipPath->isEmpty()) return;
float casterAlpha = properties().getAlpha() * properties().getOutline().getAlpha();
// holds temporary SkPath to store the result of intersections
SkPath* frameAllocatedPath = nullptr;
const SkPath* outlinePath = casterOutlinePath;
// intersect the outline with the reveal clip, if present
if (revealClipPath) {
frameAllocatedPath = handler.allocPathForFrame();
Op(*outlinePath, *revealClipPath, kIntersect_SkPathOp, frameAllocatedPath);
outlinePath = frameAllocatedPath;
}
// intersect the outline with the clipBounds, if present
if (properties().getClippingFlags() & CLIP_TO_CLIP_BOUNDS) {
if (!frameAllocatedPath) {
frameAllocatedPath = handler.allocPathForFrame();
}
Rect clipBounds;
properties().getClippingRectForFlags(CLIP_TO_CLIP_BOUNDS, &clipBounds);
SkPath clipBoundsPath;
clipBoundsPath.addRect(clipBounds.left, clipBounds.top,
clipBounds.right, clipBounds.bottom);
Op(*outlinePath, clipBoundsPath, kIntersect_SkPathOp, frameAllocatedPath);
outlinePath = frameAllocatedPath;
}
DisplayListOp* shadowOp = new (handler.allocator()) DrawShadowOp(
shadowMatrixXY, shadowMatrixZ, casterAlpha, outlinePath);
handler(shadowOp, PROPERTY_SAVECOUNT, properties().getClipToBounds());
}
#define SHADOW_DELTA 0.1f
template <class T>
void RenderNode::issueOperationsOf3dChildren(ChildrenSelectMode mode,
const Matrix4& initialTransform, const std::vector<ZDrawRenderNodeOpPair>& zTranslatedNodes,
OpenGLRenderer& renderer, T& handler) {
const int size = zTranslatedNodes.size();
if (size == 0
|| (mode == ChildrenSelectMode::NegativeZChildren && zTranslatedNodes[0].key > 0.0f)
|| (mode == ChildrenSelectMode::PositiveZChildren && zTranslatedNodes[size - 1].key < 0.0f)) {
// no 3d children to draw
return;
}
// Apply the base transform of the parent of the 3d children. This isolates
// 3d children of the current chunk from transformations made in previous chunks.
int rootRestoreTo = renderer.save(SaveFlags::Matrix);
renderer.setGlobalMatrix(initialTransform);
/**
* Draw shadows and (potential) casters mostly in order, but allow the shadows of casters
* with very similar Z heights to draw together.
*
* This way, if Views A & B have the same Z height and are both casting shadows, the shadows are
* underneath both, and neither's shadow is drawn on top of the other.
*/
const size_t nonNegativeIndex = findNonNegativeIndex(zTranslatedNodes);
size_t drawIndex, shadowIndex, endIndex;
if (mode == ChildrenSelectMode::NegativeZChildren) {
drawIndex = 0;
endIndex = nonNegativeIndex;
shadowIndex = endIndex; // draw no shadows
} else {
drawIndex = nonNegativeIndex;
endIndex = size;
shadowIndex = drawIndex; // potentially draw shadow for each pos Z child
}
DISPLAY_LIST_LOGD("%*s%d %s 3d children:", (handler.level() + 1) * 2, "",
endIndex - drawIndex, mode == kNegativeZChildren ? "negative" : "positive");
float lastCasterZ = 0.0f;
while (shadowIndex < endIndex || drawIndex < endIndex) {
if (shadowIndex < endIndex) {
DrawRenderNodeOp* casterOp = zTranslatedNodes[shadowIndex].value;
RenderNode* caster = casterOp->renderNode;
const float casterZ = zTranslatedNodes[shadowIndex].key;
// attempt to render the shadow if the caster about to be drawn is its caster,
// OR if its caster's Z value is similar to the previous potential caster
if (shadowIndex == drawIndex || casterZ - lastCasterZ < SHADOW_DELTA) {
caster->issueDrawShadowOperation(casterOp->localMatrix, handler);
lastCasterZ = casterZ; // must do this even if current caster not casting a shadow
shadowIndex++;
continue;
}
}
// only the actual child DL draw needs to be in save/restore,
// since it modifies the renderer's matrix
int restoreTo = renderer.save(SaveFlags::Matrix);
DrawRenderNodeOp* childOp = zTranslatedNodes[drawIndex].value;
renderer.concatMatrix(childOp->localMatrix);
childOp->skipInOrderDraw = false; // this is horrible, I'm so sorry everyone
handler(childOp, renderer.getSaveCount() - 1, properties().getClipToBounds());
childOp->skipInOrderDraw = true;
renderer.restoreToCount(restoreTo);
drawIndex++;
}
renderer.restoreToCount(rootRestoreTo);
}
template <class T>
void RenderNode::issueOperationsOfProjectedChildren(OpenGLRenderer& renderer, T& handler) {
DISPLAY_LIST_LOGD("%*s%d projected children:", (handler.level() + 1) * 2, "", mProjectedNodes.size());
const SkPath* projectionReceiverOutline = properties().getOutline().getPath();
int restoreTo = renderer.getSaveCount();
LinearAllocator& alloc = handler.allocator();
handler(new (alloc) SaveOp(SaveFlags::MatrixClip),
PROPERTY_SAVECOUNT, properties().getClipToBounds());
// Transform renderer to match background we're projecting onto
// (by offsetting canvas by translationX/Y of background rendernode, since only those are set)
const DisplayListOp* op =
#if HWUI_NEW_OPS
nullptr;
LOG_ALWAYS_FATAL("unsupported");
#else
(mDisplayList->getOps()[mDisplayList->projectionReceiveIndex]);
#endif
const DrawRenderNodeOp* backgroundOp = reinterpret_cast<const DrawRenderNodeOp*>(op);
const RenderProperties& backgroundProps = backgroundOp->renderNode->properties();
renderer.translate(backgroundProps.getTranslationX(), backgroundProps.getTranslationY());
// If the projection receiver has an outline, we mask projected content to it
// (which we know, apriori, are all tessellated paths)
renderer.setProjectionPathMask(alloc, projectionReceiverOutline);
// draw projected nodes
for (size_t i = 0; i < mProjectedNodes.size(); i++) {
renderNodeOp_t* childOp = mProjectedNodes[i];
// matrix save, concat, and restore can be done safely without allocating operations
int restoreTo = renderer.save(SaveFlags::Matrix);
renderer.concatMatrix(childOp->transformFromCompositingAncestor);
childOp->skipInOrderDraw = false; // this is horrible, I'm so sorry everyone
handler(childOp, renderer.getSaveCount() - 1, properties().getClipToBounds());
childOp->skipInOrderDraw = true;
renderer.restoreToCount(restoreTo);
}
handler(new (alloc) RestoreToCountOp(restoreTo),
PROPERTY_SAVECOUNT, properties().getClipToBounds());
}
/**
* This function serves both defer and replay modes, and will organize the displayList's component
* operations for a single frame:
*
* Every 'simple' state operation that affects just the matrix and alpha (or other factors of
* DeferredDisplayState) may be issued directly to the renderer, but complex operations (with custom
* defer logic) and operations in displayListOps are issued through the 'handler' which handles the
* defer vs replay logic, per operation
*/
template <class T>
void RenderNode::issueOperations(OpenGLRenderer& renderer, T& handler) {
if (mDisplayList->isEmpty()) {
DISPLAY_LIST_LOGD("%*sEmpty display list (%p, %s)", handler.level() * 2, "",
this, getName());
return;
}
#if HWUI_NEW_OPS
const bool drawLayer = false;
#else
const bool drawLayer = (mLayer && (&renderer != mLayer->renderer.get()));
#endif
// If we are updating the contents of mLayer, we don't want to apply any of
// the RenderNode's properties to this issueOperations pass. Those will all
// be applied when the layer is drawn, aka when this is true.
const bool useViewProperties = (!mLayer || drawLayer);
if (useViewProperties) {
const Outline& outline = properties().getOutline();
if (properties().getAlpha() <= 0
|| (outline.getShouldClip() && outline.isEmpty())
|| properties().getScaleX() == 0
|| properties().getScaleY() == 0) {
DISPLAY_LIST_LOGD("%*sRejected display list (%p, %s)", handler.level() * 2, "",
this, getName());
return;
}
}
handler.startMark(getName());
#if DEBUG_DISPLAY_LIST
const Rect& clipRect = renderer.getLocalClipBounds();
DISPLAY_LIST_LOGD("%*sStart display list (%p, %s), localClipBounds: %.0f, %.0f, %.0f, %.0f",
handler.level() * 2, "", this, getName(),
clipRect.left, clipRect.top, clipRect.right, clipRect.bottom);
#endif
LinearAllocator& alloc = handler.allocator();
int restoreTo = renderer.getSaveCount();
handler(new (alloc) SaveOp(SaveFlags::MatrixClip),
PROPERTY_SAVECOUNT, properties().getClipToBounds());
DISPLAY_LIST_LOGD("%*sSave %d %d", (handler.level() + 1) * 2, "",
SaveFlags::MatrixClip, restoreTo);
if (useViewProperties) {
setViewProperties<T>(renderer, handler);
}
#if HWUI_NEW_OPS
LOG_ALWAYS_FATAL("legacy op traversal not supported");
#else
bool quickRejected = properties().getClipToBounds()
&& renderer.quickRejectConservative(0, 0, properties().getWidth(), properties().getHeight());
if (!quickRejected) {
Matrix4 initialTransform(*(renderer.currentTransform()));
renderer.setBaseTransform(initialTransform);
if (drawLayer) {
handler(new (alloc) DrawLayerOp(mLayer),
renderer.getSaveCount() - 1, properties().getClipToBounds());
} else {
const int saveCountOffset = renderer.getSaveCount() - 1;
const int projectionReceiveIndex = mDisplayList->projectionReceiveIndex;
for (size_t chunkIndex = 0; chunkIndex < mDisplayList->getChunks().size(); chunkIndex++) {
const DisplayList::Chunk& chunk = mDisplayList->getChunks()[chunkIndex];
std::vector<ZDrawRenderNodeOpPair> zTranslatedNodes;
buildZSortedChildList(chunk, zTranslatedNodes);
issueOperationsOf3dChildren(ChildrenSelectMode::NegativeZChildren,
initialTransform, zTranslatedNodes, renderer, handler);
for (size_t opIndex = chunk.beginOpIndex; opIndex < chunk.endOpIndex; opIndex++) {
DisplayListOp *op = mDisplayList->getOps()[opIndex];
#if DEBUG_DISPLAY_LIST
op->output(handler.level() + 1);
#endif
handler(op, saveCountOffset, properties().getClipToBounds());
if (CC_UNLIKELY(!mProjectedNodes.empty() && projectionReceiveIndex >= 0 &&
opIndex == static_cast<size_t>(projectionReceiveIndex))) {
issueOperationsOfProjectedChildren(renderer, handler);
}
}
issueOperationsOf3dChildren(ChildrenSelectMode::PositiveZChildren,
initialTransform, zTranslatedNodes, renderer, handler);
}
}
}
#endif
DISPLAY_LIST_LOGD("%*sRestoreToCount %d", (handler.level() + 1) * 2, "", restoreTo);
handler(new (alloc) RestoreToCountOp(restoreTo),
PROPERTY_SAVECOUNT, properties().getClipToBounds());
DISPLAY_LIST_LOGD("%*sDone (%p, %s)", handler.level() * 2, "", this, getName());
handler.endMark();
}
} /* namespace uirenderer */
} /* namespace android */