Jeff Brown c0347aa19f Prevent unintended rotations.
Bug: 4981385

Changed the orientation listener to notify the policy whenever
its proposed orientation changes, and changes the window manager
to notify the orientation listener when the actual orientation
changes.  This allows us to better handle the case where the
policy has rejected a given proposal at one time (because the
current application forced orientation) but might choose
to accept the same proposal at another time.

It's important that the proposal always be up to date.  A proposal
becomes irrelevant as soon as the phone posture changes such
that we can no longer determine the orientation with confidence
(such as when a device is placed flat on a table).

Simplified the orientation filtering.  Now we just wait 200ms
for the device to be still before issuing a proposal.  The idea
is that if the device is moving around a lot, we assume that
the device is being picked up or put down or otherwise in
the process of being moved.  We don't want to change the rotation
until that's all settled down.  However, we do want to tolerate
a certain amount of environmental noise.

(The previous confidence algorithm was also designed along
these lines but it was less direct about waiting for things
to settle.  Instead it simply made orientation changes take
longer than usual while unsettled, but the extra delay was often
too much or too little.  This one should be easier to tune.)

Change-Id: I09e6befea1f0994b6b15d424f3182859c0d9a530
2011-09-23 17:26:09 -07:00

428 lines
16 KiB
Python
Executable File

#!/usr/bin/env python2.6
#
# Copyright (C) 2011 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#
# Plots debug log output from WindowOrientationListener.
# See README.txt for details.
#
import numpy as np
import matplotlib.pyplot as plot
import subprocess
import re
import fcntl
import os
import errno
import bisect
from datetime import datetime, timedelta
# Parameters.
timespan = 15 # seconds total span shown
scrolljump = 5 # seconds jump when scrolling
timeticks = 1 # seconds between each time tick
# Non-blocking stream wrapper.
class NonBlockingStream:
def __init__(self, stream):
fcntl.fcntl(stream, fcntl.F_SETFL, os.O_NONBLOCK)
self.stream = stream
self.buffer = ''
self.pos = 0
def readline(self):
while True:
index = self.buffer.find('\n', self.pos)
if index != -1:
result = self.buffer[self.pos:index]
self.pos = index + 1
return result
self.buffer = self.buffer[self.pos:]
self.pos = 0
try:
chunk = os.read(self.stream.fileno(), 4096)
except OSError, e:
if e.errno == errno.EAGAIN:
return None
raise e
if len(chunk) == 0:
if len(self.buffer) == 0:
raise(EOFError)
else:
result = self.buffer
self.buffer = ''
self.pos = 0
return result
self.buffer += chunk
# Plotter
class Plotter:
def __init__(self, adbout):
self.adbout = adbout
self.fig = plot.figure(1)
self.fig.suptitle('Window Orientation Listener', fontsize=12)
self.fig.set_dpi(96)
self.fig.set_size_inches(16, 12, forward=True)
self.raw_acceleration_x = self._make_timeseries()
self.raw_acceleration_y = self._make_timeseries()
self.raw_acceleration_z = self._make_timeseries()
self.raw_acceleration_axes = self._add_timeseries_axes(
1, 'Raw Acceleration', 'm/s^2', [-20, 20],
yticks=range(-15, 16, 5))
self.raw_acceleration_line_x = self._add_timeseries_line(
self.raw_acceleration_axes, 'x', 'red')
self.raw_acceleration_line_y = self._add_timeseries_line(
self.raw_acceleration_axes, 'y', 'green')
self.raw_acceleration_line_z = self._add_timeseries_line(
self.raw_acceleration_axes, 'z', 'blue')
self._add_timeseries_legend(self.raw_acceleration_axes)
shared_axis = self.raw_acceleration_axes
self.filtered_acceleration_x = self._make_timeseries()
self.filtered_acceleration_y = self._make_timeseries()
self.filtered_acceleration_z = self._make_timeseries()
self.magnitude = self._make_timeseries()
self.filtered_acceleration_axes = self._add_timeseries_axes(
2, 'Filtered Acceleration', 'm/s^2', [-20, 20],
sharex=shared_axis,
yticks=range(-15, 16, 5))
self.filtered_acceleration_line_x = self._add_timeseries_line(
self.filtered_acceleration_axes, 'x', 'red')
self.filtered_acceleration_line_y = self._add_timeseries_line(
self.filtered_acceleration_axes, 'y', 'green')
self.filtered_acceleration_line_z = self._add_timeseries_line(
self.filtered_acceleration_axes, 'z', 'blue')
self.magnitude_line = self._add_timeseries_line(
self.filtered_acceleration_axes, 'magnitude', 'orange', linewidth=2)
self._add_timeseries_legend(self.filtered_acceleration_axes)
self.tilt_angle = self._make_timeseries()
self.tilt_angle_axes = self._add_timeseries_axes(
3, 'Tilt Angle', 'degrees', [-105, 105],
sharex=shared_axis,
yticks=range(-90, 91, 30))
self.tilt_angle_line = self._add_timeseries_line(
self.tilt_angle_axes, 'tilt', 'black')
self._add_timeseries_legend(self.tilt_angle_axes)
self.orientation_angle = self._make_timeseries()
self.orientation_angle_axes = self._add_timeseries_axes(
4, 'Orientation Angle', 'degrees', [-25, 375],
sharex=shared_axis,
yticks=range(0, 361, 45))
self.orientation_angle_line = self._add_timeseries_line(
self.orientation_angle_axes, 'orientation', 'black')
self._add_timeseries_legend(self.orientation_angle_axes)
self.current_rotation = self._make_timeseries()
self.proposed_rotation = self._make_timeseries()
self.proposal_rotation = self._make_timeseries()
self.orientation_axes = self._add_timeseries_axes(
5, 'Current / Proposed Orientation and Confidence', 'rotation', [-1, 4],
sharex=shared_axis,
yticks=range(0, 4))
self.current_rotation_line = self._add_timeseries_line(
self.orientation_axes, 'current', 'black', linewidth=2)
self.proposal_rotation_line = self._add_timeseries_line(
self.orientation_axes, 'proposal', 'purple', linewidth=3)
self.proposed_rotation_line = self._add_timeseries_line(
self.orientation_axes, 'proposed', 'green', linewidth=3)
self._add_timeseries_legend(self.orientation_axes)
self.proposal_confidence = [[self._make_timeseries(), self._make_timeseries()]
for i in range(0, 4)]
self.proposal_confidence_polys = []
self.sample_latency = self._make_timeseries()
self.sample_latency_axes = self._add_timeseries_axes(
6, 'Accelerometer Sampling Latency', 'ms', [-10, 500],
sharex=shared_axis,
yticks=range(0, 500, 100))
self.sample_latency_line = self._add_timeseries_line(
self.sample_latency_axes, 'latency', 'black')
self._add_timeseries_legend(self.sample_latency_axes)
self.timer = self.fig.canvas.new_timer(interval=100)
self.timer.add_callback(lambda: self.update())
self.timer.start()
self.timebase = None
self._reset_parse_state()
# Initialize a time series.
def _make_timeseries(self):
return [[], []]
# Add a subplot to the figure for a time series.
def _add_timeseries_axes(self, index, title, ylabel, ylim, yticks, sharex=None):
num_graphs = 6
height = 0.9 / num_graphs
top = 0.95 - height * index
axes = self.fig.add_axes([0.1, top, 0.8, height],
xscale='linear',
xlim=[0, timespan],
ylabel=ylabel,
yscale='linear',
ylim=ylim,
sharex=sharex)
axes.text(0.02, 0.02, title, transform=axes.transAxes, fontsize=10, fontweight='bold')
axes.set_xlabel('time (s)', fontsize=10, fontweight='bold')
axes.set_ylabel(ylabel, fontsize=10, fontweight='bold')
axes.set_xticks(range(0, timespan + 1, timeticks))
axes.set_yticks(yticks)
axes.grid(True)
for label in axes.get_xticklabels():
label.set_fontsize(9)
for label in axes.get_yticklabels():
label.set_fontsize(9)
return axes
# Add a line to the axes for a time series.
def _add_timeseries_line(self, axes, label, color, linewidth=1):
return axes.plot([], label=label, color=color, linewidth=linewidth)[0]
# Add a legend to a time series.
def _add_timeseries_legend(self, axes):
axes.legend(
loc='upper left',
bbox_to_anchor=(1.01, 1),
borderpad=0.1,
borderaxespad=0.1,
prop={'size': 10})
# Resets the parse state.
def _reset_parse_state(self):
self.parse_raw_acceleration_x = None
self.parse_raw_acceleration_y = None
self.parse_raw_acceleration_z = None
self.parse_filtered_acceleration_x = None
self.parse_filtered_acceleration_y = None
self.parse_filtered_acceleration_z = None
self.parse_magnitude = None
self.parse_tilt_angle = None
self.parse_orientation_angle = None
self.parse_current_rotation = None
self.parse_proposed_rotation = None
self.parse_proposal_rotation = None
self.parse_proposal_confidence = None
self.parse_sample_latency = None
# Update samples.
def update(self):
timeindex = 0
while True:
try:
line = self.adbout.readline()
except EOFError:
plot.close()
return
if line is None:
break
print line
try:
timestamp = self._parse_timestamp(line)
except ValueError, e:
continue
if self.timebase is None:
self.timebase = timestamp
delta = timestamp - self.timebase
timeindex = delta.seconds + delta.microseconds * 0.000001
if line.find('Raw acceleration vector:') != -1:
self.parse_raw_acceleration_x = self._get_following_number(line, 'x=')
self.parse_raw_acceleration_y = self._get_following_number(line, 'y=')
self.parse_raw_acceleration_z = self._get_following_number(line, 'z=')
if line.find('Filtered acceleration vector:') != -1:
self.parse_filtered_acceleration_x = self._get_following_number(line, 'x=')
self.parse_filtered_acceleration_y = self._get_following_number(line, 'y=')
self.parse_filtered_acceleration_z = self._get_following_number(line, 'z=')
if line.find('magnitude=') != -1:
self.parse_magnitude = self._get_following_number(line, 'magnitude=')
if line.find('tiltAngle=') != -1:
self.parse_tilt_angle = self._get_following_number(line, 'tiltAngle=')
if line.find('orientationAngle=') != -1:
self.parse_orientation_angle = self._get_following_number(line, 'orientationAngle=')
if line.find('Result:') != -1:
self.parse_current_rotation = self._get_following_number(line, 'currentRotation=')
self.parse_proposed_rotation = self._get_following_number(line, 'proposedRotation=')
self.parse_proposal_rotation = self._get_following_number(line, 'proposalRotation=')
self.parse_proposal_confidence = self._get_following_number(line, 'proposalConfidence=')
self.parse_sample_latency = self._get_following_number(line, 'timeDeltaMS=')
self._append(self.raw_acceleration_x, timeindex, self.parse_raw_acceleration_x)
self._append(self.raw_acceleration_y, timeindex, self.parse_raw_acceleration_y)
self._append(self.raw_acceleration_z, timeindex, self.parse_raw_acceleration_z)
self._append(self.filtered_acceleration_x, timeindex, self.parse_filtered_acceleration_x)
self._append(self.filtered_acceleration_y, timeindex, self.parse_filtered_acceleration_y)
self._append(self.filtered_acceleration_z, timeindex, self.parse_filtered_acceleration_z)
self._append(self.magnitude, timeindex, self.parse_magnitude)
self._append(self.tilt_angle, timeindex, self.parse_tilt_angle)
self._append(self.orientation_angle, timeindex, self.parse_orientation_angle)
self._append(self.current_rotation, timeindex, self.parse_current_rotation)
if self.parse_proposed_rotation >= 0:
self._append(self.proposed_rotation, timeindex, self.parse_proposed_rotation)
else:
self._append(self.proposed_rotation, timeindex, None)
if self.parse_proposal_rotation >= 0:
self._append(self.proposal_rotation, timeindex, self.parse_proposal_rotation)
else:
self._append(self.proposal_rotation, timeindex, None)
for i in range(0, 4):
self._append(self.proposal_confidence[i][0], timeindex, i)
if i == self.parse_proposal_rotation:
self._append(self.proposal_confidence[i][1], timeindex,
i + self.parse_proposal_confidence)
else:
self._append(self.proposal_confidence[i][1], timeindex, i)
self._append(self.sample_latency, timeindex, self.parse_sample_latency)
self._reset_parse_state()
# Scroll the plots.
if timeindex > timespan:
bottom = int(timeindex) - timespan + scrolljump
self.timebase += timedelta(seconds=bottom)
self._scroll(self.raw_acceleration_x, bottom)
self._scroll(self.raw_acceleration_y, bottom)
self._scroll(self.raw_acceleration_z, bottom)
self._scroll(self.filtered_acceleration_x, bottom)
self._scroll(self.filtered_acceleration_y, bottom)
self._scroll(self.filtered_acceleration_z, bottom)
self._scroll(self.magnitude, bottom)
self._scroll(self.tilt_angle, bottom)
self._scroll(self.orientation_angle, bottom)
self._scroll(self.current_rotation, bottom)
self._scroll(self.proposed_rotation, bottom)
self._scroll(self.proposal_rotation, bottom)
for i in range(0, 4):
self._scroll(self.proposal_confidence[i][0], bottom)
self._scroll(self.proposal_confidence[i][1], bottom)
self._scroll(self.sample_latency, bottom)
# Redraw the plots.
self.raw_acceleration_line_x.set_data(self.raw_acceleration_x)
self.raw_acceleration_line_y.set_data(self.raw_acceleration_y)
self.raw_acceleration_line_z.set_data(self.raw_acceleration_z)
self.filtered_acceleration_line_x.set_data(self.filtered_acceleration_x)
self.filtered_acceleration_line_y.set_data(self.filtered_acceleration_y)
self.filtered_acceleration_line_z.set_data(self.filtered_acceleration_z)
self.magnitude_line.set_data(self.magnitude)
self.tilt_angle_line.set_data(self.tilt_angle)
self.orientation_angle_line.set_data(self.orientation_angle)
self.current_rotation_line.set_data(self.current_rotation)
self.proposed_rotation_line.set_data(self.proposed_rotation)
self.proposal_rotation_line.set_data(self.proposal_rotation)
self.sample_latency_line.set_data(self.sample_latency)
for poly in self.proposal_confidence_polys:
poly.remove()
self.proposal_confidence_polys = []
for i in range(0, 4):
self.proposal_confidence_polys.append(self.orientation_axes.fill_between(
self.proposal_confidence[i][0][0],
self.proposal_confidence[i][0][1],
self.proposal_confidence[i][1][1],
facecolor='goldenrod', edgecolor='goldenrod'))
self.fig.canvas.draw_idle()
# Scroll a time series.
def _scroll(self, timeseries, bottom):
bottom_index = bisect.bisect_left(timeseries[0], bottom)
del timeseries[0][:bottom_index]
del timeseries[1][:bottom_index]
for i, timeindex in enumerate(timeseries[0]):
timeseries[0][i] = timeindex - bottom
# Extract a word following the specified prefix.
def _get_following_word(self, line, prefix):
prefix_index = line.find(prefix)
if prefix_index == -1:
return None
start_index = prefix_index + len(prefix)
delim_index = line.find(',', start_index)
if delim_index == -1:
return line[start_index:]
else:
return line[start_index:delim_index]
# Extract a number following the specified prefix.
def _get_following_number(self, line, prefix):
word = self._get_following_word(line, prefix)
if word is None:
return None
return float(word)
# Extract an array of numbers following the specified prefix.
def _get_following_array_of_numbers(self, line, prefix):
prefix_index = line.find(prefix + '[')
if prefix_index == -1:
return None
start_index = prefix_index + len(prefix) + 1
delim_index = line.find(']', start_index)
if delim_index == -1:
return None
result = []
while start_index < delim_index:
comma_index = line.find(', ', start_index, delim_index)
if comma_index == -1:
result.append(float(line[start_index:delim_index]))
break;
result.append(float(line[start_index:comma_index]))
start_index = comma_index + 2
return result
# Add a value to a time series.
def _append(self, timeseries, timeindex, number):
timeseries[0].append(timeindex)
timeseries[1].append(number)
# Parse the logcat timestamp.
# Timestamp has the form '01-21 20:42:42.930'
def _parse_timestamp(self, line):
return datetime.strptime(line[0:18], '%m-%d %H:%M:%S.%f')
# Notice
print "Window Orientation Listener plotting tool"
print "-----------------------------------------\n"
print "Please turn on the Window Orientation Listener logging in Development Settings."
# Start adb.
print "Starting adb logcat.\n"
adb = subprocess.Popen(['adb', 'logcat', '-s', '-v', 'time', 'WindowOrientationListener:V'],
stdout=subprocess.PIPE)
adbout = NonBlockingStream(adb.stdout)
# Prepare plotter.
plotter = Plotter(adbout)
plotter.update()
# Main loop.
plot.show()