Jeff Brown 33bbfd2232 Add support for mouse hover and scroll wheel.
Dispatch ACTION_HOVER_MOVE and ACTION_SCROLL through the View
hierarchy as onGenericTouchEvent.  Pointer events dispatched
this way are delivered to the view under the pointer.  Non-pointer
events continue to be delivered to the focused view.

Added scroll wheel support to AbsListView, ScrollView,
HorizontalScrollView and WebView.  Shift+VSCROLL is translated
to HSCROLL as appropriate.

Added logging of new pointer events in PointerLocationView.

Fixed a problem in EventHub when a USB device is removed that
resulted in a long stream of ENODEV errors being logged until INotify
noticed the device was gone.

Note that the new events are not supported by wallpapers at this time
because the wallpaper engine only delivers touch events.

Make all mouse buttons behave identically.  (Effectively we only
support one button.)

Change-Id: I9ab445ffb63c813fcb07db6693987b02475f3756
2011-02-25 17:06:07 -08:00

1168 lines
39 KiB
C++

/*
* Copyright (C) 2005 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//
// Handle events, like key input and vsync.
//
// The goal is to provide an optimized solution for Linux, not an
// implementation that works well across all platforms. We expect
// events to arrive on file descriptors, so that we can use a select()
// select() call to sleep.
//
// We can't select() on anything but network sockets in Windows, so we
// provide an alternative implementation of waitEvent for that platform.
//
#define LOG_TAG "EventHub"
//#define LOG_NDEBUG 0
#include "EventHub.h"
#include <hardware_legacy/power.h>
#include <cutils/properties.h>
#include <utils/Log.h>
#include <utils/Timers.h>
#include <utils/threads.h>
#include <utils/Errors.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <memory.h>
#include <errno.h>
#include <assert.h>
#include <ui/KeyLayoutMap.h>
#include <ui/KeyCharacterMap.h>
#include <ui/VirtualKeyMap.h>
#include <string.h>
#include <stdint.h>
#include <dirent.h>
#ifdef HAVE_INOTIFY
# include <sys/inotify.h>
#endif
#ifdef HAVE_ANDROID_OS
# include <sys/limits.h> /* not part of Linux */
#endif
#include <sys/poll.h>
#include <sys/ioctl.h>
/* this macro is used to tell if "bit" is set in "array"
* it selects a byte from the array, and does a boolean AND
* operation with a byte that only has the relevant bit set.
* eg. to check for the 12th bit, we do (array[1] & 1<<4)
*/
#define test_bit(bit, array) (array[bit/8] & (1<<(bit%8)))
/* this macro computes the number of bytes needed to represent a bit array of the specified size */
#define sizeof_bit_array(bits) ((bits + 7) / 8)
// Fd at index 0 is always reserved for inotify
#define FIRST_ACTUAL_DEVICE_INDEX 1
#define INDENT " "
#define INDENT2 " "
#define INDENT3 " "
namespace android {
static const char *WAKE_LOCK_ID = "KeyEvents";
static const char *DEVICE_PATH = "/dev/input";
/* return the larger integer */
static inline int max(int v1, int v2)
{
return (v1 > v2) ? v1 : v2;
}
static inline const char* toString(bool value) {
return value ? "true" : "false";
}
// --- EventHub::Device ---
EventHub::Device::Device(int fd, int32_t id, const String8& path,
const InputDeviceIdentifier& identifier) :
next(NULL),
fd(fd), id(id), path(path), identifier(identifier),
classes(0), keyBitmask(NULL), relBitmask(NULL),
configuration(NULL), virtualKeyMap(NULL) {
}
EventHub::Device::~Device() {
close();
delete[] keyBitmask;
delete[] relBitmask;
delete configuration;
delete virtualKeyMap;
}
void EventHub::Device::close() {
if (fd >= 0) {
::close(fd);
fd = -1;
}
}
// --- EventHub ---
EventHub::EventHub(void) :
mError(NO_INIT), mBuiltInKeyboardId(-1), mNextDeviceId(1),
mOpeningDevices(0), mClosingDevices(0),
mOpened(false), mNeedToSendFinishedDeviceScan(false),
mInputBufferIndex(0), mInputBufferCount(0), mInputFdIndex(0) {
acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
memset(mSwitches, 0, sizeof(mSwitches));
}
EventHub::~EventHub(void) {
release_wake_lock(WAKE_LOCK_ID);
// we should free stuff here...
}
status_t EventHub::errorCheck() const {
return mError;
}
String8 EventHub::getDeviceName(int32_t deviceId) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == NULL) return String8();
return device->identifier.name;
}
uint32_t EventHub::getDeviceClasses(int32_t deviceId) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == NULL) return 0;
return device->classes;
}
void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && device->configuration) {
*outConfiguration = *device->configuration;
} else {
outConfiguration->clear();
}
}
status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
RawAbsoluteAxisInfo* outAxisInfo) const {
outAxisInfo->clear();
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == NULL) return -1;
struct input_absinfo info;
if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
LOGW("Error reading absolute controller %d for device %s fd %d\n",
axis, device->identifier.name.string(), device->fd);
return -errno;
}
if (info.minimum != info.maximum) {
outAxisInfo->valid = true;
outAxisInfo->minValue = info.minimum;
outAxisInfo->maxValue = info.maximum;
outAxisInfo->flat = info.flat;
outAxisInfo->fuzz = info.fuzz;
}
return OK;
}
bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
if (axis >= 0 && axis <= REL_MAX) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && device->relBitmask) {
return test_bit(axis, device->relBitmask);
}
}
return false;
}
int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
if (scanCode >= 0 && scanCode <= KEY_MAX) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != NULL) {
return getScanCodeStateLocked(device, scanCode);
}
}
return AKEY_STATE_UNKNOWN;
}
int32_t EventHub::getScanCodeStateLocked(Device* device, int32_t scanCode) const {
uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)];
memset(key_bitmask, 0, sizeof(key_bitmask));
if (ioctl(device->fd,
EVIOCGKEY(sizeof(key_bitmask)), key_bitmask) >= 0) {
return test_bit(scanCode, key_bitmask) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
}
return AKEY_STATE_UNKNOWN;
}
int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != NULL) {
return getKeyCodeStateLocked(device, keyCode);
}
return AKEY_STATE_UNKNOWN;
}
int32_t EventHub::getKeyCodeStateLocked(Device* device, int32_t keyCode) const {
if (!device->keyMap.haveKeyLayout()) {
return AKEY_STATE_UNKNOWN;
}
Vector<int32_t> scanCodes;
device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes);
uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)];
memset(key_bitmask, 0, sizeof(key_bitmask));
if (ioctl(device->fd, EVIOCGKEY(sizeof(key_bitmask)), key_bitmask) >= 0) {
#if 0
for (size_t i=0; i<=KEY_MAX; i++) {
LOGI("(Scan code %d: down=%d)", i, test_bit(i, key_bitmask));
}
#endif
const size_t N = scanCodes.size();
for (size_t i=0; i<N && i<=KEY_MAX; i++) {
int32_t sc = scanCodes.itemAt(i);
//LOGI("Code %d: down=%d", sc, test_bit(sc, key_bitmask));
if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, key_bitmask)) {
return AKEY_STATE_DOWN;
}
}
return AKEY_STATE_UP;
}
return AKEY_STATE_UNKNOWN;
}
int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
if (sw >= 0 && sw <= SW_MAX) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != NULL) {
return getSwitchStateLocked(device, sw);
}
}
return AKEY_STATE_UNKNOWN;
}
int32_t EventHub::getSwitchStateLocked(Device* device, int32_t sw) const {
uint8_t sw_bitmask[sizeof_bit_array(SW_MAX + 1)];
memset(sw_bitmask, 0, sizeof(sw_bitmask));
if (ioctl(device->fd,
EVIOCGSW(sizeof(sw_bitmask)), sw_bitmask) >= 0) {
return test_bit(sw, sw_bitmask) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
}
return AKEY_STATE_UNKNOWN;
}
bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes,
const int32_t* keyCodes, uint8_t* outFlags) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != NULL) {
return markSupportedKeyCodesLocked(device, numCodes, keyCodes, outFlags);
}
return false;
}
bool EventHub::markSupportedKeyCodesLocked(Device* device, size_t numCodes,
const int32_t* keyCodes, uint8_t* outFlags) const {
if (!device->keyMap.haveKeyLayout() || !device->keyBitmask) {
return false;
}
Vector<int32_t> scanCodes;
for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
scanCodes.clear();
status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey(
keyCodes[codeIndex], &scanCodes);
if (! err) {
// check the possible scan codes identified by the layout map against the
// map of codes actually emitted by the driver
for (size_t sc = 0; sc < scanCodes.size(); sc++) {
if (test_bit(scanCodes[sc], device->keyBitmask)) {
outFlags[codeIndex] = 1;
break;
}
}
}
}
return true;
}
status_t EventHub::mapKey(int32_t deviceId, int scancode,
int32_t* outKeycode, uint32_t* outFlags) const
{
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && device->keyMap.haveKeyLayout()) {
status_t err = device->keyMap.keyLayoutMap->mapKey(scancode, outKeycode, outFlags);
if (err == NO_ERROR) {
return NO_ERROR;
}
}
if (mBuiltInKeyboardId != -1) {
device = getDeviceLocked(mBuiltInKeyboardId);
if (device && device->keyMap.haveKeyLayout()) {
status_t err = device->keyMap.keyLayoutMap->mapKey(scancode, outKeycode, outFlags);
if (err == NO_ERROR) {
return NO_ERROR;
}
}
}
*outKeycode = 0;
*outFlags = 0;
return NAME_NOT_FOUND;
}
status_t EventHub::mapAxis(int32_t deviceId, int scancode,
int32_t* outAxis) const
{
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && device->keyMap.haveKeyLayout()) {
status_t err = device->keyMap.keyLayoutMap->mapAxis(scancode, outAxis);
if (err == NO_ERROR) {
return NO_ERROR;
}
}
if (mBuiltInKeyboardId != -1) {
device = getDeviceLocked(mBuiltInKeyboardId);
if (device && device->keyMap.haveKeyLayout()) {
status_t err = device->keyMap.keyLayoutMap->mapAxis(scancode, outAxis);
if (err == NO_ERROR) {
return NO_ERROR;
}
}
}
*outAxis = -1;
return NAME_NOT_FOUND;
}
void EventHub::addExcludedDevice(const char* deviceName)
{
AutoMutex _l(mLock);
String8 name(deviceName);
mExcludedDevices.push_back(name);
}
bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device) {
uint8_t bitmask[sizeof_bit_array(LED_MAX + 1)];
memset(bitmask, 0, sizeof(bitmask));
if (ioctl(device->fd, EVIOCGBIT(EV_LED, sizeof(bitmask)), bitmask) >= 0) {
if (test_bit(led, bitmask)) {
return true;
}
}
}
return false;
}
void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device) {
struct input_event ev;
ev.time.tv_sec = 0;
ev.time.tv_usec = 0;
ev.type = EV_LED;
ev.code = led;
ev.value = on ? 1 : 0;
ssize_t nWrite;
do {
nWrite = write(device->fd, &ev, sizeof(struct input_event));
} while (nWrite == -1 && errno == EINTR);
}
}
void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
Vector<VirtualKeyDefinition>& outVirtualKeys) const {
outVirtualKeys.clear();
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && device->virtualKeyMap) {
outVirtualKeys.appendVector(device->virtualKeyMap->getVirtualKeys());
}
}
EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
if (deviceId == 0) {
deviceId = mBuiltInKeyboardId;
}
size_t numDevices = mDevices.size();
for (size_t i = FIRST_ACTUAL_DEVICE_INDEX; i < numDevices; i++) {
Device* device = mDevices[i];
if (device->id == deviceId) {
return device;
}
}
return NULL;
}
bool EventHub::getEvent(RawEvent* outEvent) {
outEvent->deviceId = 0;
outEvent->type = 0;
outEvent->scanCode = 0;
outEvent->keyCode = 0;
outEvent->flags = 0;
outEvent->value = 0;
outEvent->when = 0;
// Note that we only allow one caller to getEvent(), so don't need
// to do locking here... only when adding/removing devices.
if (!mOpened) {
mError = openPlatformInput() ? NO_ERROR : UNKNOWN_ERROR;
mOpened = true;
mNeedToSendFinishedDeviceScan = true;
}
for (;;) {
// Report any devices that had last been added/removed.
if (mClosingDevices != NULL) {
Device* device = mClosingDevices;
LOGV("Reporting device closed: id=%d, name=%s\n",
device->id, device->path.string());
mClosingDevices = device->next;
if (device->id == mBuiltInKeyboardId) {
outEvent->deviceId = 0;
} else {
outEvent->deviceId = device->id;
}
outEvent->type = DEVICE_REMOVED;
outEvent->when = systemTime(SYSTEM_TIME_MONOTONIC);
delete device;
mNeedToSendFinishedDeviceScan = true;
return true;
}
if (mOpeningDevices != NULL) {
Device* device = mOpeningDevices;
LOGV("Reporting device opened: id=%d, name=%s\n",
device->id, device->path.string());
mOpeningDevices = device->next;
if (device->id == mBuiltInKeyboardId) {
outEvent->deviceId = 0;
} else {
outEvent->deviceId = device->id;
}
outEvent->type = DEVICE_ADDED;
outEvent->when = systemTime(SYSTEM_TIME_MONOTONIC);
mNeedToSendFinishedDeviceScan = true;
return true;
}
if (mNeedToSendFinishedDeviceScan) {
mNeedToSendFinishedDeviceScan = false;
outEvent->type = FINISHED_DEVICE_SCAN;
outEvent->when = systemTime(SYSTEM_TIME_MONOTONIC);
return true;
}
// Grab the next input event.
bool deviceWasRemoved = false;
for (;;) {
// Consume buffered input events, if any.
if (mInputBufferIndex < mInputBufferCount) {
const struct input_event& iev = mInputBufferData[mInputBufferIndex++];
const Device* device = mDevices[mInputFdIndex];
LOGV("%s got: t0=%d, t1=%d, type=%d, code=%d, v=%d", device->path.string(),
(int) iev.time.tv_sec, (int) iev.time.tv_usec, iev.type, iev.code, iev.value);
if (device->id == mBuiltInKeyboardId) {
outEvent->deviceId = 0;
} else {
outEvent->deviceId = device->id;
}
outEvent->type = iev.type;
outEvent->scanCode = iev.code;
outEvent->flags = 0;
if (iev.type == EV_KEY) {
outEvent->keyCode = AKEYCODE_UNKNOWN;
if (device->keyMap.haveKeyLayout()) {
status_t err = device->keyMap.keyLayoutMap->mapKey(iev.code,
&outEvent->keyCode, &outEvent->flags);
LOGV("iev.code=%d keyCode=%d flags=0x%08x err=%d\n",
iev.code, outEvent->keyCode, outEvent->flags, err);
}
} else {
outEvent->keyCode = iev.code;
}
outEvent->value = iev.value;
// Use an event timestamp in the same timebase as
// java.lang.System.nanoTime() and android.os.SystemClock.uptimeMillis()
// as expected by the rest of the system.
outEvent->when = systemTime(SYSTEM_TIME_MONOTONIC);
return true;
}
// Finish reading all events from devices identified in previous poll().
// This code assumes that mInputDeviceIndex is initially 0 and that the
// revents member of pollfd is initialized to 0 when the device is first added.
// Since mFds[0] is used for inotify, we process regular events starting at index 1.
mInputFdIndex += 1;
if (mInputFdIndex >= mFds.size()) {
break;
}
const struct pollfd& pfd = mFds[mInputFdIndex];
if (pfd.revents & POLLIN) {
int32_t readSize = read(pfd.fd, mInputBufferData,
sizeof(struct input_event) * INPUT_BUFFER_SIZE);
if (readSize < 0) {
if (errno == ENODEV) {
deviceWasRemoved = true;
break;
}
if (errno != EAGAIN && errno != EINTR) {
LOGW("could not get event (errno=%d)", errno);
}
} else if ((readSize % sizeof(struct input_event)) != 0) {
LOGE("could not get event (wrong size: %d)", readSize);
} else {
mInputBufferCount = size_t(readSize) / sizeof(struct input_event);
mInputBufferIndex = 0;
}
}
}
// Handle the case where a device has been removed but INotify has not yet noticed.
if (deviceWasRemoved) {
AutoMutex _l(mLock);
closeDeviceAtIndexLocked(mInputFdIndex);
continue; // report added or removed devices immediately
}
#if HAVE_INOTIFY
// readNotify() will modify mFDs and mFDCount, so this must be done after
// processing all other events.
if(mFds[0].revents & POLLIN) {
readNotify(mFds[0].fd);
mFds.editItemAt(0).revents = 0;
continue; // report added or removed devices immediately
}
#endif
// Poll for events. Mind the wake lock dance!
// We hold a wake lock at all times except during poll(). This works due to some
// subtle choreography. When a device driver has pending (unread) events, it acquires
// a kernel wake lock. However, once the last pending event has been read, the device
// driver will release the kernel wake lock. To prevent the system from going to sleep
// when this happens, the EventHub holds onto its own user wake lock while the client
// is processing events. Thus the system can only sleep if there are no events
// pending or currently being processed.
release_wake_lock(WAKE_LOCK_ID);
int pollResult = poll(mFds.editArray(), mFds.size(), -1);
acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
if (pollResult <= 0) {
if (errno != EINTR) {
LOGW("poll failed (errno=%d)\n", errno);
usleep(100000);
}
}
// Prepare to process all of the FDs we just polled.
mInputFdIndex = 0;
}
}
/*
* Open the platform-specific input device.
*/
bool EventHub::openPlatformInput(void) {
/*
* Open platform-specific input device(s).
*/
int res, fd;
#ifdef HAVE_INOTIFY
fd = inotify_init();
res = inotify_add_watch(fd, DEVICE_PATH, IN_DELETE | IN_CREATE);
if(res < 0) {
LOGE("could not add watch for %s, %s\n", DEVICE_PATH, strerror(errno));
}
#else
/*
* The code in EventHub::getEvent assumes that mFDs[0] is an inotify fd.
* We allocate space for it and set it to something invalid.
*/
fd = -1;
#endif
// Reserve fd index 0 for inotify.
struct pollfd pollfd;
pollfd.fd = fd;
pollfd.events = POLLIN;
pollfd.revents = 0;
mFds.push(pollfd);
mDevices.push(NULL);
res = scanDir(DEVICE_PATH);
if(res < 0) {
LOGE("scan dir failed for %s\n", DEVICE_PATH);
}
return true;
}
// ----------------------------------------------------------------------------
static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) {
const uint8_t* end = array + endIndex;
array += startIndex;
while (array != end) {
if (*(array++) != 0) {
return true;
}
}
return false;
}
static const int32_t GAMEPAD_KEYCODES[] = {
AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C,
AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z,
AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1,
AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2,
AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR,
AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE,
AKEYCODE_BUTTON_1, AKEYCODE_BUTTON_2, AKEYCODE_BUTTON_3, AKEYCODE_BUTTON_4,
AKEYCODE_BUTTON_5, AKEYCODE_BUTTON_6, AKEYCODE_BUTTON_7, AKEYCODE_BUTTON_8,
AKEYCODE_BUTTON_9, AKEYCODE_BUTTON_10, AKEYCODE_BUTTON_11, AKEYCODE_BUTTON_12,
AKEYCODE_BUTTON_13, AKEYCODE_BUTTON_14, AKEYCODE_BUTTON_15, AKEYCODE_BUTTON_16,
};
int EventHub::openDevice(const char *devicePath) {
char buffer[80];
LOGV("Opening device: %s", devicePath);
AutoMutex _l(mLock);
int fd = open(devicePath, O_RDWR);
if(fd < 0) {
LOGE("could not open %s, %s\n", devicePath, strerror(errno));
return -1;
}
InputDeviceIdentifier identifier;
// Get device name.
if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
//fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno));
} else {
buffer[sizeof(buffer) - 1] = '\0';
identifier.name.setTo(buffer);
}
// Check to see if the device is on our excluded list
List<String8>::iterator iter = mExcludedDevices.begin();
List<String8>::iterator end = mExcludedDevices.end();
for ( ; iter != end; iter++) {
const char* test = *iter;
if (identifier.name == test) {
LOGI("ignoring event id %s driver %s\n", devicePath, test);
close(fd);
return -1;
}
}
// Get device driver version.
int driverVersion;
if(ioctl(fd, EVIOCGVERSION, &driverVersion)) {
LOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno));
close(fd);
return -1;
}
// Get device identifier.
struct input_id inputId;
if(ioctl(fd, EVIOCGID, &inputId)) {
LOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno));
close(fd);
return -1;
}
identifier.bus = inputId.bustype;
identifier.product = inputId.product;
identifier.vendor = inputId.vendor;
identifier.version = inputId.version;
// Get device physical location.
if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
//fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
} else {
buffer[sizeof(buffer) - 1] = '\0';
identifier.location.setTo(buffer);
}
// Get device unique id.
if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
//fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
} else {
buffer[sizeof(buffer) - 1] = '\0';
identifier.uniqueId.setTo(buffer);
}
// Make file descriptor non-blocking for use with poll().
if (fcntl(fd, F_SETFL, O_NONBLOCK)) {
LOGE("Error %d making device file descriptor non-blocking.", errno);
close(fd);
return -1;
}
// Allocate device. (The device object takes ownership of the fd at this point.)
int32_t deviceId = mNextDeviceId++;
Device* device = new Device(fd, deviceId, String8(devicePath), identifier);
#if 0
LOGI("add device %d: %s\n", deviceId, devicePath);
LOGI(" bus: %04x\n"
" vendor %04x\n"
" product %04x\n"
" version %04x\n",
identifier.bus, identifier.vendor, identifier.product, identifier.version);
LOGI(" name: \"%s\"\n", identifier.name.string());
LOGI(" location: \"%s\"\n", identifier.location.string());
LOGI(" unique id: \"%s\"\n", identifier.uniqueId.string());
LOGI(" driver: v%d.%d.%d\n",
driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff);
#endif
// Load the configuration file for the device.
loadConfiguration(device);
// Figure out the kinds of events the device reports.
uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)];
memset(key_bitmask, 0, sizeof(key_bitmask));
ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(key_bitmask)), key_bitmask);
uint8_t abs_bitmask[sizeof_bit_array(ABS_MAX + 1)];
memset(abs_bitmask, 0, sizeof(abs_bitmask));
ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(abs_bitmask)), abs_bitmask);
uint8_t rel_bitmask[sizeof_bit_array(REL_MAX + 1)];
memset(rel_bitmask, 0, sizeof(rel_bitmask));
ioctl(fd, EVIOCGBIT(EV_REL, sizeof(rel_bitmask)), rel_bitmask);
uint8_t sw_bitmask[sizeof_bit_array(SW_MAX + 1)];
memset(sw_bitmask, 0, sizeof(sw_bitmask));
ioctl(fd, EVIOCGBIT(EV_SW, sizeof(sw_bitmask)), sw_bitmask);
device->keyBitmask = new uint8_t[sizeof(key_bitmask)];
if (device->keyBitmask != NULL) {
memcpy(device->keyBitmask, key_bitmask, sizeof(key_bitmask));
} else {
delete device;
LOGE("out of memory allocating key bitmask");
return -1;
}
device->relBitmask = new uint8_t[sizeof(rel_bitmask)];
if (device->relBitmask != NULL) {
memcpy(device->relBitmask, rel_bitmask, sizeof(rel_bitmask));
} else {
delete device;
LOGE("out of memory allocating rel bitmask");
return -1;
}
// See if this is a keyboard. Ignore everything in the button range except for
// joystick and gamepad buttons which are handled like keyboards for the most part.
bool haveKeyboardKeys = containsNonZeroByte(key_bitmask, 0, sizeof_bit_array(BTN_MISC))
|| containsNonZeroByte(key_bitmask, sizeof_bit_array(KEY_OK),
sizeof_bit_array(KEY_MAX + 1));
bool haveGamepadButtons =containsNonZeroByte(key_bitmask, sizeof_bit_array(BTN_JOYSTICK),
sizeof_bit_array(BTN_DIGI));
if (haveKeyboardKeys || haveGamepadButtons) {
device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
}
// See if this is a cursor device such as a trackball or mouse.
if (test_bit(BTN_MOUSE, key_bitmask)
&& test_bit(REL_X, rel_bitmask)
&& test_bit(REL_Y, rel_bitmask)) {
device->classes |= INPUT_DEVICE_CLASS_CURSOR;
}
// See if this is a touch pad.
// Is this a new modern multi-touch driver?
if (test_bit(ABS_MT_POSITION_X, abs_bitmask)
&& test_bit(ABS_MT_POSITION_Y, abs_bitmask)) {
// Some joysticks such as the PS3 controller report axes that conflict
// with the ABS_MT range. Try to confirm that the device really is
// a touch screen.
if (test_bit(BTN_TOUCH, key_bitmask) || !haveGamepadButtons) {
device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT;
}
// Is this an old style single-touch driver?
} else if (test_bit(BTN_TOUCH, key_bitmask)
&& test_bit(ABS_X, abs_bitmask)
&& test_bit(ABS_Y, abs_bitmask)) {
device->classes |= INPUT_DEVICE_CLASS_TOUCH;
}
// figure out the switches this device reports
bool haveSwitches = false;
for (int i=0; i<EV_SW; i++) {
//LOGI("Device %d sw %d: has=%d", device->id, i, test_bit(i, sw_bitmask));
if (test_bit(i, sw_bitmask)) {
haveSwitches = true;
if (mSwitches[i] == 0) {
mSwitches[i] = device->id;
}
}
}
if (haveSwitches) {
device->classes |= INPUT_DEVICE_CLASS_SWITCH;
}
if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) {
// Load the virtual keys for the touch screen, if any.
// We do this now so that we can make sure to load the keymap if necessary.
status_t status = loadVirtualKeyMap(device);
if (!status) {
device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
}
}
if ((device->classes & INPUT_DEVICE_CLASS_KEYBOARD) != 0) {
// Load the keymap for the device.
status_t status = loadKeyMap(device);
// Set system properties for the keyboard.
setKeyboardProperties(device, false);
// Register the keyboard as a built-in keyboard if it is eligible.
if (!status
&& mBuiltInKeyboardId == -1
&& isEligibleBuiltInKeyboard(device->identifier,
device->configuration, &device->keyMap)) {
mBuiltInKeyboardId = device->id;
setKeyboardProperties(device, true);
}
// 'Q' key support = cheap test of whether this is an alpha-capable kbd
if (hasKeycodeLocked(device, AKEYCODE_Q)) {
device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY;
}
// See if this device has a DPAD.
if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) &&
hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) &&
hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) &&
hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) &&
hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) {
device->classes |= INPUT_DEVICE_CLASS_DPAD;
}
// See if this device has a gamepad.
for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) {
if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) {
device->classes |= INPUT_DEVICE_CLASS_GAMEPAD;
break;
}
}
}
// See if this device is a joystick.
// Ignore touchscreens because they use the same absolute axes for other purposes.
// Assumes that joysticks always have buttons and the keymap has been loaded.
if (device->classes & INPUT_DEVICE_CLASS_GAMEPAD
&& !(device->classes & INPUT_DEVICE_CLASS_TOUCH)) {
if (containsNonZeroByte(abs_bitmask, 0, sizeof_bit_array(ABS_MAX + 1))) {
device->classes |= INPUT_DEVICE_CLASS_JOYSTICK;
}
}
// If the device isn't recognized as something we handle, don't monitor it.
if (device->classes == 0) {
LOGV("Dropping device: id=%d, path='%s', name='%s'",
deviceId, devicePath, device->identifier.name.string());
delete device;
return -1;
}
LOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, "
"configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s",
deviceId, fd, devicePath, device->identifier.name.string(),
device->classes,
device->configurationFile.string(),
device->keyMap.keyLayoutFile.string(),
device->keyMap.keyCharacterMapFile.string(),
toString(mBuiltInKeyboardId == deviceId));
struct pollfd pollfd;
pollfd.fd = fd;
pollfd.events = POLLIN;
pollfd.revents = 0;
mFds.push(pollfd);
mDevices.push(device);
device->next = mOpeningDevices;
mOpeningDevices = device;
return 0;
}
void EventHub::loadConfiguration(Device* device) {
device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier(
device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION);
if (device->configurationFile.isEmpty()) {
LOGD("No input device configuration file found for device '%s'.",
device->identifier.name.string());
} else {
status_t status = PropertyMap::load(device->configurationFile,
&device->configuration);
if (status) {
LOGE("Error loading input device configuration file for device '%s'. "
"Using default configuration.",
device->identifier.name.string());
}
}
}
status_t EventHub::loadVirtualKeyMap(Device* device) {
// The virtual key map is supplied by the kernel as a system board property file.
String8 path;
path.append("/sys/board_properties/virtualkeys.");
path.append(device->identifier.name);
if (access(path.string(), R_OK)) {
return NAME_NOT_FOUND;
}
return VirtualKeyMap::load(path, &device->virtualKeyMap);
}
status_t EventHub::loadKeyMap(Device* device) {
return device->keyMap.load(device->identifier, device->configuration);
}
void EventHub::setKeyboardProperties(Device* device, bool builtInKeyboard) {
int32_t id = builtInKeyboard ? 0 : device->id;
android::setKeyboardProperties(id, device->identifier,
device->keyMap.keyLayoutFile, device->keyMap.keyCharacterMapFile);
}
void EventHub::clearKeyboardProperties(Device* device, bool builtInKeyboard) {
int32_t id = builtInKeyboard ? 0 : device->id;
android::clearKeyboardProperties(id);
}
bool EventHub::hasKeycodeLocked(Device* device, int keycode) const {
if (!device->keyMap.haveKeyLayout() || !device->keyBitmask) {
return false;
}
Vector<int32_t> scanCodes;
device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes);
const size_t N = scanCodes.size();
for (size_t i=0; i<N && i<=KEY_MAX; i++) {
int32_t sc = scanCodes.itemAt(i);
if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) {
return true;
}
}
return false;
}
int EventHub::closeDevice(const char *devicePath) {
AutoMutex _l(mLock);
for (size_t i = FIRST_ACTUAL_DEVICE_INDEX; i < mDevices.size(); i++) {
Device* device = mDevices[i];
if (device->path == devicePath) {
return closeDeviceAtIndexLocked(i);
}
}
LOGV("Remove device: %s not found, device may already have been removed.", devicePath);
return -1;
}
int EventHub::closeDeviceAtIndexLocked(int index) {
Device* device = mDevices[index];
LOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x\n",
device->path.string(), device->identifier.name.string(), device->id,
device->fd, device->classes);
for (int j=0; j<EV_SW; j++) {
if (mSwitches[j] == device->id) {
mSwitches[j] = 0;
}
}
if (device->id == mBuiltInKeyboardId) {
LOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
device->path.string(), mBuiltInKeyboardId);
mBuiltInKeyboardId = -1;
clearKeyboardProperties(device, true);
}
clearKeyboardProperties(device, false);
mFds.removeAt(index);
mDevices.removeAt(index);
device->close();
device->next = mClosingDevices;
mClosingDevices = device;
return 0;
}
int EventHub::readNotify(int nfd) {
#ifdef HAVE_INOTIFY
int res;
char devname[PATH_MAX];
char *filename;
char event_buf[512];
int event_size;
int event_pos = 0;
struct inotify_event *event;
LOGV("EventHub::readNotify nfd: %d\n", nfd);
res = read(nfd, event_buf, sizeof(event_buf));
if(res < (int)sizeof(*event)) {
if(errno == EINTR)
return 0;
LOGW("could not get event, %s\n", strerror(errno));
return 1;
}
//printf("got %d bytes of event information\n", res);
strcpy(devname, DEVICE_PATH);
filename = devname + strlen(devname);
*filename++ = '/';
while(res >= (int)sizeof(*event)) {
event = (struct inotify_event *)(event_buf + event_pos);
//printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : "");
if(event->len) {
strcpy(filename, event->name);
if(event->mask & IN_CREATE) {
openDevice(devname);
}
else {
closeDevice(devname);
}
}
event_size = sizeof(*event) + event->len;
res -= event_size;
event_pos += event_size;
}
#endif
return 0;
}
int EventHub::scanDir(const char *dirname)
{
char devname[PATH_MAX];
char *filename;
DIR *dir;
struct dirent *de;
dir = opendir(dirname);
if(dir == NULL)
return -1;
strcpy(devname, dirname);
filename = devname + strlen(devname);
*filename++ = '/';
while((de = readdir(dir))) {
if(de->d_name[0] == '.' &&
(de->d_name[1] == '\0' ||
(de->d_name[1] == '.' && de->d_name[2] == '\0')))
continue;
strcpy(filename, de->d_name);
openDevice(devname);
}
closedir(dir);
return 0;
}
void EventHub::dump(String8& dump) {
dump.append("Event Hub State:\n");
{ // acquire lock
AutoMutex _l(mLock);
dump.appendFormat(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
dump.append(INDENT "Devices:\n");
for (size_t i = FIRST_ACTUAL_DEVICE_INDEX; i < mDevices.size(); i++) {
const Device* device = mDevices[i];
if (device) {
if (mBuiltInKeyboardId == device->id) {
dump.appendFormat(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
device->id, device->identifier.name.string());
} else {
dump.appendFormat(INDENT2 "%d: %s\n", device->id,
device->identifier.name.string());
}
dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes);
dump.appendFormat(INDENT3 "Path: %s\n", device->path.string());
dump.appendFormat(INDENT3 "Location: %s\n", device->identifier.location.string());
dump.appendFormat(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.string());
dump.appendFormat(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
"product=0x%04x, version=0x%04x\n",
device->identifier.bus, device->identifier.vendor,
device->identifier.product, device->identifier.version);
dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n",
device->keyMap.keyLayoutFile.string());
dump.appendFormat(INDENT3 "KeyCharacterMapFile: %s\n",
device->keyMap.keyCharacterMapFile.string());
dump.appendFormat(INDENT3 "ConfigurationFile: %s\n",
device->configurationFile.string());
}
}
} // release lock
}
}; // namespace android