Mingw32 4.8 is kind of picky with macros and some complicated template stuff. Luckily there was another way to represent the SFINAE code that works on all platforms. Yay! Change-Id: Idc2e38f47bfdc57b394550bfa0f53cc0b825df25
505 lines
18 KiB
C++
505 lines
18 KiB
C++
/*
|
|
* Copyright (C) 2015 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "ResourceTable.h"
|
|
#include "ResourceValues.h"
|
|
#include "ValueVisitor.h"
|
|
|
|
#include "flatten/ChunkWriter.h"
|
|
#include "flatten/ResourceTypeExtensions.h"
|
|
#include "flatten/TableFlattener.h"
|
|
#include "util/BigBuffer.h"
|
|
|
|
#include <android-base/macros.h>
|
|
#include <algorithm>
|
|
#include <type_traits>
|
|
#include <numeric>
|
|
|
|
using namespace android;
|
|
|
|
namespace aapt {
|
|
|
|
namespace {
|
|
|
|
template <typename T>
|
|
static bool cmpIds(const T* a, const T* b) {
|
|
return a->id.value() < b->id.value();
|
|
}
|
|
|
|
static void strcpy16_htod(uint16_t* dst, size_t len, const StringPiece16& src) {
|
|
if (len == 0) {
|
|
return;
|
|
}
|
|
|
|
size_t i;
|
|
const char16_t* srcData = src.data();
|
|
for (i = 0; i < len - 1 && i < src.size(); i++) {
|
|
dst[i] = util::hostToDevice16((uint16_t) srcData[i]);
|
|
}
|
|
dst[i] = 0;
|
|
}
|
|
|
|
static bool cmpStyleEntries(const Style::Entry& a, const Style::Entry& b) {
|
|
if (a.key.id) {
|
|
if (b.key.id) {
|
|
return a.key.id.value() < b.key.id.value();
|
|
}
|
|
return true;
|
|
} else if (!b.key.id) {
|
|
return a.key.name.value() < b.key.name.value();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
struct FlatEntry {
|
|
ResourceEntry* entry;
|
|
Value* value;
|
|
|
|
// The entry string pool index to the entry's name.
|
|
uint32_t entryKey;
|
|
};
|
|
|
|
class MapFlattenVisitor : public RawValueVisitor {
|
|
public:
|
|
using RawValueVisitor::visit;
|
|
|
|
MapFlattenVisitor(ResTable_entry_ext* outEntry, BigBuffer* buffer) :
|
|
mOutEntry(outEntry), mBuffer(buffer) {
|
|
}
|
|
|
|
void visit(Attribute* attr) override {
|
|
{
|
|
Reference key = Reference(ResTable_map::ATTR_TYPE);
|
|
BinaryPrimitive val(Res_value::TYPE_INT_DEC, attr->typeMask);
|
|
flattenEntry(&key, &val);
|
|
}
|
|
|
|
if (attr->minInt != std::numeric_limits<int32_t>::min()) {
|
|
Reference key = Reference(ResTable_map::ATTR_MIN);
|
|
BinaryPrimitive val(Res_value::TYPE_INT_DEC, static_cast<uint32_t>(attr->minInt));
|
|
flattenEntry(&key, &val);
|
|
}
|
|
|
|
if (attr->maxInt != std::numeric_limits<int32_t>::max()) {
|
|
Reference key = Reference(ResTable_map::ATTR_MAX);
|
|
BinaryPrimitive val(Res_value::TYPE_INT_DEC, static_cast<uint32_t>(attr->maxInt));
|
|
flattenEntry(&key, &val);
|
|
}
|
|
|
|
for (Attribute::Symbol& s : attr->symbols) {
|
|
BinaryPrimitive val(Res_value::TYPE_INT_DEC, s.value);
|
|
flattenEntry(&s.symbol, &val);
|
|
}
|
|
}
|
|
|
|
void visit(Style* style) override {
|
|
if (style->parent) {
|
|
const Reference& parentRef = style->parent.value();
|
|
assert(parentRef.id && "parent has no ID");
|
|
mOutEntry->parent.ident = util::hostToDevice32(parentRef.id.value().id);
|
|
}
|
|
|
|
// Sort the style.
|
|
std::sort(style->entries.begin(), style->entries.end(), cmpStyleEntries);
|
|
|
|
for (Style::Entry& entry : style->entries) {
|
|
flattenEntry(&entry.key, entry.value.get());
|
|
}
|
|
}
|
|
|
|
void visit(Styleable* styleable) override {
|
|
for (auto& attrRef : styleable->entries) {
|
|
BinaryPrimitive val(Res_value{});
|
|
flattenEntry(&attrRef, &val);
|
|
}
|
|
|
|
}
|
|
|
|
void visit(Array* array) override {
|
|
for (auto& item : array->items) {
|
|
ResTable_map* outEntry = mBuffer->nextBlock<ResTable_map>();
|
|
flattenValue(item.get(), outEntry);
|
|
outEntry->value.size = util::hostToDevice16(sizeof(outEntry->value));
|
|
mEntryCount++;
|
|
}
|
|
}
|
|
|
|
void visit(Plural* plural) override {
|
|
const size_t count = plural->values.size();
|
|
for (size_t i = 0; i < count; i++) {
|
|
if (!plural->values[i]) {
|
|
continue;
|
|
}
|
|
|
|
ResourceId q;
|
|
switch (i) {
|
|
case Plural::Zero:
|
|
q.id = android::ResTable_map::ATTR_ZERO;
|
|
break;
|
|
|
|
case Plural::One:
|
|
q.id = android::ResTable_map::ATTR_ONE;
|
|
break;
|
|
|
|
case Plural::Two:
|
|
q.id = android::ResTable_map::ATTR_TWO;
|
|
break;
|
|
|
|
case Plural::Few:
|
|
q.id = android::ResTable_map::ATTR_FEW;
|
|
break;
|
|
|
|
case Plural::Many:
|
|
q.id = android::ResTable_map::ATTR_MANY;
|
|
break;
|
|
|
|
case Plural::Other:
|
|
q.id = android::ResTable_map::ATTR_OTHER;
|
|
break;
|
|
|
|
default:
|
|
assert(false);
|
|
break;
|
|
}
|
|
|
|
Reference key(q);
|
|
flattenEntry(&key, plural->values[i].get());
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Call this after visiting a Value. This will finish any work that
|
|
* needs to be done to prepare the entry.
|
|
*/
|
|
void finish() {
|
|
mOutEntry->count = util::hostToDevice32(mEntryCount);
|
|
}
|
|
|
|
private:
|
|
void flattenKey(Reference* key, ResTable_map* outEntry) {
|
|
assert(key->id && "key has no ID");
|
|
outEntry->name.ident = util::hostToDevice32(key->id.value().id);
|
|
}
|
|
|
|
void flattenValue(Item* value, ResTable_map* outEntry) {
|
|
bool result = value->flatten(&outEntry->value);
|
|
assert(result && "flatten failed");
|
|
}
|
|
|
|
void flattenEntry(Reference* key, Item* value) {
|
|
ResTable_map* outEntry = mBuffer->nextBlock<ResTable_map>();
|
|
flattenKey(key, outEntry);
|
|
flattenValue(value, outEntry);
|
|
outEntry->value.size = util::hostToDevice16(sizeof(outEntry->value));
|
|
mEntryCount++;
|
|
}
|
|
|
|
ResTable_entry_ext* mOutEntry;
|
|
BigBuffer* mBuffer;
|
|
size_t mEntryCount = 0;
|
|
};
|
|
|
|
class PackageFlattener {
|
|
public:
|
|
PackageFlattener(IDiagnostics* diag, ResourceTablePackage* package) :
|
|
mDiag(diag), mPackage(package) {
|
|
}
|
|
|
|
bool flattenPackage(BigBuffer* buffer) {
|
|
ChunkWriter pkgWriter(buffer);
|
|
ResTable_package* pkgHeader = pkgWriter.startChunk<ResTable_package>(
|
|
RES_TABLE_PACKAGE_TYPE);
|
|
pkgHeader->id = util::hostToDevice32(mPackage->id.value());
|
|
|
|
if (mPackage->name.size() >= arraysize(pkgHeader->name)) {
|
|
mDiag->error(DiagMessage() <<
|
|
"package name '" << mPackage->name << "' is too long");
|
|
return false;
|
|
}
|
|
|
|
// Copy the package name in device endianness.
|
|
strcpy16_htod(pkgHeader->name, arraysize(pkgHeader->name), mPackage->name);
|
|
|
|
// Serialize the types. We do this now so that our type and key strings
|
|
// are populated. We write those first.
|
|
BigBuffer typeBuffer(1024);
|
|
flattenTypes(&typeBuffer);
|
|
|
|
pkgHeader->typeStrings = util::hostToDevice32(pkgWriter.size());
|
|
StringPool::flattenUtf16(pkgWriter.getBuffer(), mTypePool);
|
|
|
|
pkgHeader->keyStrings = util::hostToDevice32(pkgWriter.size());
|
|
StringPool::flattenUtf16(pkgWriter.getBuffer(), mKeyPool);
|
|
|
|
// Append the types.
|
|
buffer->appendBuffer(std::move(typeBuffer));
|
|
|
|
pkgWriter.finish();
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
IDiagnostics* mDiag;
|
|
ResourceTablePackage* mPackage;
|
|
StringPool mTypePool;
|
|
StringPool mKeyPool;
|
|
|
|
template <typename T, bool IsItem>
|
|
T* writeEntry(FlatEntry* entry, BigBuffer* buffer) {
|
|
static_assert(std::is_same<ResTable_entry, T>::value ||
|
|
std::is_same<ResTable_entry_ext, T>::value,
|
|
"T must be ResTable_entry or ResTable_entry_ext");
|
|
|
|
T* result = buffer->nextBlock<T>();
|
|
ResTable_entry* outEntry = (ResTable_entry*)(result);
|
|
if (entry->entry->symbolStatus.state == SymbolState::kPublic) {
|
|
outEntry->flags |= ResTable_entry::FLAG_PUBLIC;
|
|
}
|
|
|
|
if (entry->value->isWeak()) {
|
|
outEntry->flags |= ResTable_entry::FLAG_WEAK;
|
|
}
|
|
|
|
if (!IsItem) {
|
|
outEntry->flags |= ResTable_entry::FLAG_COMPLEX;
|
|
}
|
|
|
|
outEntry->flags = util::hostToDevice16(outEntry->flags);
|
|
outEntry->key.index = util::hostToDevice32(entry->entryKey);
|
|
outEntry->size = util::hostToDevice16(sizeof(T));
|
|
return result;
|
|
}
|
|
|
|
bool flattenValue(FlatEntry* entry, BigBuffer* buffer) {
|
|
if (Item* item = valueCast<Item>(entry->value)) {
|
|
writeEntry<ResTable_entry, true>(entry, buffer);
|
|
Res_value* outValue = buffer->nextBlock<Res_value>();
|
|
bool result = item->flatten(outValue);
|
|
assert(result && "flatten failed");
|
|
outValue->size = util::hostToDevice16(sizeof(*outValue));
|
|
} else {
|
|
ResTable_entry_ext* outEntry = writeEntry<ResTable_entry_ext, false>(entry, buffer);
|
|
MapFlattenVisitor visitor(outEntry, buffer);
|
|
entry->value->accept(&visitor);
|
|
visitor.finish();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool flattenConfig(const ResourceTableType* type, const ConfigDescription& config,
|
|
std::vector<FlatEntry>* entries, BigBuffer* buffer) {
|
|
ChunkWriter typeWriter(buffer);
|
|
ResTable_type* typeHeader = typeWriter.startChunk<ResTable_type>(RES_TABLE_TYPE_TYPE);
|
|
typeHeader->id = type->id.value();
|
|
typeHeader->config = config;
|
|
typeHeader->config.swapHtoD();
|
|
|
|
auto maxAccum = [](uint32_t max, const std::unique_ptr<ResourceEntry>& a) -> uint32_t {
|
|
return std::max(max, (uint32_t) a->id.value());
|
|
};
|
|
|
|
// Find the largest entry ID. That is how many entries we will have.
|
|
const uint32_t entryCount =
|
|
std::accumulate(type->entries.begin(), type->entries.end(), 0, maxAccum) + 1;
|
|
|
|
typeHeader->entryCount = util::hostToDevice32(entryCount);
|
|
uint32_t* indices = typeWriter.nextBlock<uint32_t>(entryCount);
|
|
|
|
assert((size_t) entryCount <= std::numeric_limits<uint16_t>::max() + 1);
|
|
memset(indices, 0xff, entryCount * sizeof(uint32_t));
|
|
|
|
typeHeader->entriesStart = util::hostToDevice32(typeWriter.size());
|
|
|
|
const size_t entryStart = typeWriter.getBuffer()->size();
|
|
for (FlatEntry& flatEntry : *entries) {
|
|
assert(flatEntry.entry->id.value() < entryCount);
|
|
indices[flatEntry.entry->id.value()] = util::hostToDevice32(
|
|
typeWriter.getBuffer()->size() - entryStart);
|
|
if (!flattenValue(&flatEntry, typeWriter.getBuffer())) {
|
|
mDiag->error(DiagMessage()
|
|
<< "failed to flatten resource '"
|
|
<< ResourceNameRef(mPackage->name, type->type, flatEntry.entry->name)
|
|
<< "' for configuration '" << config << "'");
|
|
return false;
|
|
}
|
|
}
|
|
typeWriter.finish();
|
|
return true;
|
|
}
|
|
|
|
std::vector<ResourceTableType*> collectAndSortTypes() {
|
|
std::vector<ResourceTableType*> sortedTypes;
|
|
for (auto& type : mPackage->types) {
|
|
if (type->type == ResourceType::kStyleable) {
|
|
// Styleables aren't real Resource Types, they are represented in the R.java
|
|
// file.
|
|
continue;
|
|
}
|
|
|
|
assert(type->id && "type must have an ID set");
|
|
|
|
sortedTypes.push_back(type.get());
|
|
}
|
|
std::sort(sortedTypes.begin(), sortedTypes.end(), cmpIds<ResourceTableType>);
|
|
return sortedTypes;
|
|
}
|
|
|
|
std::vector<ResourceEntry*> collectAndSortEntries(ResourceTableType* type) {
|
|
// Sort the entries by entry ID.
|
|
std::vector<ResourceEntry*> sortedEntries;
|
|
for (auto& entry : type->entries) {
|
|
assert(entry->id && "entry must have an ID set");
|
|
sortedEntries.push_back(entry.get());
|
|
}
|
|
std::sort(sortedEntries.begin(), sortedEntries.end(), cmpIds<ResourceEntry>);
|
|
return sortedEntries;
|
|
}
|
|
|
|
bool flattenTypeSpec(ResourceTableType* type, std::vector<ResourceEntry*>* sortedEntries,
|
|
BigBuffer* buffer) {
|
|
ChunkWriter typeSpecWriter(buffer);
|
|
ResTable_typeSpec* specHeader = typeSpecWriter.startChunk<ResTable_typeSpec>(
|
|
RES_TABLE_TYPE_SPEC_TYPE);
|
|
specHeader->id = type->id.value();
|
|
|
|
if (sortedEntries->empty()) {
|
|
typeSpecWriter.finish();
|
|
return true;
|
|
}
|
|
|
|
// We can't just take the size of the vector. There may be holes in the entry ID space.
|
|
// Since the entries are sorted by ID, the last one will be the biggest.
|
|
const size_t numEntries = sortedEntries->back()->id.value() + 1;
|
|
|
|
specHeader->entryCount = util::hostToDevice32(numEntries);
|
|
|
|
// Reserve space for the masks of each resource in this type. These
|
|
// show for which configuration axis the resource changes.
|
|
uint32_t* configMasks = typeSpecWriter.nextBlock<uint32_t>(numEntries);
|
|
|
|
const size_t actualNumEntries = sortedEntries->size();
|
|
for (size_t entryIndex = 0; entryIndex < actualNumEntries; entryIndex++) {
|
|
ResourceEntry* entry = sortedEntries->at(entryIndex);
|
|
|
|
// Populate the config masks for this entry.
|
|
|
|
if (entry->symbolStatus.state == SymbolState::kPublic) {
|
|
configMasks[entry->id.value()] |=
|
|
util::hostToDevice32(ResTable_typeSpec::SPEC_PUBLIC);
|
|
}
|
|
|
|
const size_t configCount = entry->values.size();
|
|
for (size_t i = 0; i < configCount; i++) {
|
|
const ConfigDescription& config = entry->values[i]->config;
|
|
for (size_t j = i + 1; j < configCount; j++) {
|
|
configMasks[entry->id.value()] |= util::hostToDevice32(
|
|
config.diff(entry->values[j]->config));
|
|
}
|
|
}
|
|
}
|
|
typeSpecWriter.finish();
|
|
return true;
|
|
}
|
|
|
|
bool flattenTypes(BigBuffer* buffer) {
|
|
// Sort the types by their IDs. They will be inserted into the StringPool in this order.
|
|
std::vector<ResourceTableType*> sortedTypes = collectAndSortTypes();
|
|
|
|
size_t expectedTypeId = 1;
|
|
for (ResourceTableType* type : sortedTypes) {
|
|
// If there is a gap in the type IDs, fill in the StringPool
|
|
// with empty values until we reach the ID we expect.
|
|
while (type->id.value() > expectedTypeId) {
|
|
std::u16string typeName(u"?");
|
|
typeName += expectedTypeId;
|
|
mTypePool.makeRef(typeName);
|
|
expectedTypeId++;
|
|
}
|
|
expectedTypeId++;
|
|
mTypePool.makeRef(toString(type->type));
|
|
|
|
std::vector<ResourceEntry*> sortedEntries = collectAndSortEntries(type);
|
|
|
|
if (!flattenTypeSpec(type, &sortedEntries, buffer)) {
|
|
return false;
|
|
}
|
|
|
|
// The binary resource table lists resource entries for each configuration.
|
|
// We store them inverted, where a resource entry lists the values for each
|
|
// configuration available. Here we reverse this to match the binary table.
|
|
std::map<ConfigDescription, std::vector<FlatEntry>> configToEntryListMap;
|
|
for (ResourceEntry* entry : sortedEntries) {
|
|
const uint32_t keyIndex = (uint32_t) mKeyPool.makeRef(entry->name).getIndex();
|
|
|
|
// Group values by configuration.
|
|
for (auto& configValue : entry->values) {
|
|
configToEntryListMap[configValue->config].push_back(FlatEntry{
|
|
entry, configValue->value.get(), keyIndex });
|
|
}
|
|
}
|
|
|
|
// Flatten a configuration value.
|
|
for (auto& entry : configToEntryListMap) {
|
|
if (!flattenConfig(type, entry.first, &entry.second, buffer)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
bool TableFlattener::consume(IAaptContext* context, ResourceTable* table) {
|
|
// We must do this before writing the resources, since the string pool IDs may change.
|
|
table->stringPool.sort([](const StringPool::Entry& a, const StringPool::Entry& b) -> bool {
|
|
int diff = a.context.priority - b.context.priority;
|
|
if (diff < 0) return true;
|
|
if (diff > 0) return false;
|
|
diff = a.context.config.compare(b.context.config);
|
|
if (diff < 0) return true;
|
|
if (diff > 0) return false;
|
|
return a.value < b.value;
|
|
});
|
|
table->stringPool.prune();
|
|
|
|
// Write the ResTable header.
|
|
ChunkWriter tableWriter(mBuffer);
|
|
ResTable_header* tableHeader = tableWriter.startChunk<ResTable_header>(RES_TABLE_TYPE);
|
|
tableHeader->packageCount = util::hostToDevice32(table->packages.size());
|
|
|
|
// Flatten the values string pool.
|
|
StringPool::flattenUtf8(tableWriter.getBuffer(), table->stringPool);
|
|
|
|
BigBuffer packageBuffer(1024);
|
|
|
|
// Flatten each package.
|
|
for (auto& package : table->packages) {
|
|
PackageFlattener flattener(context->getDiagnostics(), package.get());
|
|
if (!flattener.flattenPackage(&packageBuffer)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Finally merge all the packages into the main buffer.
|
|
tableWriter.getBuffer()->appendBuffer(std::move(packageBuffer));
|
|
tableWriter.finish();
|
|
return true;
|
|
}
|
|
|
|
} // namespace aapt
|