Stan Iliev b66b8bb4a0 Ensure root render node clip cannot expand beyond dirty area
Use new Skia API to enfore clip restriction for root render node.
This brings Skia pipeline in line with HWUI. Unit test is
updated to reflect the new behaviour.

Test: Built and ran angler-eng, ran HWUI unit tests.

Change-Id: Iffce70fd37b6aff45eb6a23c8b1a64f45b5f1463
2016-12-16 14:42:33 -05:00

375 lines
15 KiB
C++

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SkiaPipeline.h"
#include "utils/TraceUtils.h"
#include <SkImageEncoder.h>
#include <SkImagePriv.h>
#include <SkOSFile.h>
#include <SkOverdrawCanvas.h>
#include <SkOverdrawColorFilter.h>
#include <SkPicture.h>
#include <SkPictureRecorder.h>
#include <SkPixelSerializer.h>
#include <SkStream.h>
using namespace android::uirenderer::renderthread;
namespace android {
namespace uirenderer {
namespace skiapipeline {
float SkiaPipeline::mLightRadius = 0;
uint8_t SkiaPipeline::mAmbientShadowAlpha = 0;
uint8_t SkiaPipeline::mSpotShadowAlpha = 0;
Vector3 SkiaPipeline::mLightCenter = {FLT_MIN, FLT_MIN, FLT_MIN};
SkiaPipeline::SkiaPipeline(RenderThread& thread) : mRenderThread(thread) { }
TaskManager* SkiaPipeline::getTaskManager() {
return &mTaskManager;
}
void SkiaPipeline::onDestroyHardwareResources() {
// No need to flush the caches here. There is a timer
// which will flush temporary resources over time.
}
bool SkiaPipeline::pinImages(std::vector<SkImage*>& mutableImages) {
for (SkImage* image : mutableImages) {
if (SkImage_pinAsTexture(image, mRenderThread.getGrContext())) {
mPinnedImages.emplace_back(sk_ref_sp(image));
} else {
return false;
}
}
return true;
}
void SkiaPipeline::unpinImages() {
for (auto& image : mPinnedImages) {
SkImage_unpinAsTexture(image.get(), mRenderThread.getGrContext());
}
mPinnedImages.clear();
}
void SkiaPipeline::renderLayers(const FrameBuilder::LightGeometry& lightGeometry,
LayerUpdateQueue* layerUpdateQueue, bool opaque,
const BakedOpRenderer::LightInfo& lightInfo) {
updateLighting(lightGeometry, lightInfo);
ATRACE_NAME("draw layers");
renderLayersImpl(*layerUpdateQueue, opaque);
layerUpdateQueue->clear();
}
void SkiaPipeline::renderLayersImpl(const LayerUpdateQueue& layers, bool opaque) {
// Render all layers that need to be updated, in order.
for (size_t i = 0; i < layers.entries().size(); i++) {
RenderNode* layerNode = layers.entries()[i].renderNode;
// only schedule repaint if node still on layer - possible it may have been
// removed during a dropped frame, but layers may still remain scheduled so
// as not to lose info on what portion is damaged
if (CC_LIKELY(layerNode->getLayerSurface() != nullptr)) {
SkASSERT(layerNode->getLayerSurface());
SkASSERT(layerNode->getDisplayList()->isSkiaDL());
SkiaDisplayList* displayList = (SkiaDisplayList*)layerNode->getDisplayList();
if (!displayList || displayList->isEmpty()) {
SkDEBUGF(("%p drawLayers(%s) : missing drawable", this, layerNode->getName()));
return;
}
const Rect& layerDamage = layers.entries()[i].damage;
SkCanvas* layerCanvas = layerNode->getLayerSurface()->getCanvas();
int saveCount = layerCanvas->save();
SkASSERT(saveCount == 1);
layerCanvas->androidFramework_setDeviceClipRestriction(layerDamage.toSkIRect());
auto savedLightCenter = mLightCenter;
// map current light center into RenderNode's coordinate space
layerNode->getSkiaLayer()->inverseTransformInWindow.mapPoint3d(mLightCenter);
const RenderProperties& properties = layerNode->properties();
const SkRect bounds = SkRect::MakeWH(properties.getWidth(), properties.getHeight());
if (properties.getClipToBounds() && layerCanvas->quickReject(bounds)) {
return;
}
layerNode->getSkiaLayer()->hasRenderedSinceRepaint = false;
layerCanvas->clear(SK_ColorTRANSPARENT);
RenderNodeDrawable root(layerNode, layerCanvas, false);
root.forceDraw(layerCanvas);
layerCanvas->restoreToCount(saveCount);
layerCanvas->flush();
mLightCenter = savedLightCenter;
}
}
}
bool SkiaPipeline::createOrUpdateLayer(RenderNode* node,
const DamageAccumulator& damageAccumulator) {
SkSurface* layer = node->getLayerSurface();
if (!layer || layer->width() != node->getWidth() || layer->height() != node->getHeight()) {
SkImageInfo info = SkImageInfo::MakeN32Premul(node->getWidth(), node->getHeight());
SkSurfaceProps props(0, kUnknown_SkPixelGeometry);
SkASSERT(mRenderThread.getGrContext() != nullptr);
node->setLayerSurface(
SkSurface::MakeRenderTarget(mRenderThread.getGrContext(), SkBudgeted::kYes,
info, 0, &props));
if (node->getLayerSurface()) {
// update the transform in window of the layer to reset its origin wrt light source
// position
Matrix4 windowTransform;
damageAccumulator.computeCurrentTransform(&windowTransform);
node->getSkiaLayer()->inverseTransformInWindow = windowTransform;
}
return true;
}
return false;
}
void SkiaPipeline::destroyLayer(RenderNode* node) {
node->setLayerSurface(nullptr);
}
void SkiaPipeline::prepareToDraw(const RenderThread& thread, Bitmap* bitmap) {
GrContext* context = thread.getGrContext();
if (context) {
ATRACE_FORMAT("Bitmap#prepareToDraw %dx%d", bitmap->width(), bitmap->height());
SkBitmap skiaBitmap;
bitmap->getSkBitmap(&skiaBitmap);
sk_sp<SkImage> image = SkMakeImageFromRasterBitmap(skiaBitmap, kNever_SkCopyPixelsMode);
SkImage_pinAsTexture(image.get(), context);
SkImage_unpinAsTexture(image.get(), context);
}
}
// Encodes to PNG, unless there is already encoded data, in which case that gets
// used.
class PngPixelSerializer : public SkPixelSerializer {
public:
bool onUseEncodedData(const void*, size_t) override { return true; }
SkData* onEncode(const SkPixmap& pixmap) override {
SkDynamicMemoryWStream buf;
return SkEncodeImage(&buf, pixmap, SkEncodedImageFormat::kPNG, 100)
? buf.detachAsData().release()
: nullptr;
}
};
void SkiaPipeline::renderFrame(const LayerUpdateQueue& layers, const SkRect& clip,
const std::vector<sp<RenderNode>>& nodes, bool opaque, const Rect &contentDrawBounds,
sk_sp<SkSurface> surface) {
// draw all layers up front
renderLayersImpl(layers, opaque);
// initialize the canvas for the current frame
SkCanvas* canvas = surface->getCanvas();
std::unique_ptr<SkPictureRecorder> recorder;
bool recordingPicture = false;
char prop[PROPERTY_VALUE_MAX];
if (skpCaptureEnabled()) {
property_get("debug.hwui.capture_frame_as_skp", prop, "0");
recordingPicture = prop[0] != '0' && !sk_exists(prop);
if (recordingPicture) {
recorder.reset(new SkPictureRecorder());
canvas = recorder->beginRecording(surface->width(), surface->height(),
nullptr, SkPictureRecorder::kPlaybackDrawPicture_RecordFlag);
}
}
renderFrameImpl(layers, clip, nodes, opaque, contentDrawBounds, canvas);
if (skpCaptureEnabled() && recordingPicture) {
sk_sp<SkPicture> picture = recorder->finishRecordingAsPicture();
if (picture->approximateOpCount() > 0) {
SkFILEWStream stream(prop);
if (stream.isValid()) {
PngPixelSerializer serializer;
picture->serialize(&stream, &serializer);
stream.flush();
SkDebugf("Captured Drawing Output (%d bytes) for frame. %s", stream.bytesWritten(), prop);
}
}
surface->getCanvas()->drawPicture(picture);
}
if (CC_UNLIKELY(Properties::debugOverdraw)) {
renderOverdraw(layers, clip, nodes, contentDrawBounds, surface);
}
ATRACE_NAME("flush commands");
canvas->flush();
}
namespace {
static Rect nodeBounds(RenderNode& node) {
auto& props = node.properties();
return Rect(props.getLeft(), props.getTop(),
props.getRight(), props.getBottom());
}
}
void SkiaPipeline::renderFrameImpl(const LayerUpdateQueue& layers, const SkRect& clip,
const std::vector<sp<RenderNode>>& nodes, bool opaque, const Rect &contentDrawBounds,
SkCanvas* canvas) {
SkAutoCanvasRestore saver(canvas, true);
canvas->androidFramework_setDeviceClipRestriction(clip.roundOut());
if (!opaque) {
canvas->clear(SK_ColorTRANSPARENT);
}
if (1 == nodes.size()) {
if (!nodes[0]->nothingToDraw()) {
RenderNodeDrawable root(nodes[0].get(), canvas);
root.draw(canvas);
}
} else if (0 == nodes.size()) {
//nothing to draw
} else {
// It there are multiple render nodes, they are laid out as follows:
// #0 - backdrop (content + caption)
// #1 - content (local bounds are at (0,0), will be translated and clipped to backdrop)
// #2 - additional overlay nodes
// Usually the backdrop cannot be seen since it will be entirely covered by the content. While
// resizing however it might become partially visible. The following render loop will crop the
// backdrop against the content and draw the remaining part of it. It will then draw the content
// cropped to the backdrop (since that indicates a shrinking of the window).
//
// Additional nodes will be drawn on top with no particular clipping semantics.
// Usually the contents bounds should be mContentDrawBounds - however - we will
// move it towards the fixed edge to give it a more stable appearance (for the moment).
// If there is no content bounds we ignore the layering as stated above and start with 2.
// Backdrop bounds in render target space
const Rect backdrop = nodeBounds(*nodes[0]);
// Bounds that content will fill in render target space (note content node bounds may be bigger)
Rect content(contentDrawBounds.getWidth(), contentDrawBounds.getHeight());
content.translate(backdrop.left, backdrop.top);
if (!content.contains(backdrop) && !nodes[0]->nothingToDraw()) {
// Content doesn't entirely overlap backdrop, so fill around content (right/bottom)
// Note: in the future, if content doesn't snap to backdrop's left/top, this may need to
// also fill left/top. Currently, both 2up and freeform position content at the top/left of
// the backdrop, so this isn't necessary.
RenderNodeDrawable backdropNode(nodes[0].get(), canvas);
if (content.right < backdrop.right) {
// draw backdrop to right side of content
SkAutoCanvasRestore acr(canvas, true);
canvas->clipRect(SkRect::MakeLTRB(content.right, backdrop.top,
backdrop.right, backdrop.bottom));
backdropNode.draw(canvas);
}
if (content.bottom < backdrop.bottom) {
// draw backdrop to bottom of content
// Note: bottom fill uses content left/right, to avoid overdrawing left/right fill
SkAutoCanvasRestore acr(canvas, true);
canvas->clipRect(SkRect::MakeLTRB(content.left, content.bottom,
content.right, backdrop.bottom));
backdropNode.draw(canvas);
}
}
RenderNodeDrawable contentNode(nodes[1].get(), canvas);
if (!backdrop.isEmpty()) {
// content node translation to catch up with backdrop
float dx = backdrop.left - contentDrawBounds.left;
float dy = backdrop.top - contentDrawBounds.top;
SkAutoCanvasRestore acr(canvas, true);
canvas->translate(dx, dy);
const SkRect contentLocalClip = SkRect::MakeXYWH(contentDrawBounds.left,
contentDrawBounds.top, backdrop.getWidth(), backdrop.getHeight());
canvas->clipRect(contentLocalClip);
contentNode.draw(canvas);
} else {
SkAutoCanvasRestore acr(canvas, true);
contentNode.draw(canvas);
}
// remaining overlay nodes, simply defer
for (size_t index = 2; index < nodes.size(); index++) {
if (!nodes[index]->nothingToDraw()) {
SkAutoCanvasRestore acr(canvas, true);
RenderNodeDrawable overlayNode(nodes[index].get(), canvas);
overlayNode.draw(canvas);
}
}
}
}
void SkiaPipeline::dumpResourceCacheUsage() const {
int resources, maxResources;
size_t bytes, maxBytes;
mRenderThread.getGrContext()->getResourceCacheUsage(&resources, &bytes);
mRenderThread.getGrContext()->getResourceCacheLimits(&maxResources, &maxBytes);
SkString log("Resource Cache Usage:\n");
log.appendf("%8d items out of %d maximum items\n", resources, maxResources);
log.appendf("%8zu bytes (%.2f MB) out of %.2f MB maximum\n",
bytes, bytes * (1.0f / (1024.0f * 1024.0f)), maxBytes * (1.0f / (1024.0f * 1024.0f)));
ALOGD("%s", log.c_str());
}
// Overdraw debugging
// These colors should be kept in sync with Caches::getOverdrawColor() with a few differences.
// This implementation:
// (1) Requires transparent entries for "no overdraw" and "single draws".
// (2) Requires premul colors (instead of unpremul).
// (3) Requires RGBA colors (instead of BGRA).
static const uint32_t kOverdrawColors[2][6] = {
{ 0x00000000, 0x00000000, 0x2f2f0000, 0x2f002f00, 0x3f00003f, 0x7f00007f, },
{ 0x00000000, 0x00000000, 0x2f2f0000, 0x4f004f4f, 0x5f50335f, 0x7f00007f, },
};
void SkiaPipeline::renderOverdraw(const LayerUpdateQueue& layers, const SkRect& clip,
const std::vector<sp<RenderNode>>& nodes, const Rect &contentDrawBounds,
sk_sp<SkSurface> surface) {
// Set up the overdraw canvas.
SkImageInfo offscreenInfo = SkImageInfo::MakeA8(surface->width(), surface->height());
sk_sp<SkSurface> offscreen = surface->makeSurface(offscreenInfo);
SkOverdrawCanvas overdrawCanvas(offscreen->getCanvas());
// Fake a redraw to replay the draw commands. This will increment the alpha channel
// each time a pixel would have been drawn.
// Pass true for opaque so we skip the clear - the overdrawCanvas is already zero
// initialized.
renderFrameImpl(layers, clip, nodes, true, contentDrawBounds, &overdrawCanvas);
sk_sp<SkImage> counts = offscreen->makeImageSnapshot();
// Draw overdraw colors to the canvas. The color filter will convert counts to colors.
SkPaint paint;
const SkPMColor* colors = kOverdrawColors[static_cast<int>(Properties::overdrawColorSet)];
paint.setColorFilter(SkOverdrawColorFilter::Make(colors));
surface->getCanvas()->drawImage(counts.get(), 0.0f, 0.0f, &paint);
}
} /* namespace skiapipeline */
} /* namespace uirenderer */
} /* namespace android */