Jeff Brown 5aa73ae58f Improve heuristics for orientation detection.
1. Except as otherwise indicated, orientation change happens once
   the predicted rotation has been stable for 40ms.  Noise is
   suppressed by a low-pass filter with a 200ms time constant which
   seems to be about as small as is practical given the quality
   of the sensor data.

2. If the magnitude exceeds a threshold (excessive noise or freefall),
   resets the predicted orientation.
   Doesn't happen very often even when shaking the device.
   This heuristic mainly protects the detector from spurious tilt due
   to inaccurate determination of the gravity vector.

3. If the device was previously in a flat posture (on a table for at
   least 1000ms), then it must move out of that posture for at least
   500ms before the next orientation change will happen.
   This heuristic suppresses most spurious rotations that happen while
   picking up the device.

4. If the device is tilted away from the user by 20 degrees within
   a span of 300ms, the device is said to be swinging and at least
   300ms must elapse after the device stops swinging before the
   next orientation change will happen.
   This heuristic suppresses some but not all spurious rotations that
   happen while putting down a device.  Unfortunately, this heuristic
   sometimes triggers a false positive when turning the device very
   rapidly due to accelerometer noise.  The 300ms pause is a compromise
   so that occasional mispredicted swings don't significantly delay
   the rotation.

Bug: 5796249
Change-Id: Id7b36c4c563e35b70d6a7ac36d04f3c3d6ea5811
2012-01-17 17:07:10 -08:00

450 lines
18 KiB
Python
Executable File

#!/usr/bin/env python2.6
#
# Copyright (C) 2011 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#
# Plots debug log output from WindowOrientationListener.
# See README.txt for details.
#
import numpy as np
import matplotlib.pyplot as plot
import subprocess
import re
import fcntl
import os
import errno
import bisect
from datetime import datetime, timedelta
# Parameters.
timespan = 15 # seconds total span shown
scrolljump = 5 # seconds jump when scrolling
timeticks = 1 # seconds between each time tick
# Non-blocking stream wrapper.
class NonBlockingStream:
def __init__(self, stream):
fcntl.fcntl(stream, fcntl.F_SETFL, os.O_NONBLOCK)
self.stream = stream
self.buffer = ''
self.pos = 0
def readline(self):
while True:
index = self.buffer.find('\n', self.pos)
if index != -1:
result = self.buffer[self.pos:index]
self.pos = index + 1
return result
self.buffer = self.buffer[self.pos:]
self.pos = 0
try:
chunk = os.read(self.stream.fileno(), 4096)
except OSError, e:
if e.errno == errno.EAGAIN:
return None
raise e
if len(chunk) == 0:
if len(self.buffer) == 0:
raise(EOFError)
else:
result = self.buffer
self.buffer = ''
self.pos = 0
return result
self.buffer += chunk
# Plotter
class Plotter:
def __init__(self, adbout):
self.adbout = adbout
self.fig = plot.figure(1)
self.fig.suptitle('Window Orientation Listener', fontsize=12)
self.fig.set_dpi(96)
self.fig.set_size_inches(16, 12, forward=True)
self.raw_acceleration_x = self._make_timeseries()
self.raw_acceleration_y = self._make_timeseries()
self.raw_acceleration_z = self._make_timeseries()
self.raw_acceleration_magnitude = self._make_timeseries()
self.raw_acceleration_axes = self._add_timeseries_axes(
1, 'Raw Acceleration', 'm/s^2', [-20, 20],
yticks=range(-15, 16, 5))
self.raw_acceleration_line_x = self._add_timeseries_line(
self.raw_acceleration_axes, 'x', 'red')
self.raw_acceleration_line_y = self._add_timeseries_line(
self.raw_acceleration_axes, 'y', 'green')
self.raw_acceleration_line_z = self._add_timeseries_line(
self.raw_acceleration_axes, 'z', 'blue')
self.raw_acceleration_line_magnitude = self._add_timeseries_line(
self.raw_acceleration_axes, 'magnitude', 'orange', linewidth=2)
self._add_timeseries_legend(self.raw_acceleration_axes)
shared_axis = self.raw_acceleration_axes
self.filtered_acceleration_x = self._make_timeseries()
self.filtered_acceleration_y = self._make_timeseries()
self.filtered_acceleration_z = self._make_timeseries()
self.filtered_acceleration_magnitude = self._make_timeseries()
self.filtered_acceleration_axes = self._add_timeseries_axes(
2, 'Filtered Acceleration', 'm/s^2', [-20, 20],
sharex=shared_axis,
yticks=range(-15, 16, 5))
self.filtered_acceleration_line_x = self._add_timeseries_line(
self.filtered_acceleration_axes, 'x', 'red')
self.filtered_acceleration_line_y = self._add_timeseries_line(
self.filtered_acceleration_axes, 'y', 'green')
self.filtered_acceleration_line_z = self._add_timeseries_line(
self.filtered_acceleration_axes, 'z', 'blue')
self.filtered_acceleration_line_magnitude = self._add_timeseries_line(
self.filtered_acceleration_axes, 'magnitude', 'orange', linewidth=2)
self._add_timeseries_legend(self.filtered_acceleration_axes)
self.tilt_angle = self._make_timeseries()
self.tilt_angle_axes = self._add_timeseries_axes(
3, 'Tilt Angle', 'degrees', [-105, 105],
sharex=shared_axis,
yticks=range(-90, 91, 30))
self.tilt_angle_line = self._add_timeseries_line(
self.tilt_angle_axes, 'tilt', 'black')
self._add_timeseries_legend(self.tilt_angle_axes)
self.orientation_angle = self._make_timeseries()
self.orientation_angle_axes = self._add_timeseries_axes(
4, 'Orientation Angle', 'degrees', [-25, 375],
sharex=shared_axis,
yticks=range(0, 361, 45))
self.orientation_angle_line = self._add_timeseries_line(
self.orientation_angle_axes, 'orientation', 'black')
self._add_timeseries_legend(self.orientation_angle_axes)
self.current_rotation = self._make_timeseries()
self.proposed_rotation = self._make_timeseries()
self.predicted_rotation = self._make_timeseries()
self.orientation_axes = self._add_timeseries_axes(
5, 'Current / Proposed Orientation', 'rotation', [-1, 4],
sharex=shared_axis,
yticks=range(0, 4))
self.current_rotation_line = self._add_timeseries_line(
self.orientation_axes, 'current', 'black', linewidth=2)
self.predicted_rotation_line = self._add_timeseries_line(
self.orientation_axes, 'predicted', 'purple', linewidth=3)
self.proposed_rotation_line = self._add_timeseries_line(
self.orientation_axes, 'proposed', 'green', linewidth=3)
self._add_timeseries_legend(self.orientation_axes)
self.time_until_settled = self._make_timeseries()
self.time_until_flat_delay_expired = self._make_timeseries()
self.time_until_swing_delay_expired = self._make_timeseries()
self.stability_axes = self._add_timeseries_axes(
6, 'Proposal Stability', 'ms', [-10, 600],
sharex=shared_axis,
yticks=range(0, 600, 100))
self.time_until_settled_line = self._add_timeseries_line(
self.stability_axes, 'time until settled', 'black', linewidth=2)
self.time_until_flat_delay_expired_line = self._add_timeseries_line(
self.stability_axes, 'time until flat delay expired', 'green')
self.time_until_swing_delay_expired_line = self._add_timeseries_line(
self.stability_axes, 'time until swing delay expired', 'blue')
self._add_timeseries_legend(self.stability_axes)
self.sample_latency = self._make_timeseries()
self.sample_latency_axes = self._add_timeseries_axes(
7, 'Accelerometer Sampling Latency', 'ms', [-10, 500],
sharex=shared_axis,
yticks=range(0, 500, 100))
self.sample_latency_line = self._add_timeseries_line(
self.sample_latency_axes, 'latency', 'black')
self._add_timeseries_legend(self.sample_latency_axes)
self.fig.canvas.mpl_connect('button_press_event', self._on_click)
self.paused = False
self.timer = self.fig.canvas.new_timer(interval=100)
self.timer.add_callback(lambda: self.update())
self.timer.start()
self.timebase = None
self._reset_parse_state()
# Handle a click event to pause or restart the timer.
def _on_click(self, ev):
if not self.paused:
self.paused = True
self.timer.stop()
else:
self.paused = False
self.timer.start()
# Initialize a time series.
def _make_timeseries(self):
return [[], []]
# Add a subplot to the figure for a time series.
def _add_timeseries_axes(self, index, title, ylabel, ylim, yticks, sharex=None):
num_graphs = 7
height = 0.9 / num_graphs
top = 0.95 - height * index
axes = self.fig.add_axes([0.1, top, 0.8, height],
xscale='linear',
xlim=[0, timespan],
ylabel=ylabel,
yscale='linear',
ylim=ylim,
sharex=sharex)
axes.text(0.02, 0.02, title, transform=axes.transAxes, fontsize=10, fontweight='bold')
axes.set_xlabel('time (s)', fontsize=10, fontweight='bold')
axes.set_ylabel(ylabel, fontsize=10, fontweight='bold')
axes.set_xticks(range(0, timespan + 1, timeticks))
axes.set_yticks(yticks)
axes.grid(True)
for label in axes.get_xticklabels():
label.set_fontsize(9)
for label in axes.get_yticklabels():
label.set_fontsize(9)
return axes
# Add a line to the axes for a time series.
def _add_timeseries_line(self, axes, label, color, linewidth=1):
return axes.plot([], label=label, color=color, linewidth=linewidth)[0]
# Add a legend to a time series.
def _add_timeseries_legend(self, axes):
axes.legend(
loc='upper left',
bbox_to_anchor=(1.01, 1),
borderpad=0.1,
borderaxespad=0.1,
prop={'size': 10})
# Resets the parse state.
def _reset_parse_state(self):
self.parse_raw_acceleration_x = None
self.parse_raw_acceleration_y = None
self.parse_raw_acceleration_z = None
self.parse_raw_acceleration_magnitude = None
self.parse_filtered_acceleration_x = None
self.parse_filtered_acceleration_y = None
self.parse_filtered_acceleration_z = None
self.parse_filtered_acceleration_magnitude = None
self.parse_tilt_angle = None
self.parse_orientation_angle = None
self.parse_current_rotation = None
self.parse_proposed_rotation = None
self.parse_predicted_rotation = None
self.parse_time_until_settled = None
self.parse_time_until_flat_delay_expired = None
self.parse_time_until_swing_delay_expired = None
self.parse_sample_latency = None
# Update samples.
def update(self):
timeindex = 0
while True:
try:
line = self.adbout.readline()
except EOFError:
plot.close()
return
if line is None:
break
print line
try:
timestamp = self._parse_timestamp(line)
except ValueError, e:
continue
if self.timebase is None:
self.timebase = timestamp
delta = timestamp - self.timebase
timeindex = delta.seconds + delta.microseconds * 0.000001
if line.find('Raw acceleration vector:') != -1:
self.parse_raw_acceleration_x = self._get_following_number(line, 'x=')
self.parse_raw_acceleration_y = self._get_following_number(line, 'y=')
self.parse_raw_acceleration_z = self._get_following_number(line, 'z=')
self.parse_raw_acceleration_magnitude = self._get_following_number(line, 'magnitude=')
if line.find('Filtered acceleration vector:') != -1:
self.parse_filtered_acceleration_x = self._get_following_number(line, 'x=')
self.parse_filtered_acceleration_y = self._get_following_number(line, 'y=')
self.parse_filtered_acceleration_z = self._get_following_number(line, 'z=')
self.parse_filtered_acceleration_magnitude = self._get_following_number(line, 'magnitude=')
if line.find('tiltAngle=') != -1:
self.parse_tilt_angle = self._get_following_number(line, 'tiltAngle=')
if line.find('orientationAngle=') != -1:
self.parse_orientation_angle = self._get_following_number(line, 'orientationAngle=')
if line.find('Result:') != -1:
self.parse_current_rotation = self._get_following_number(line, 'currentRotation=')
self.parse_proposed_rotation = self._get_following_number(line, 'proposedRotation=')
self.parse_predicted_rotation = self._get_following_number(line, 'predictedRotation=')
self.parse_sample_latency = self._get_following_number(line, 'timeDeltaMS=')
self.parse_time_until_settled = self._get_following_number(line, 'timeUntilSettledMS=')
self.parse_time_until_flat_delay_expired = self._get_following_number(line, 'timeUntilFlatDelayExpiredMS=')
self.parse_time_until_swing_delay_expired = self._get_following_number(line, 'timeUntilSwingDelayExpiredMS=')
self._append(self.raw_acceleration_x, timeindex, self.parse_raw_acceleration_x)
self._append(self.raw_acceleration_y, timeindex, self.parse_raw_acceleration_y)
self._append(self.raw_acceleration_z, timeindex, self.parse_raw_acceleration_z)
self._append(self.raw_acceleration_magnitude, timeindex, self.parse_raw_acceleration_magnitude)
self._append(self.filtered_acceleration_x, timeindex, self.parse_filtered_acceleration_x)
self._append(self.filtered_acceleration_y, timeindex, self.parse_filtered_acceleration_y)
self._append(self.filtered_acceleration_z, timeindex, self.parse_filtered_acceleration_z)
self._append(self.filtered_acceleration_magnitude, timeindex, self.parse_filtered_acceleration_magnitude)
self._append(self.tilt_angle, timeindex, self.parse_tilt_angle)
self._append(self.orientation_angle, timeindex, self.parse_orientation_angle)
self._append(self.current_rotation, timeindex, self.parse_current_rotation)
if self.parse_proposed_rotation >= 0:
self._append(self.proposed_rotation, timeindex, self.parse_proposed_rotation)
else:
self._append(self.proposed_rotation, timeindex, None)
if self.parse_predicted_rotation >= 0:
self._append(self.predicted_rotation, timeindex, self.parse_predicted_rotation)
else:
self._append(self.predicted_rotation, timeindex, None)
self._append(self.time_until_settled, timeindex, self.parse_time_until_settled)
self._append(self.time_until_flat_delay_expired, timeindex, self.parse_time_until_flat_delay_expired)
self._append(self.time_until_swing_delay_expired, timeindex, self.parse_time_until_swing_delay_expired)
self._append(self.sample_latency, timeindex, self.parse_sample_latency)
self._reset_parse_state()
# Scroll the plots.
if timeindex > timespan:
bottom = int(timeindex) - timespan + scrolljump
self.timebase += timedelta(seconds=bottom)
self._scroll(self.raw_acceleration_x, bottom)
self._scroll(self.raw_acceleration_y, bottom)
self._scroll(self.raw_acceleration_z, bottom)
self._scroll(self.raw_acceleration_magnitude, bottom)
self._scroll(self.filtered_acceleration_x, bottom)
self._scroll(self.filtered_acceleration_y, bottom)
self._scroll(self.filtered_acceleration_z, bottom)
self._scroll(self.filtered_acceleration_magnitude, bottom)
self._scroll(self.tilt_angle, bottom)
self._scroll(self.orientation_angle, bottom)
self._scroll(self.current_rotation, bottom)
self._scroll(self.proposed_rotation, bottom)
self._scroll(self.predicted_rotation, bottom)
self._scroll(self.time_until_settled, bottom)
self._scroll(self.time_until_flat_delay_expired, bottom)
self._scroll(self.time_until_swing_delay_expired, bottom)
self._scroll(self.sample_latency, bottom)
# Redraw the plots.
self.raw_acceleration_line_x.set_data(self.raw_acceleration_x)
self.raw_acceleration_line_y.set_data(self.raw_acceleration_y)
self.raw_acceleration_line_z.set_data(self.raw_acceleration_z)
self.raw_acceleration_line_magnitude.set_data(self.raw_acceleration_magnitude)
self.filtered_acceleration_line_x.set_data(self.filtered_acceleration_x)
self.filtered_acceleration_line_y.set_data(self.filtered_acceleration_y)
self.filtered_acceleration_line_z.set_data(self.filtered_acceleration_z)
self.filtered_acceleration_line_magnitude.set_data(self.filtered_acceleration_magnitude)
self.tilt_angle_line.set_data(self.tilt_angle)
self.orientation_angle_line.set_data(self.orientation_angle)
self.current_rotation_line.set_data(self.current_rotation)
self.proposed_rotation_line.set_data(self.proposed_rotation)
self.predicted_rotation_line.set_data(self.predicted_rotation)
self.time_until_settled_line.set_data(self.time_until_settled)
self.time_until_flat_delay_expired_line.set_data(self.time_until_flat_delay_expired)
self.time_until_swing_delay_expired_line.set_data(self.time_until_swing_delay_expired)
self.sample_latency_line.set_data(self.sample_latency)
self.fig.canvas.draw_idle()
# Scroll a time series.
def _scroll(self, timeseries, bottom):
bottom_index = bisect.bisect_left(timeseries[0], bottom)
del timeseries[0][:bottom_index]
del timeseries[1][:bottom_index]
for i, timeindex in enumerate(timeseries[0]):
timeseries[0][i] = timeindex - bottom
# Extract a word following the specified prefix.
def _get_following_word(self, line, prefix):
prefix_index = line.find(prefix)
if prefix_index == -1:
return None
start_index = prefix_index + len(prefix)
delim_index = line.find(',', start_index)
if delim_index == -1:
return line[start_index:]
else:
return line[start_index:delim_index]
# Extract a number following the specified prefix.
def _get_following_number(self, line, prefix):
word = self._get_following_word(line, prefix)
if word is None:
return None
return float(word)
# Extract an array of numbers following the specified prefix.
def _get_following_array_of_numbers(self, line, prefix):
prefix_index = line.find(prefix + '[')
if prefix_index == -1:
return None
start_index = prefix_index + len(prefix) + 1
delim_index = line.find(']', start_index)
if delim_index == -1:
return None
result = []
while start_index < delim_index:
comma_index = line.find(', ', start_index, delim_index)
if comma_index == -1:
result.append(float(line[start_index:delim_index]))
break;
result.append(float(line[start_index:comma_index]))
start_index = comma_index + 2
return result
# Add a value to a time series.
def _append(self, timeseries, timeindex, number):
timeseries[0].append(timeindex)
timeseries[1].append(number)
# Parse the logcat timestamp.
# Timestamp has the form '01-21 20:42:42.930'
def _parse_timestamp(self, line):
return datetime.strptime(line[0:18], '%m-%d %H:%M:%S.%f')
# Notice
print "Window Orientation Listener plotting tool"
print "-----------------------------------------\n"
print "Please turn on the Window Orientation Listener logging in Development Settings."
# Start adb.
print "Starting adb logcat.\n"
adb = subprocess.Popen(['adb', 'logcat', '-s', '-v', 'time', 'WindowOrientationListener:V'],
stdout=subprocess.PIPE)
adbout = NonBlockingStream(adb.stdout)
# Prepare plotter.
plotter = Plotter(adbout)
plotter.update()
# Main loop.
plot.show()