John Grossman 36d372fb6a Explicitly manage common clock client lifetimes.
Change the CCHelper class to be an instanced instead of a static
pattern.  The CCHelper instances all share an interface to the common
clock service and register/unregister a callback handler in response
to there being CCHelper instance in the system or not.  This brings
usage of the CCHelper into like with the new auto-disable
functionality of the common time service.  For any given process,
whenever there are CCHelper instances active, the process will
maintain a callback target to the common clock service and will be
considered to be an active client.

Also change all of the users of the CCHelper interface to manage the
lifecycle of their new CCHelper instances.

Change-Id: I7c28c5d70d9b07ba7407b4ac706e7e7d7253001b
2012-02-06 18:02:33 -08:00

519 lines
18 KiB
C++

/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "LibAAH_RTP"
//#define LOG_NDEBUG 0
#include <utils/Log.h>
#include <poll.h>
#include <pthread.h>
#include <common_time/cc_helper.h>
#include <media/AudioSystem.h>
#include <media/AudioTrack.h>
#include <media/stagefright/foundation/ADebug.h>
#include <media/stagefright/MetaData.h>
#include <media/stagefright/OMXClient.h>
#include <media/stagefright/OMXCodec.h>
#include <media/stagefright/Utils.h>
#include <utils/Timers.h>
#include <utils/threads.h>
#include "aah_decoder_pump.h"
namespace android {
static const long long kLongDecodeErrorThreshold = 1000000ll;
static const uint32_t kMaxLongErrorsBeforeFatal = 3;
static const uint32_t kMaxErrorsBeforeFatal = 60;
AAH_DecoderPump::AAH_DecoderPump(OMXClient& omx)
: omx_(omx)
, thread_status_(OK)
, renderer_(NULL)
, last_queued_pts_valid_(false)
, last_queued_pts_(0)
, last_ts_transform_valid_(false)
, last_volume_(0xFF) {
thread_ = new ThreadWrapper(this);
}
AAH_DecoderPump::~AAH_DecoderPump() {
shutdown();
}
status_t AAH_DecoderPump::initCheck() {
if (thread_ == NULL) {
LOGE("Failed to allocate thread");
return NO_MEMORY;
}
return OK;
}
status_t AAH_DecoderPump::queueForDecode(MediaBuffer* buf) {
if (NULL == buf) {
return BAD_VALUE;
}
if (OK != thread_status_) {
return thread_status_;
}
{ // Explicit scope for AutoMutex pattern.
AutoMutex lock(&thread_lock_);
in_queue_.push_back(buf);
}
thread_cond_.signal();
return OK;
}
void AAH_DecoderPump::queueToRenderer(MediaBuffer* decoded_sample) {
Mutex::Autolock lock(&render_lock_);
sp<MetaData> meta;
int64_t ts;
status_t res;
// Fetch the metadata and make sure the sample has a timestamp. We
// cannot render samples which are missing PTSs.
meta = decoded_sample->meta_data();
if ((meta == NULL) || (!meta->findInt64(kKeyTime, &ts))) {
LOGV("Decoded sample missing timestamp, cannot render.");
} else {
// If we currently are not holding on to a renderer, go ahead and
// make one now.
if (NULL == renderer_) {
renderer_ = new TimedAudioTrack();
if (NULL != renderer_) {
int frameCount;
AudioTrack::getMinFrameCount(&frameCount,
AUDIO_STREAM_DEFAULT,
static_cast<int>(format_sample_rate_));
int ch_format = (format_channels_ == 1)
? AUDIO_CHANNEL_OUT_MONO
: AUDIO_CHANNEL_OUT_STEREO;
res = renderer_->set(AUDIO_STREAM_DEFAULT,
format_sample_rate_,
AUDIO_FORMAT_PCM_16_BIT,
ch_format,
frameCount);
if (res != OK) {
LOGE("Failed to setup audio renderer. (res = %d)", res);
delete renderer_;
renderer_ = NULL;
} else {
CHECK(last_ts_transform_valid_);
res = renderer_->setMediaTimeTransform(
last_ts_transform_, TimedAudioTrack::COMMON_TIME);
if (res != NO_ERROR) {
LOGE("Failed to set media time transform on AudioTrack"
" (res = %d)", res);
delete renderer_;
renderer_ = NULL;
} else {
float volume = static_cast<float>(last_volume_)
/ 255.0f;
if (renderer_->setVolume(volume, volume) != OK) {
LOGW("%s: setVolume failed", __FUNCTION__);
}
renderer_->start();
}
}
} else {
LOGE("Failed to allocate AudioTrack to use as a renderer.");
}
}
if (NULL != renderer_) {
uint8_t* decoded_data =
reinterpret_cast<uint8_t*>(decoded_sample->data());
uint32_t decoded_amt = decoded_sample->range_length();
decoded_data += decoded_sample->range_offset();
sp<IMemory> pcm_payload;
res = renderer_->allocateTimedBuffer(decoded_amt, &pcm_payload);
if (res != OK) {
LOGE("Failed to allocate %d byte audio track buffer."
" (res = %d)", decoded_amt, res);
} else {
memcpy(pcm_payload->pointer(), decoded_data, decoded_amt);
res = renderer_->queueTimedBuffer(pcm_payload, ts);
if (res != OK) {
LOGE("Failed to queue %d byte audio track buffer with media"
" PTS %lld. (res = %d)", decoded_amt, ts, res);
} else {
last_queued_pts_valid_ = true;
last_queued_pts_ = ts;
}
}
} else {
LOGE("No renderer, dropping audio payload.");
}
}
}
void AAH_DecoderPump::stopAndCleanupRenderer() {
if (NULL == renderer_) {
return;
}
renderer_->stop();
delete renderer_;
renderer_ = NULL;
}
void AAH_DecoderPump::setRenderTSTransform(const LinearTransform& trans) {
Mutex::Autolock lock(&render_lock_);
if (last_ts_transform_valid_ && !memcmp(&trans,
&last_ts_transform_,
sizeof(trans))) {
return;
}
last_ts_transform_ = trans;
last_ts_transform_valid_ = true;
if (NULL != renderer_) {
status_t res = renderer_->setMediaTimeTransform(
last_ts_transform_, TimedAudioTrack::COMMON_TIME);
if (res != NO_ERROR) {
LOGE("Failed to set media time transform on AudioTrack"
" (res = %d)", res);
}
}
}
void AAH_DecoderPump::setRenderVolume(uint8_t volume) {
Mutex::Autolock lock(&render_lock_);
if (volume == last_volume_) {
return;
}
last_volume_ = volume;
if (renderer_ != NULL) {
float volume = static_cast<float>(last_volume_) / 255.0f;
if (renderer_->setVolume(volume, volume) != OK) {
LOGW("%s: setVolume failed", __FUNCTION__);
}
}
}
// isAboutToUnderflow is something of a hack used to figure out when it might be
// time to give up on trying to fill in a gap in the RTP sequence and simply
// move on with a discontinuity. If we had perfect knowledge of when we were
// going to underflow, it would not be a hack, but unfortunately we do not.
// Right now, we just take the PTS of the last sample queued, and check to see
// if its presentation time is within kAboutToUnderflowThreshold from now. If
// it is, then we say that we are about to underflow. This decision is based on
// two (possibly invalid) assumptions.
//
// 1) The transmitter is leading the clock by more than
// kAboutToUnderflowThreshold.
// 2) The delta between the PTS of the last sample queued and the next sample
// is less than the transmitter's clock lead amount.
//
// Right now, the default transmitter lead time is 1 second, which is a pretty
// large number and greater than the 50mSec that kAboutToUnderflowThreshold is
// currently set to. This should satisfy assumption #1 for now, but changes to
// the transmitter clock lead time could effect this.
//
// For non-sparse streams with a homogeneous sample rate (the vast majority of
// streams in the world), the delta between any two adjacent PTSs will always be
// the homogeneous sample period. It is very uncommon to see a sample period
// greater than the 1 second clock lead we are currently using, and you
// certainly will not see it in an MP3 file which should satisfy assumption #2.
// Sparse audio streams (where no audio is transmitted for long periods of
// silence) and extremely low framerate video stream (like an MPEG-2 slideshow
// or the video stream for a pay TV audio channel) are examples of streams which
// might violate assumption #2.
bool AAH_DecoderPump::isAboutToUnderflow(int64_t threshold) {
Mutex::Autolock lock(&render_lock_);
// If we have never queued anything to the decoder, we really don't know if
// we are going to underflow or not.
if (!last_queued_pts_valid_ || !last_ts_transform_valid_) {
return false;
}
// Don't have access to Common Time? If so, then things are Very Bad
// elsewhere in the system; it pretty much does not matter what we do here.
// Since we cannot really tell if we are about to underflow or not, its
// probably best to assume that we are not and proceed accordingly.
int64_t tt_now;
if (OK != cc_helper_.getCommonTime(&tt_now)) {
return false;
}
// Transform from media time to common time.
int64_t last_queued_pts_tt;
if (!last_ts_transform_.doForwardTransform(last_queued_pts_,
&last_queued_pts_tt)) {
return false;
}
// Check to see if we are underflowing.
return ((tt_now + threshold - last_queued_pts_tt) > 0);
}
void* AAH_DecoderPump::workThread() {
// No need to lock when accessing decoder_ from the thread. The
// implementation of init and shutdown ensure that other threads never touch
// decoder_ while the work thread is running.
CHECK(decoder_ != NULL);
CHECK(format_ != NULL);
// Start the decoder and note its result code. If something goes horribly
// wrong, callers of queueForDecode and getOutput will be able to detect
// that the thread encountered a fatal error and shut down by examining
// thread_status_.
thread_status_ = decoder_->start(format_.get());
if (OK != thread_status_) {
LOGE("AAH_DecoderPump's work thread failed to start decoder (res = %d)",
thread_status_);
return NULL;
}
DurationTimer decode_timer;
uint32_t consecutive_long_errors = 0;
uint32_t consecutive_errors = 0;
while (!thread_->exitPending()) {
status_t res;
MediaBuffer* bufOut = NULL;
decode_timer.start();
res = decoder_->read(&bufOut);
decode_timer.stop();
if (res == INFO_FORMAT_CHANGED) {
// Format has changed. Destroy our current renderer so that a new
// one can be created during queueToRenderer with the proper format.
//
// TODO : In order to transition seamlessly, we should change this
// to put the old renderer in a queue to play out completely before
// we destroy it. We can still create a new renderer, the timed
// nature of the renderer should ensure a seamless splice.
stopAndCleanupRenderer();
res = OK;
}
// Try to be a little nuanced in our handling of actual decode errors.
// Errors could happen because of minor stream corruption or because of
// transient resource limitations. In these cases, we would rather drop
// a little bit of output and ride out the unpleasantness then throw up
// our hands and abort everything.
//
// OTOH - When things are really bad (like we have a non-transient
// resource or bookkeeping issue, or the stream being fed to us is just
// complete and total garbage) we really want to terminate playback and
// raise an error condition all the way up to the application level so
// they can deal with it.
//
// Unfortunately, the error codes returned by the decoder can be a
// little non-specific. For example, if an OMXCodec times out
// attempting to obtain an output buffer, the error we get back is a
// generic -1. Try to distinguish between this resource timeout error
// and ES corruption error by timing how long the decode operation
// takes. Maintain accounting for both errors and "long errors". If we
// get more than a certain number consecutive errors of either type,
// consider it fatal and shutdown (which will cause the error to
// propagate all of the way up to the application level). The threshold
// for "long errors" is deliberately much lower than that of normal
// decode errors, both because of how long they take to happen and
// because they generally indicate resource limitation errors which are
// unlikely to go away in pathologically bad cases (in contrast to
// stream corruption errors which might happen 20 times in a row and
// then be suddenly OK again)
if (res != OK) {
consecutive_errors++;
if (decode_timer.durationUsecs() >= kLongDecodeErrorThreshold)
consecutive_long_errors++;
CHECK(NULL == bufOut);
LOGW("%s: Failed to decode data (res = %d)",
__PRETTY_FUNCTION__, res);
if ((consecutive_errors >= kMaxErrorsBeforeFatal) ||
(consecutive_long_errors >= kMaxLongErrorsBeforeFatal)) {
LOGE("%s: Maximum decode error threshold has been reached."
" There have been %d consecutive decode errors, and %d"
" consecutive decode operations which resulted in errors"
" and took more than %lld uSec to process. The last"
" decode operation took %lld uSec.",
__PRETTY_FUNCTION__,
consecutive_errors, consecutive_long_errors,
kLongDecodeErrorThreshold, decode_timer.durationUsecs());
thread_status_ = res;
break;
}
continue;
}
if (NULL == bufOut) {
LOGW("%s: Successful decode, but no buffer produced",
__PRETTY_FUNCTION__);
continue;
}
// Successful decode (with actual output produced). Clear the error
// counters.
consecutive_errors = 0;
consecutive_long_errors = 0;
queueToRenderer(bufOut);
bufOut->release();
}
decoder_->stop();
stopAndCleanupRenderer();
return NULL;
}
status_t AAH_DecoderPump::init(sp<MetaData> params) {
Mutex::Autolock lock(&init_lock_);
if (decoder_ != NULL) {
// already inited
return OK;
}
if (params == NULL) {
return BAD_VALUE;
}
if (!params->findInt32(kKeyChannelCount, &format_channels_)) {
return BAD_VALUE;
}
if (!params->findInt32(kKeySampleRate, &format_sample_rate_)) {
return BAD_VALUE;
}
CHECK(OK == thread_status_);
CHECK(decoder_ == NULL);
status_t ret_val = UNKNOWN_ERROR;
// Cache the format and attempt to create the decoder.
format_ = params;
decoder_ = OMXCodec::Create(
omx_.interface(), // IOMX Handle
format_, // Metadata for substream (indicates codec)
false, // Make a decoder, not an encoder
sp<MediaSource>(this)); // We will be the source for this codec.
if (decoder_ == NULL) {
LOGE("Failed to allocate decoder in %s", __PRETTY_FUNCTION__);
goto bailout;
}
// Fire up the pump thread. It will take care of starting and stopping the
// decoder.
ret_val = thread_->run("aah_decode_pump", ANDROID_PRIORITY_AUDIO);
if (OK != ret_val) {
LOGE("Failed to start work thread in %s (res = %d)",
__PRETTY_FUNCTION__, ret_val);
goto bailout;
}
bailout:
if (OK != ret_val) {
decoder_ = NULL;
format_ = NULL;
}
return OK;
}
status_t AAH_DecoderPump::shutdown() {
Mutex::Autolock lock(&init_lock_);
return shutdown_l();
}
status_t AAH_DecoderPump::shutdown_l() {
thread_->requestExit();
thread_cond_.signal();
thread_->requestExitAndWait();
MBQueue::iterator I;
for (I = in_queue_.begin(); I != in_queue_.end(); ++I) {
(*I)->release();
}
in_queue_.clear();
last_queued_pts_valid_ = false;
last_ts_transform_valid_ = false;
last_volume_ = 0xFF;
thread_status_ = OK;
decoder_ = NULL;
format_ = NULL;
return OK;
}
status_t AAH_DecoderPump::read(MediaBuffer **buffer,
const ReadOptions *options) {
if (!buffer) {
return BAD_VALUE;
}
*buffer = NULL;
// While its not time to shut down, and we have no data to process, wait.
AutoMutex lock(&thread_lock_);
while (!thread_->exitPending() && in_queue_.empty())
thread_cond_.wait(thread_lock_);
// At this point, if its not time to shutdown then we must have something to
// process. Go ahead and pop the front of the queue for processing.
if (!thread_->exitPending()) {
CHECK(!in_queue_.empty());
*buffer = *(in_queue_.begin());
in_queue_.erase(in_queue_.begin());
}
// If we managed to get a buffer, then everything must be OK. If not, then
// we must be shutting down.
return (NULL == *buffer) ? INVALID_OPERATION : OK;
}
AAH_DecoderPump::ThreadWrapper::ThreadWrapper(AAH_DecoderPump* owner)
: Thread(false /* canCallJava*/ )
, owner_(owner) {
}
bool AAH_DecoderPump::ThreadWrapper::threadLoop() {
CHECK(NULL != owner_);
owner_->workThread();
return false;
}
} // namespace android