Made it possible for individual windows to disable pointer gestures while the window has focus using a private API. Cleaned up the InputReader configuration code to enable in-place reconfiguration of input devices without having to reopen them all. This change makes changing the pointer speed somewhat nicer since the pointer doesn't jump back to the origin after each change. Change-Id: I9727419c2f4cb39e16acb4b15fd7fd84526b1239
5998 lines
234 KiB
C++
5998 lines
234 KiB
C++
/*
|
|
* Copyright (C) 2010 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "InputReader"
|
|
|
|
//#define LOG_NDEBUG 0
|
|
|
|
// Log debug messages for each raw event received from the EventHub.
|
|
#define DEBUG_RAW_EVENTS 0
|
|
|
|
// Log debug messages about touch screen filtering hacks.
|
|
#define DEBUG_HACKS 0
|
|
|
|
// Log debug messages about virtual key processing.
|
|
#define DEBUG_VIRTUAL_KEYS 0
|
|
|
|
// Log debug messages about pointers.
|
|
#define DEBUG_POINTERS 0
|
|
|
|
// Log debug messages about pointer assignment calculations.
|
|
#define DEBUG_POINTER_ASSIGNMENT 0
|
|
|
|
// Log debug messages about gesture detection.
|
|
#define DEBUG_GESTURES 0
|
|
|
|
#include "InputReader.h"
|
|
|
|
#include <cutils/log.h>
|
|
#include <ui/Keyboard.h>
|
|
#include <ui/VirtualKeyMap.h>
|
|
|
|
#include <stddef.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <errno.h>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
|
|
#define INDENT " "
|
|
#define INDENT2 " "
|
|
#define INDENT3 " "
|
|
#define INDENT4 " "
|
|
|
|
namespace android {
|
|
|
|
// --- Constants ---
|
|
|
|
// Maximum number of slots supported when using the slot-based Multitouch Protocol B.
|
|
static const size_t MAX_SLOTS = 32;
|
|
|
|
// --- Static Functions ---
|
|
|
|
template<typename T>
|
|
inline static T abs(const T& value) {
|
|
return value < 0 ? - value : value;
|
|
}
|
|
|
|
template<typename T>
|
|
inline static T min(const T& a, const T& b) {
|
|
return a < b ? a : b;
|
|
}
|
|
|
|
template<typename T>
|
|
inline static void swap(T& a, T& b) {
|
|
T temp = a;
|
|
a = b;
|
|
b = temp;
|
|
}
|
|
|
|
inline static float avg(float x, float y) {
|
|
return (x + y) / 2;
|
|
}
|
|
|
|
inline static float distance(float x1, float y1, float x2, float y2) {
|
|
return hypotf(x1 - x2, y1 - y2);
|
|
}
|
|
|
|
inline static int32_t signExtendNybble(int32_t value) {
|
|
return value >= 8 ? value - 16 : value;
|
|
}
|
|
|
|
static inline const char* toString(bool value) {
|
|
return value ? "true" : "false";
|
|
}
|
|
|
|
static int32_t rotateValueUsingRotationMap(int32_t value, int32_t orientation,
|
|
const int32_t map[][4], size_t mapSize) {
|
|
if (orientation != DISPLAY_ORIENTATION_0) {
|
|
for (size_t i = 0; i < mapSize; i++) {
|
|
if (value == map[i][0]) {
|
|
return map[i][orientation];
|
|
}
|
|
}
|
|
}
|
|
return value;
|
|
}
|
|
|
|
static const int32_t keyCodeRotationMap[][4] = {
|
|
// key codes enumerated counter-clockwise with the original (unrotated) key first
|
|
// no rotation, 90 degree rotation, 180 degree rotation, 270 degree rotation
|
|
{ AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT },
|
|
{ AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN },
|
|
{ AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT },
|
|
{ AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP },
|
|
};
|
|
static const size_t keyCodeRotationMapSize =
|
|
sizeof(keyCodeRotationMap) / sizeof(keyCodeRotationMap[0]);
|
|
|
|
int32_t rotateKeyCode(int32_t keyCode, int32_t orientation) {
|
|
return rotateValueUsingRotationMap(keyCode, orientation,
|
|
keyCodeRotationMap, keyCodeRotationMapSize);
|
|
}
|
|
|
|
static const int32_t edgeFlagRotationMap[][4] = {
|
|
// edge flags enumerated counter-clockwise with the original (unrotated) edge flag first
|
|
// no rotation, 90 degree rotation, 180 degree rotation, 270 degree rotation
|
|
{ AMOTION_EVENT_EDGE_FLAG_BOTTOM, AMOTION_EVENT_EDGE_FLAG_RIGHT,
|
|
AMOTION_EVENT_EDGE_FLAG_TOP, AMOTION_EVENT_EDGE_FLAG_LEFT },
|
|
{ AMOTION_EVENT_EDGE_FLAG_RIGHT, AMOTION_EVENT_EDGE_FLAG_TOP,
|
|
AMOTION_EVENT_EDGE_FLAG_LEFT, AMOTION_EVENT_EDGE_FLAG_BOTTOM },
|
|
{ AMOTION_EVENT_EDGE_FLAG_TOP, AMOTION_EVENT_EDGE_FLAG_LEFT,
|
|
AMOTION_EVENT_EDGE_FLAG_BOTTOM, AMOTION_EVENT_EDGE_FLAG_RIGHT },
|
|
{ AMOTION_EVENT_EDGE_FLAG_LEFT, AMOTION_EVENT_EDGE_FLAG_BOTTOM,
|
|
AMOTION_EVENT_EDGE_FLAG_RIGHT, AMOTION_EVENT_EDGE_FLAG_TOP },
|
|
};
|
|
static const size_t edgeFlagRotationMapSize =
|
|
sizeof(edgeFlagRotationMap) / sizeof(edgeFlagRotationMap[0]);
|
|
|
|
static int32_t rotateEdgeFlag(int32_t edgeFlag, int32_t orientation) {
|
|
return rotateValueUsingRotationMap(edgeFlag, orientation,
|
|
edgeFlagRotationMap, edgeFlagRotationMapSize);
|
|
}
|
|
|
|
static inline bool sourcesMatchMask(uint32_t sources, uint32_t sourceMask) {
|
|
return (sources & sourceMask & ~ AINPUT_SOURCE_CLASS_MASK) != 0;
|
|
}
|
|
|
|
static uint32_t getButtonStateForScanCode(int32_t scanCode) {
|
|
// Currently all buttons are mapped to the primary button.
|
|
switch (scanCode) {
|
|
case BTN_LEFT:
|
|
return AMOTION_EVENT_BUTTON_PRIMARY;
|
|
case BTN_RIGHT:
|
|
return AMOTION_EVENT_BUTTON_SECONDARY;
|
|
case BTN_MIDDLE:
|
|
return AMOTION_EVENT_BUTTON_TERTIARY;
|
|
case BTN_SIDE:
|
|
return AMOTION_EVENT_BUTTON_BACK;
|
|
case BTN_EXTRA:
|
|
return AMOTION_EVENT_BUTTON_FORWARD;
|
|
case BTN_FORWARD:
|
|
return AMOTION_EVENT_BUTTON_FORWARD;
|
|
case BTN_BACK:
|
|
return AMOTION_EVENT_BUTTON_BACK;
|
|
case BTN_TASK:
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// Returns true if the pointer should be reported as being down given the specified
|
|
// button states. This determines whether the event is reported as a touch event.
|
|
static bool isPointerDown(int32_t buttonState) {
|
|
return buttonState &
|
|
(AMOTION_EVENT_BUTTON_PRIMARY | AMOTION_EVENT_BUTTON_SECONDARY
|
|
| AMOTION_EVENT_BUTTON_TERTIARY
|
|
| AMOTION_EVENT_BUTTON_ERASER);
|
|
}
|
|
|
|
static int32_t calculateEdgeFlagsUsingPointerBounds(
|
|
const sp<PointerControllerInterface>& pointerController, float x, float y) {
|
|
int32_t edgeFlags = 0;
|
|
float minX, minY, maxX, maxY;
|
|
if (pointerController->getBounds(&minX, &minY, &maxX, &maxY)) {
|
|
if (x <= minX) {
|
|
edgeFlags |= AMOTION_EVENT_EDGE_FLAG_LEFT;
|
|
} else if (x >= maxX) {
|
|
edgeFlags |= AMOTION_EVENT_EDGE_FLAG_RIGHT;
|
|
}
|
|
if (y <= minY) {
|
|
edgeFlags |= AMOTION_EVENT_EDGE_FLAG_TOP;
|
|
} else if (y >= maxY) {
|
|
edgeFlags |= AMOTION_EVENT_EDGE_FLAG_BOTTOM;
|
|
}
|
|
}
|
|
return edgeFlags;
|
|
}
|
|
|
|
static float calculateCommonVector(float a, float b) {
|
|
if (a > 0 && b > 0) {
|
|
return a < b ? a : b;
|
|
} else if (a < 0 && b < 0) {
|
|
return a > b ? a : b;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void synthesizeButtonKey(InputReaderContext* context, int32_t action,
|
|
nsecs_t when, int32_t deviceId, uint32_t source,
|
|
uint32_t policyFlags, int32_t lastButtonState, int32_t currentButtonState,
|
|
int32_t buttonState, int32_t keyCode) {
|
|
if (
|
|
(action == AKEY_EVENT_ACTION_DOWN
|
|
&& !(lastButtonState & buttonState)
|
|
&& (currentButtonState & buttonState))
|
|
|| (action == AKEY_EVENT_ACTION_UP
|
|
&& (lastButtonState & buttonState)
|
|
&& !(currentButtonState & buttonState))) {
|
|
context->getDispatcher()->notifyKey(when, deviceId, source, policyFlags,
|
|
action, 0, keyCode, 0, context->getGlobalMetaState(), when);
|
|
}
|
|
}
|
|
|
|
static void synthesizeButtonKeys(InputReaderContext* context, int32_t action,
|
|
nsecs_t when, int32_t deviceId, uint32_t source,
|
|
uint32_t policyFlags, int32_t lastButtonState, int32_t currentButtonState) {
|
|
synthesizeButtonKey(context, action, when, deviceId, source, policyFlags,
|
|
lastButtonState, currentButtonState,
|
|
AMOTION_EVENT_BUTTON_BACK, AKEYCODE_BACK);
|
|
synthesizeButtonKey(context, action, when, deviceId, source, policyFlags,
|
|
lastButtonState, currentButtonState,
|
|
AMOTION_EVENT_BUTTON_FORWARD, AKEYCODE_FORWARD);
|
|
}
|
|
|
|
|
|
// --- InputReader ---
|
|
|
|
InputReader::InputReader(const sp<EventHubInterface>& eventHub,
|
|
const sp<InputReaderPolicyInterface>& policy,
|
|
const sp<InputDispatcherInterface>& dispatcher) :
|
|
mEventHub(eventHub), mPolicy(policy), mDispatcher(dispatcher),
|
|
mGlobalMetaState(0), mDisableVirtualKeysTimeout(LLONG_MIN), mNextTimeout(LLONG_MAX),
|
|
mConfigurationChangesToRefresh(0) {
|
|
refreshConfiguration(0);
|
|
updateGlobalMetaState();
|
|
updateInputConfiguration();
|
|
}
|
|
|
|
InputReader::~InputReader() {
|
|
for (size_t i = 0; i < mDevices.size(); i++) {
|
|
delete mDevices.valueAt(i);
|
|
}
|
|
}
|
|
|
|
void InputReader::loopOnce() {
|
|
uint32_t changes;
|
|
{ // acquire lock
|
|
AutoMutex _l(mStateLock);
|
|
|
|
changes = mConfigurationChangesToRefresh;
|
|
mConfigurationChangesToRefresh = 0;
|
|
} // release lock
|
|
|
|
if (changes) {
|
|
refreshConfiguration(changes);
|
|
}
|
|
|
|
int32_t timeoutMillis = -1;
|
|
if (mNextTimeout != LLONG_MAX) {
|
|
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
|
|
timeoutMillis = toMillisecondTimeoutDelay(now, mNextTimeout);
|
|
}
|
|
|
|
size_t count = mEventHub->getEvents(timeoutMillis, mEventBuffer, EVENT_BUFFER_SIZE);
|
|
if (count) {
|
|
processEvents(mEventBuffer, count);
|
|
}
|
|
if (!count || timeoutMillis == 0) {
|
|
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
|
|
#if DEBUG_RAW_EVENTS
|
|
LOGD("Timeout expired, latency=%0.3fms", (now - mNextTimeout) * 0.000001f);
|
|
#endif
|
|
mNextTimeout = LLONG_MAX;
|
|
timeoutExpired(now);
|
|
}
|
|
}
|
|
|
|
void InputReader::processEvents(const RawEvent* rawEvents, size_t count) {
|
|
for (const RawEvent* rawEvent = rawEvents; count;) {
|
|
int32_t type = rawEvent->type;
|
|
size_t batchSize = 1;
|
|
if (type < EventHubInterface::FIRST_SYNTHETIC_EVENT) {
|
|
int32_t deviceId = rawEvent->deviceId;
|
|
while (batchSize < count) {
|
|
if (rawEvent[batchSize].type >= EventHubInterface::FIRST_SYNTHETIC_EVENT
|
|
|| rawEvent[batchSize].deviceId != deviceId) {
|
|
break;
|
|
}
|
|
batchSize += 1;
|
|
}
|
|
#if DEBUG_RAW_EVENTS
|
|
LOGD("BatchSize: %d Count: %d", batchSize, count);
|
|
#endif
|
|
processEventsForDevice(deviceId, rawEvent, batchSize);
|
|
} else {
|
|
switch (rawEvent->type) {
|
|
case EventHubInterface::DEVICE_ADDED:
|
|
addDevice(rawEvent->deviceId);
|
|
break;
|
|
case EventHubInterface::DEVICE_REMOVED:
|
|
removeDevice(rawEvent->deviceId);
|
|
break;
|
|
case EventHubInterface::FINISHED_DEVICE_SCAN:
|
|
handleConfigurationChanged(rawEvent->when);
|
|
break;
|
|
default:
|
|
LOG_ASSERT(false); // can't happen
|
|
break;
|
|
}
|
|
}
|
|
count -= batchSize;
|
|
rawEvent += batchSize;
|
|
}
|
|
}
|
|
|
|
void InputReader::addDevice(int32_t deviceId) {
|
|
String8 name = mEventHub->getDeviceName(deviceId);
|
|
uint32_t classes = mEventHub->getDeviceClasses(deviceId);
|
|
|
|
InputDevice* device = createDevice(deviceId, name, classes);
|
|
device->configure(&mConfig, 0);
|
|
|
|
if (device->isIgnored()) {
|
|
LOGI("Device added: id=%d, name='%s' (ignored non-input device)", deviceId, name.string());
|
|
} else {
|
|
LOGI("Device added: id=%d, name='%s', sources=0x%08x", deviceId, name.string(),
|
|
device->getSources());
|
|
}
|
|
|
|
bool added = false;
|
|
{ // acquire device registry writer lock
|
|
RWLock::AutoWLock _wl(mDeviceRegistryLock);
|
|
|
|
ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
|
|
if (deviceIndex < 0) {
|
|
mDevices.add(deviceId, device);
|
|
added = true;
|
|
}
|
|
} // release device registry writer lock
|
|
|
|
if (! added) {
|
|
LOGW("Ignoring spurious device added event for deviceId %d.", deviceId);
|
|
delete device;
|
|
return;
|
|
}
|
|
}
|
|
|
|
void InputReader::removeDevice(int32_t deviceId) {
|
|
bool removed = false;
|
|
InputDevice* device = NULL;
|
|
{ // acquire device registry writer lock
|
|
RWLock::AutoWLock _wl(mDeviceRegistryLock);
|
|
|
|
ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
|
|
if (deviceIndex >= 0) {
|
|
device = mDevices.valueAt(deviceIndex);
|
|
mDevices.removeItemsAt(deviceIndex, 1);
|
|
removed = true;
|
|
}
|
|
} // release device registry writer lock
|
|
|
|
if (! removed) {
|
|
LOGW("Ignoring spurious device removed event for deviceId %d.", deviceId);
|
|
return;
|
|
}
|
|
|
|
if (device->isIgnored()) {
|
|
LOGI("Device removed: id=%d, name='%s' (ignored non-input device)",
|
|
device->getId(), device->getName().string());
|
|
} else {
|
|
LOGI("Device removed: id=%d, name='%s', sources=0x%08x",
|
|
device->getId(), device->getName().string(), device->getSources());
|
|
}
|
|
|
|
device->reset();
|
|
|
|
delete device;
|
|
}
|
|
|
|
InputDevice* InputReader::createDevice(int32_t deviceId, const String8& name, uint32_t classes) {
|
|
InputDevice* device = new InputDevice(this, deviceId, name);
|
|
|
|
// External devices.
|
|
if (classes & INPUT_DEVICE_CLASS_EXTERNAL) {
|
|
device->setExternal(true);
|
|
}
|
|
|
|
// Switch-like devices.
|
|
if (classes & INPUT_DEVICE_CLASS_SWITCH) {
|
|
device->addMapper(new SwitchInputMapper(device));
|
|
}
|
|
|
|
// Keyboard-like devices.
|
|
uint32_t keyboardSource = 0;
|
|
int32_t keyboardType = AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC;
|
|
if (classes & INPUT_DEVICE_CLASS_KEYBOARD) {
|
|
keyboardSource |= AINPUT_SOURCE_KEYBOARD;
|
|
}
|
|
if (classes & INPUT_DEVICE_CLASS_ALPHAKEY) {
|
|
keyboardType = AINPUT_KEYBOARD_TYPE_ALPHABETIC;
|
|
}
|
|
if (classes & INPUT_DEVICE_CLASS_DPAD) {
|
|
keyboardSource |= AINPUT_SOURCE_DPAD;
|
|
}
|
|
if (classes & INPUT_DEVICE_CLASS_GAMEPAD) {
|
|
keyboardSource |= AINPUT_SOURCE_GAMEPAD;
|
|
}
|
|
|
|
if (keyboardSource != 0) {
|
|
device->addMapper(new KeyboardInputMapper(device, keyboardSource, keyboardType));
|
|
}
|
|
|
|
// Cursor-like devices.
|
|
if (classes & INPUT_DEVICE_CLASS_CURSOR) {
|
|
device->addMapper(new CursorInputMapper(device));
|
|
}
|
|
|
|
// Touchscreens and touchpad devices.
|
|
if (classes & INPUT_DEVICE_CLASS_TOUCH_MT) {
|
|
device->addMapper(new MultiTouchInputMapper(device));
|
|
} else if (classes & INPUT_DEVICE_CLASS_TOUCH) {
|
|
device->addMapper(new SingleTouchInputMapper(device));
|
|
}
|
|
|
|
// Joystick-like devices.
|
|
if (classes & INPUT_DEVICE_CLASS_JOYSTICK) {
|
|
device->addMapper(new JoystickInputMapper(device));
|
|
}
|
|
|
|
return device;
|
|
}
|
|
|
|
void InputReader::processEventsForDevice(int32_t deviceId,
|
|
const RawEvent* rawEvents, size_t count) {
|
|
{ // acquire device registry reader lock
|
|
RWLock::AutoRLock _rl(mDeviceRegistryLock);
|
|
|
|
ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
|
|
if (deviceIndex < 0) {
|
|
LOGW("Discarding event for unknown deviceId %d.", deviceId);
|
|
return;
|
|
}
|
|
|
|
InputDevice* device = mDevices.valueAt(deviceIndex);
|
|
if (device->isIgnored()) {
|
|
//LOGD("Discarding event for ignored deviceId %d.", deviceId);
|
|
return;
|
|
}
|
|
|
|
device->process(rawEvents, count);
|
|
} // release device registry reader lock
|
|
}
|
|
|
|
void InputReader::timeoutExpired(nsecs_t when) {
|
|
{ // acquire device registry reader lock
|
|
RWLock::AutoRLock _rl(mDeviceRegistryLock);
|
|
|
|
for (size_t i = 0; i < mDevices.size(); i++) {
|
|
InputDevice* device = mDevices.valueAt(i);
|
|
if (!device->isIgnored()) {
|
|
device->timeoutExpired(when);
|
|
}
|
|
}
|
|
} // release device registry reader lock
|
|
}
|
|
|
|
void InputReader::handleConfigurationChanged(nsecs_t when) {
|
|
// Reset global meta state because it depends on the list of all configured devices.
|
|
updateGlobalMetaState();
|
|
|
|
// Update input configuration.
|
|
updateInputConfiguration();
|
|
|
|
// Enqueue configuration changed.
|
|
mDispatcher->notifyConfigurationChanged(when);
|
|
}
|
|
|
|
void InputReader::refreshConfiguration(uint32_t changes) {
|
|
mPolicy->getReaderConfiguration(&mConfig);
|
|
mEventHub->setExcludedDevices(mConfig.excludedDeviceNames);
|
|
|
|
if (changes) {
|
|
LOGI("Reconfiguring input devices. changes=0x%08x", changes);
|
|
|
|
if (changes & InputReaderConfiguration::CHANGE_MUST_REOPEN) {
|
|
mEventHub->requestReopenDevices();
|
|
} else {
|
|
{ // acquire device registry reader lock
|
|
RWLock::AutoRLock _rl(mDeviceRegistryLock);
|
|
|
|
for (size_t i = 0; i < mDevices.size(); i++) {
|
|
InputDevice* device = mDevices.valueAt(i);
|
|
device->configure(&mConfig, changes);
|
|
}
|
|
} // release device registry reader lock
|
|
}
|
|
}
|
|
}
|
|
|
|
void InputReader::updateGlobalMetaState() {
|
|
{ // acquire state lock
|
|
AutoMutex _l(mStateLock);
|
|
|
|
mGlobalMetaState = 0;
|
|
|
|
{ // acquire device registry reader lock
|
|
RWLock::AutoRLock _rl(mDeviceRegistryLock);
|
|
|
|
for (size_t i = 0; i < mDevices.size(); i++) {
|
|
InputDevice* device = mDevices.valueAt(i);
|
|
mGlobalMetaState |= device->getMetaState();
|
|
}
|
|
} // release device registry reader lock
|
|
} // release state lock
|
|
}
|
|
|
|
int32_t InputReader::getGlobalMetaState() {
|
|
{ // acquire state lock
|
|
AutoMutex _l(mStateLock);
|
|
|
|
return mGlobalMetaState;
|
|
} // release state lock
|
|
}
|
|
|
|
void InputReader::updateInputConfiguration() {
|
|
{ // acquire state lock
|
|
AutoMutex _l(mStateLock);
|
|
|
|
int32_t touchScreenConfig = InputConfiguration::TOUCHSCREEN_NOTOUCH;
|
|
int32_t keyboardConfig = InputConfiguration::KEYBOARD_NOKEYS;
|
|
int32_t navigationConfig = InputConfiguration::NAVIGATION_NONAV;
|
|
{ // acquire device registry reader lock
|
|
RWLock::AutoRLock _rl(mDeviceRegistryLock);
|
|
|
|
InputDeviceInfo deviceInfo;
|
|
for (size_t i = 0; i < mDevices.size(); i++) {
|
|
InputDevice* device = mDevices.valueAt(i);
|
|
device->getDeviceInfo(& deviceInfo);
|
|
uint32_t sources = deviceInfo.getSources();
|
|
|
|
if ((sources & AINPUT_SOURCE_TOUCHSCREEN) == AINPUT_SOURCE_TOUCHSCREEN) {
|
|
touchScreenConfig = InputConfiguration::TOUCHSCREEN_FINGER;
|
|
}
|
|
if ((sources & AINPUT_SOURCE_TRACKBALL) == AINPUT_SOURCE_TRACKBALL) {
|
|
navigationConfig = InputConfiguration::NAVIGATION_TRACKBALL;
|
|
} else if ((sources & AINPUT_SOURCE_DPAD) == AINPUT_SOURCE_DPAD) {
|
|
navigationConfig = InputConfiguration::NAVIGATION_DPAD;
|
|
}
|
|
if (deviceInfo.getKeyboardType() == AINPUT_KEYBOARD_TYPE_ALPHABETIC) {
|
|
keyboardConfig = InputConfiguration::KEYBOARD_QWERTY;
|
|
}
|
|
}
|
|
} // release device registry reader lock
|
|
|
|
mInputConfiguration.touchScreen = touchScreenConfig;
|
|
mInputConfiguration.keyboard = keyboardConfig;
|
|
mInputConfiguration.navigation = navigationConfig;
|
|
} // release state lock
|
|
}
|
|
|
|
void InputReader::disableVirtualKeysUntil(nsecs_t time) {
|
|
mDisableVirtualKeysTimeout = time;
|
|
}
|
|
|
|
bool InputReader::shouldDropVirtualKey(nsecs_t now,
|
|
InputDevice* device, int32_t keyCode, int32_t scanCode) {
|
|
if (now < mDisableVirtualKeysTimeout) {
|
|
LOGI("Dropping virtual key from device %s because virtual keys are "
|
|
"temporarily disabled for the next %0.3fms. keyCode=%d, scanCode=%d",
|
|
device->getName().string(),
|
|
(mDisableVirtualKeysTimeout - now) * 0.000001,
|
|
keyCode, scanCode);
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void InputReader::fadePointer() {
|
|
{ // acquire device registry reader lock
|
|
RWLock::AutoRLock _rl(mDeviceRegistryLock);
|
|
|
|
for (size_t i = 0; i < mDevices.size(); i++) {
|
|
InputDevice* device = mDevices.valueAt(i);
|
|
device->fadePointer();
|
|
}
|
|
} // release device registry reader lock
|
|
}
|
|
|
|
void InputReader::requestTimeoutAtTime(nsecs_t when) {
|
|
if (when < mNextTimeout) {
|
|
mNextTimeout = when;
|
|
}
|
|
}
|
|
|
|
void InputReader::getInputConfiguration(InputConfiguration* outConfiguration) {
|
|
{ // acquire state lock
|
|
AutoMutex _l(mStateLock);
|
|
|
|
*outConfiguration = mInputConfiguration;
|
|
} // release state lock
|
|
}
|
|
|
|
status_t InputReader::getInputDeviceInfo(int32_t deviceId, InputDeviceInfo* outDeviceInfo) {
|
|
{ // acquire device registry reader lock
|
|
RWLock::AutoRLock _rl(mDeviceRegistryLock);
|
|
|
|
ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
|
|
if (deviceIndex < 0) {
|
|
return NAME_NOT_FOUND;
|
|
}
|
|
|
|
InputDevice* device = mDevices.valueAt(deviceIndex);
|
|
if (device->isIgnored()) {
|
|
return NAME_NOT_FOUND;
|
|
}
|
|
|
|
device->getDeviceInfo(outDeviceInfo);
|
|
return OK;
|
|
} // release device registy reader lock
|
|
}
|
|
|
|
void InputReader::getInputDeviceIds(Vector<int32_t>& outDeviceIds) {
|
|
outDeviceIds.clear();
|
|
|
|
{ // acquire device registry reader lock
|
|
RWLock::AutoRLock _rl(mDeviceRegistryLock);
|
|
|
|
size_t numDevices = mDevices.size();
|
|
for (size_t i = 0; i < numDevices; i++) {
|
|
InputDevice* device = mDevices.valueAt(i);
|
|
if (! device->isIgnored()) {
|
|
outDeviceIds.add(device->getId());
|
|
}
|
|
}
|
|
} // release device registy reader lock
|
|
}
|
|
|
|
int32_t InputReader::getKeyCodeState(int32_t deviceId, uint32_t sourceMask,
|
|
int32_t keyCode) {
|
|
return getState(deviceId, sourceMask, keyCode, & InputDevice::getKeyCodeState);
|
|
}
|
|
|
|
int32_t InputReader::getScanCodeState(int32_t deviceId, uint32_t sourceMask,
|
|
int32_t scanCode) {
|
|
return getState(deviceId, sourceMask, scanCode, & InputDevice::getScanCodeState);
|
|
}
|
|
|
|
int32_t InputReader::getSwitchState(int32_t deviceId, uint32_t sourceMask, int32_t switchCode) {
|
|
return getState(deviceId, sourceMask, switchCode, & InputDevice::getSwitchState);
|
|
}
|
|
|
|
int32_t InputReader::getState(int32_t deviceId, uint32_t sourceMask, int32_t code,
|
|
GetStateFunc getStateFunc) {
|
|
{ // acquire device registry reader lock
|
|
RWLock::AutoRLock _rl(mDeviceRegistryLock);
|
|
|
|
int32_t result = AKEY_STATE_UNKNOWN;
|
|
if (deviceId >= 0) {
|
|
ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
|
|
if (deviceIndex >= 0) {
|
|
InputDevice* device = mDevices.valueAt(deviceIndex);
|
|
if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
|
|
result = (device->*getStateFunc)(sourceMask, code);
|
|
}
|
|
}
|
|
} else {
|
|
size_t numDevices = mDevices.size();
|
|
for (size_t i = 0; i < numDevices; i++) {
|
|
InputDevice* device = mDevices.valueAt(i);
|
|
if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
|
|
result = (device->*getStateFunc)(sourceMask, code);
|
|
if (result >= AKEY_STATE_DOWN) {
|
|
return result;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
} // release device registy reader lock
|
|
}
|
|
|
|
bool InputReader::hasKeys(int32_t deviceId, uint32_t sourceMask,
|
|
size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) {
|
|
memset(outFlags, 0, numCodes);
|
|
return markSupportedKeyCodes(deviceId, sourceMask, numCodes, keyCodes, outFlags);
|
|
}
|
|
|
|
bool InputReader::markSupportedKeyCodes(int32_t deviceId, uint32_t sourceMask, size_t numCodes,
|
|
const int32_t* keyCodes, uint8_t* outFlags) {
|
|
{ // acquire device registry reader lock
|
|
RWLock::AutoRLock _rl(mDeviceRegistryLock);
|
|
bool result = false;
|
|
if (deviceId >= 0) {
|
|
ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
|
|
if (deviceIndex >= 0) {
|
|
InputDevice* device = mDevices.valueAt(deviceIndex);
|
|
if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
|
|
result = device->markSupportedKeyCodes(sourceMask,
|
|
numCodes, keyCodes, outFlags);
|
|
}
|
|
}
|
|
} else {
|
|
size_t numDevices = mDevices.size();
|
|
for (size_t i = 0; i < numDevices; i++) {
|
|
InputDevice* device = mDevices.valueAt(i);
|
|
if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
|
|
result |= device->markSupportedKeyCodes(sourceMask,
|
|
numCodes, keyCodes, outFlags);
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
} // release device registy reader lock
|
|
}
|
|
|
|
void InputReader::requestRefreshConfiguration(uint32_t changes) {
|
|
if (changes) {
|
|
bool needWake;
|
|
{ // acquire lock
|
|
AutoMutex _l(mStateLock);
|
|
|
|
needWake = !mConfigurationChangesToRefresh;
|
|
mConfigurationChangesToRefresh |= changes;
|
|
} // release lock
|
|
|
|
if (needWake) {
|
|
mEventHub->wake();
|
|
}
|
|
}
|
|
}
|
|
|
|
void InputReader::dump(String8& dump) {
|
|
mEventHub->dump(dump);
|
|
dump.append("\n");
|
|
|
|
dump.append("Input Reader State:\n");
|
|
|
|
{ // acquire device registry reader lock
|
|
RWLock::AutoRLock _rl(mDeviceRegistryLock);
|
|
|
|
for (size_t i = 0; i < mDevices.size(); i++) {
|
|
mDevices.valueAt(i)->dump(dump);
|
|
}
|
|
} // release device registy reader lock
|
|
|
|
dump.append(INDENT "Configuration:\n");
|
|
dump.append(INDENT2 "ExcludedDeviceNames: [");
|
|
for (size_t i = 0; i < mConfig.excludedDeviceNames.size(); i++) {
|
|
if (i != 0) {
|
|
dump.append(", ");
|
|
}
|
|
dump.append(mConfig.excludedDeviceNames.itemAt(i).string());
|
|
}
|
|
dump.append("]\n");
|
|
dump.appendFormat(INDENT2 "FilterTouchEvents: %s\n",
|
|
toString(mConfig.filterTouchEvents));
|
|
dump.appendFormat(INDENT2 "FilterJumpyTouchEvents: %s\n",
|
|
toString(mConfig.filterJumpyTouchEvents));
|
|
dump.appendFormat(INDENT2 "VirtualKeyQuietTime: %0.1fms\n",
|
|
mConfig.virtualKeyQuietTime * 0.000001f);
|
|
|
|
dump.appendFormat(INDENT2 "PointerVelocityControlParameters: "
|
|
"scale=%0.3f, lowThreshold=%0.3f, highThreshold=%0.3f, acceleration=%0.3f\n",
|
|
mConfig.pointerVelocityControlParameters.scale,
|
|
mConfig.pointerVelocityControlParameters.lowThreshold,
|
|
mConfig.pointerVelocityControlParameters.highThreshold,
|
|
mConfig.pointerVelocityControlParameters.acceleration);
|
|
|
|
dump.appendFormat(INDENT2 "WheelVelocityControlParameters: "
|
|
"scale=%0.3f, lowThreshold=%0.3f, highThreshold=%0.3f, acceleration=%0.3f\n",
|
|
mConfig.wheelVelocityControlParameters.scale,
|
|
mConfig.wheelVelocityControlParameters.lowThreshold,
|
|
mConfig.wheelVelocityControlParameters.highThreshold,
|
|
mConfig.wheelVelocityControlParameters.acceleration);
|
|
|
|
dump.appendFormat(INDENT2 "PointerGesture:\n");
|
|
dump.appendFormat(INDENT3 "Enabled: %s\n",
|
|
toString(mConfig.pointerGesturesEnabled));
|
|
dump.appendFormat(INDENT3 "QuietInterval: %0.1fms\n",
|
|
mConfig.pointerGestureQuietInterval * 0.000001f);
|
|
dump.appendFormat(INDENT3 "DragMinSwitchSpeed: %0.1fpx/s\n",
|
|
mConfig.pointerGestureDragMinSwitchSpeed);
|
|
dump.appendFormat(INDENT3 "TapInterval: %0.1fms\n",
|
|
mConfig.pointerGestureTapInterval * 0.000001f);
|
|
dump.appendFormat(INDENT3 "TapDragInterval: %0.1fms\n",
|
|
mConfig.pointerGestureTapDragInterval * 0.000001f);
|
|
dump.appendFormat(INDENT3 "TapSlop: %0.1fpx\n",
|
|
mConfig.pointerGestureTapSlop);
|
|
dump.appendFormat(INDENT3 "MultitouchSettleInterval: %0.1fms\n",
|
|
mConfig.pointerGestureMultitouchSettleInterval * 0.000001f);
|
|
dump.appendFormat(INDENT3 "MultitouchMinDistance: %0.1fpx\n",
|
|
mConfig.pointerGestureMultitouchMinDistance);
|
|
dump.appendFormat(INDENT3 "SwipeTransitionAngleCosine: %0.1f\n",
|
|
mConfig.pointerGestureSwipeTransitionAngleCosine);
|
|
dump.appendFormat(INDENT3 "SwipeMaxWidthRatio: %0.1f\n",
|
|
mConfig.pointerGestureSwipeMaxWidthRatio);
|
|
dump.appendFormat(INDENT3 "MovementSpeedRatio: %0.1f\n",
|
|
mConfig.pointerGestureMovementSpeedRatio);
|
|
dump.appendFormat(INDENT3 "ZoomSpeedRatio: %0.1f\n",
|
|
mConfig.pointerGestureZoomSpeedRatio);
|
|
}
|
|
|
|
|
|
// --- InputReaderThread ---
|
|
|
|
InputReaderThread::InputReaderThread(const sp<InputReaderInterface>& reader) :
|
|
Thread(/*canCallJava*/ true), mReader(reader) {
|
|
}
|
|
|
|
InputReaderThread::~InputReaderThread() {
|
|
}
|
|
|
|
bool InputReaderThread::threadLoop() {
|
|
mReader->loopOnce();
|
|
return true;
|
|
}
|
|
|
|
|
|
// --- InputDevice ---
|
|
|
|
InputDevice::InputDevice(InputReaderContext* context, int32_t id, const String8& name) :
|
|
mContext(context), mId(id), mName(name), mSources(0),
|
|
mIsExternal(false), mDropUntilNextSync(false) {
|
|
}
|
|
|
|
InputDevice::~InputDevice() {
|
|
size_t numMappers = mMappers.size();
|
|
for (size_t i = 0; i < numMappers; i++) {
|
|
delete mMappers[i];
|
|
}
|
|
mMappers.clear();
|
|
}
|
|
|
|
void InputDevice::dump(String8& dump) {
|
|
InputDeviceInfo deviceInfo;
|
|
getDeviceInfo(& deviceInfo);
|
|
|
|
dump.appendFormat(INDENT "Device %d: %s\n", deviceInfo.getId(),
|
|
deviceInfo.getName().string());
|
|
dump.appendFormat(INDENT2 "IsExternal: %s\n", toString(mIsExternal));
|
|
dump.appendFormat(INDENT2 "Sources: 0x%08x\n", deviceInfo.getSources());
|
|
dump.appendFormat(INDENT2 "KeyboardType: %d\n", deviceInfo.getKeyboardType());
|
|
|
|
const Vector<InputDeviceInfo::MotionRange>& ranges = deviceInfo.getMotionRanges();
|
|
if (!ranges.isEmpty()) {
|
|
dump.append(INDENT2 "Motion Ranges:\n");
|
|
for (size_t i = 0; i < ranges.size(); i++) {
|
|
const InputDeviceInfo::MotionRange& range = ranges.itemAt(i);
|
|
const char* label = getAxisLabel(range.axis);
|
|
char name[32];
|
|
if (label) {
|
|
strncpy(name, label, sizeof(name));
|
|
name[sizeof(name) - 1] = '\0';
|
|
} else {
|
|
snprintf(name, sizeof(name), "%d", range.axis);
|
|
}
|
|
dump.appendFormat(INDENT3 "%s: source=0x%08x, "
|
|
"min=%0.3f, max=%0.3f, flat=%0.3f, fuzz=%0.3f\n",
|
|
name, range.source, range.min, range.max, range.flat, range.fuzz);
|
|
}
|
|
}
|
|
|
|
size_t numMappers = mMappers.size();
|
|
for (size_t i = 0; i < numMappers; i++) {
|
|
InputMapper* mapper = mMappers[i];
|
|
mapper->dump(dump);
|
|
}
|
|
}
|
|
|
|
void InputDevice::addMapper(InputMapper* mapper) {
|
|
mMappers.add(mapper);
|
|
}
|
|
|
|
void InputDevice::configure(const InputReaderConfiguration* config, uint32_t changes) {
|
|
mSources = 0;
|
|
|
|
if (!isIgnored()) {
|
|
if (!changes) { // first time only
|
|
mContext->getEventHub()->getConfiguration(mId, &mConfiguration);
|
|
}
|
|
|
|
size_t numMappers = mMappers.size();
|
|
for (size_t i = 0; i < numMappers; i++) {
|
|
InputMapper* mapper = mMappers[i];
|
|
mapper->configure(config, changes);
|
|
mSources |= mapper->getSources();
|
|
}
|
|
}
|
|
}
|
|
|
|
void InputDevice::reset() {
|
|
size_t numMappers = mMappers.size();
|
|
for (size_t i = 0; i < numMappers; i++) {
|
|
InputMapper* mapper = mMappers[i];
|
|
mapper->reset();
|
|
}
|
|
}
|
|
|
|
void InputDevice::process(const RawEvent* rawEvents, size_t count) {
|
|
// Process all of the events in order for each mapper.
|
|
// We cannot simply ask each mapper to process them in bulk because mappers may
|
|
// have side-effects that must be interleaved. For example, joystick movement events and
|
|
// gamepad button presses are handled by different mappers but they should be dispatched
|
|
// in the order received.
|
|
size_t numMappers = mMappers.size();
|
|
for (const RawEvent* rawEvent = rawEvents; count--; rawEvent++) {
|
|
#if DEBUG_RAW_EVENTS
|
|
LOGD("Input event: device=%d type=0x%04x scancode=0x%04x "
|
|
"keycode=0x%04x value=0x%04x flags=0x%08x",
|
|
rawEvent->deviceId, rawEvent->type, rawEvent->scanCode, rawEvent->keyCode,
|
|
rawEvent->value, rawEvent->flags);
|
|
#endif
|
|
|
|
if (mDropUntilNextSync) {
|
|
if (rawEvent->type == EV_SYN && rawEvent->scanCode == SYN_REPORT) {
|
|
mDropUntilNextSync = false;
|
|
#if DEBUG_RAW_EVENTS
|
|
LOGD("Recovered from input event buffer overrun.");
|
|
#endif
|
|
} else {
|
|
#if DEBUG_RAW_EVENTS
|
|
LOGD("Dropped input event while waiting for next input sync.");
|
|
#endif
|
|
}
|
|
} else if (rawEvent->type == EV_SYN && rawEvent->scanCode == SYN_DROPPED) {
|
|
LOGI("Detected input event buffer overrun for device %s.", mName.string());
|
|
mDropUntilNextSync = true;
|
|
reset();
|
|
} else {
|
|
for (size_t i = 0; i < numMappers; i++) {
|
|
InputMapper* mapper = mMappers[i];
|
|
mapper->process(rawEvent);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void InputDevice::timeoutExpired(nsecs_t when) {
|
|
size_t numMappers = mMappers.size();
|
|
for (size_t i = 0; i < numMappers; i++) {
|
|
InputMapper* mapper = mMappers[i];
|
|
mapper->timeoutExpired(when);
|
|
}
|
|
}
|
|
|
|
void InputDevice::getDeviceInfo(InputDeviceInfo* outDeviceInfo) {
|
|
outDeviceInfo->initialize(mId, mName);
|
|
|
|
size_t numMappers = mMappers.size();
|
|
for (size_t i = 0; i < numMappers; i++) {
|
|
InputMapper* mapper = mMappers[i];
|
|
mapper->populateDeviceInfo(outDeviceInfo);
|
|
}
|
|
}
|
|
|
|
int32_t InputDevice::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
|
|
return getState(sourceMask, keyCode, & InputMapper::getKeyCodeState);
|
|
}
|
|
|
|
int32_t InputDevice::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
|
|
return getState(sourceMask, scanCode, & InputMapper::getScanCodeState);
|
|
}
|
|
|
|
int32_t InputDevice::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
|
|
return getState(sourceMask, switchCode, & InputMapper::getSwitchState);
|
|
}
|
|
|
|
int32_t InputDevice::getState(uint32_t sourceMask, int32_t code, GetStateFunc getStateFunc) {
|
|
int32_t result = AKEY_STATE_UNKNOWN;
|
|
size_t numMappers = mMappers.size();
|
|
for (size_t i = 0; i < numMappers; i++) {
|
|
InputMapper* mapper = mMappers[i];
|
|
if (sourcesMatchMask(mapper->getSources(), sourceMask)) {
|
|
result = (mapper->*getStateFunc)(sourceMask, code);
|
|
if (result >= AKEY_STATE_DOWN) {
|
|
return result;
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool InputDevice::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
|
|
const int32_t* keyCodes, uint8_t* outFlags) {
|
|
bool result = false;
|
|
size_t numMappers = mMappers.size();
|
|
for (size_t i = 0; i < numMappers; i++) {
|
|
InputMapper* mapper = mMappers[i];
|
|
if (sourcesMatchMask(mapper->getSources(), sourceMask)) {
|
|
result |= mapper->markSupportedKeyCodes(sourceMask, numCodes, keyCodes, outFlags);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
int32_t InputDevice::getMetaState() {
|
|
int32_t result = 0;
|
|
size_t numMappers = mMappers.size();
|
|
for (size_t i = 0; i < numMappers; i++) {
|
|
InputMapper* mapper = mMappers[i];
|
|
result |= mapper->getMetaState();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void InputDevice::fadePointer() {
|
|
size_t numMappers = mMappers.size();
|
|
for (size_t i = 0; i < numMappers; i++) {
|
|
InputMapper* mapper = mMappers[i];
|
|
mapper->fadePointer();
|
|
}
|
|
}
|
|
|
|
|
|
// --- InputMapper ---
|
|
|
|
InputMapper::InputMapper(InputDevice* device) :
|
|
mDevice(device), mContext(device->getContext()) {
|
|
}
|
|
|
|
InputMapper::~InputMapper() {
|
|
}
|
|
|
|
void InputMapper::populateDeviceInfo(InputDeviceInfo* info) {
|
|
info->addSource(getSources());
|
|
}
|
|
|
|
void InputMapper::dump(String8& dump) {
|
|
}
|
|
|
|
void InputMapper::configure(const InputReaderConfiguration* config, uint32_t changes) {
|
|
}
|
|
|
|
void InputMapper::reset() {
|
|
}
|
|
|
|
void InputMapper::timeoutExpired(nsecs_t when) {
|
|
}
|
|
|
|
int32_t InputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
|
|
return AKEY_STATE_UNKNOWN;
|
|
}
|
|
|
|
int32_t InputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
|
|
return AKEY_STATE_UNKNOWN;
|
|
}
|
|
|
|
int32_t InputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
|
|
return AKEY_STATE_UNKNOWN;
|
|
}
|
|
|
|
bool InputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
|
|
const int32_t* keyCodes, uint8_t* outFlags) {
|
|
return false;
|
|
}
|
|
|
|
int32_t InputMapper::getMetaState() {
|
|
return 0;
|
|
}
|
|
|
|
void InputMapper::fadePointer() {
|
|
}
|
|
|
|
void InputMapper::dumpRawAbsoluteAxisInfo(String8& dump,
|
|
const RawAbsoluteAxisInfo& axis, const char* name) {
|
|
if (axis.valid) {
|
|
dump.appendFormat(INDENT4 "%s: min=%d, max=%d, flat=%d, fuzz=%d, resolution=%d\n",
|
|
name, axis.minValue, axis.maxValue, axis.flat, axis.fuzz, axis.resolution);
|
|
} else {
|
|
dump.appendFormat(INDENT4 "%s: unknown range\n", name);
|
|
}
|
|
}
|
|
|
|
|
|
// --- SwitchInputMapper ---
|
|
|
|
SwitchInputMapper::SwitchInputMapper(InputDevice* device) :
|
|
InputMapper(device) {
|
|
}
|
|
|
|
SwitchInputMapper::~SwitchInputMapper() {
|
|
}
|
|
|
|
uint32_t SwitchInputMapper::getSources() {
|
|
return AINPUT_SOURCE_SWITCH;
|
|
}
|
|
|
|
void SwitchInputMapper::process(const RawEvent* rawEvent) {
|
|
switch (rawEvent->type) {
|
|
case EV_SW:
|
|
processSwitch(rawEvent->when, rawEvent->scanCode, rawEvent->value);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void SwitchInputMapper::processSwitch(nsecs_t when, int32_t switchCode, int32_t switchValue) {
|
|
getDispatcher()->notifySwitch(when, switchCode, switchValue, 0);
|
|
}
|
|
|
|
int32_t SwitchInputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
|
|
return getEventHub()->getSwitchState(getDeviceId(), switchCode);
|
|
}
|
|
|
|
|
|
// --- KeyboardInputMapper ---
|
|
|
|
KeyboardInputMapper::KeyboardInputMapper(InputDevice* device,
|
|
uint32_t source, int32_t keyboardType) :
|
|
InputMapper(device), mSource(source),
|
|
mKeyboardType(keyboardType) {
|
|
initializeLocked();
|
|
}
|
|
|
|
KeyboardInputMapper::~KeyboardInputMapper() {
|
|
}
|
|
|
|
void KeyboardInputMapper::initializeLocked() {
|
|
mLocked.metaState = AMETA_NONE;
|
|
mLocked.downTime = 0;
|
|
}
|
|
|
|
uint32_t KeyboardInputMapper::getSources() {
|
|
return mSource;
|
|
}
|
|
|
|
void KeyboardInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
|
|
InputMapper::populateDeviceInfo(info);
|
|
|
|
info->setKeyboardType(mKeyboardType);
|
|
}
|
|
|
|
void KeyboardInputMapper::dump(String8& dump) {
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
dump.append(INDENT2 "Keyboard Input Mapper:\n");
|
|
dumpParameters(dump);
|
|
dump.appendFormat(INDENT3 "KeyboardType: %d\n", mKeyboardType);
|
|
dump.appendFormat(INDENT3 "KeyDowns: %d keys currently down\n", mLocked.keyDowns.size());
|
|
dump.appendFormat(INDENT3 "MetaState: 0x%0x\n", mLocked.metaState);
|
|
dump.appendFormat(INDENT3 "DownTime: %lld\n", mLocked.downTime);
|
|
} // release lock
|
|
}
|
|
|
|
|
|
void KeyboardInputMapper::configure(const InputReaderConfiguration* config, uint32_t changes) {
|
|
InputMapper::configure(config, changes);
|
|
|
|
if (!changes) { // first time only
|
|
// Configure basic parameters.
|
|
configureParameters();
|
|
|
|
// Reset LEDs.
|
|
{
|
|
AutoMutex _l(mLock);
|
|
resetLedStateLocked();
|
|
}
|
|
}
|
|
}
|
|
|
|
void KeyboardInputMapper::configureParameters() {
|
|
mParameters.orientationAware = false;
|
|
getDevice()->getConfiguration().tryGetProperty(String8("keyboard.orientationAware"),
|
|
mParameters.orientationAware);
|
|
|
|
mParameters.associatedDisplayId = mParameters.orientationAware ? 0 : -1;
|
|
}
|
|
|
|
void KeyboardInputMapper::dumpParameters(String8& dump) {
|
|
dump.append(INDENT3 "Parameters:\n");
|
|
dump.appendFormat(INDENT4 "AssociatedDisplayId: %d\n",
|
|
mParameters.associatedDisplayId);
|
|
dump.appendFormat(INDENT4 "OrientationAware: %s\n",
|
|
toString(mParameters.orientationAware));
|
|
}
|
|
|
|
void KeyboardInputMapper::reset() {
|
|
for (;;) {
|
|
int32_t keyCode, scanCode;
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
// Synthesize key up event on reset if keys are currently down.
|
|
if (mLocked.keyDowns.isEmpty()) {
|
|
initializeLocked();
|
|
resetLedStateLocked();
|
|
break; // done
|
|
}
|
|
|
|
const KeyDown& keyDown = mLocked.keyDowns.top();
|
|
keyCode = keyDown.keyCode;
|
|
scanCode = keyDown.scanCode;
|
|
} // release lock
|
|
|
|
nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
|
|
processKey(when, false, keyCode, scanCode, 0);
|
|
}
|
|
|
|
InputMapper::reset();
|
|
getContext()->updateGlobalMetaState();
|
|
}
|
|
|
|
void KeyboardInputMapper::process(const RawEvent* rawEvent) {
|
|
switch (rawEvent->type) {
|
|
case EV_KEY: {
|
|
int32_t scanCode = rawEvent->scanCode;
|
|
if (isKeyboardOrGamepadKey(scanCode)) {
|
|
processKey(rawEvent->when, rawEvent->value != 0, rawEvent->keyCode, scanCode,
|
|
rawEvent->flags);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool KeyboardInputMapper::isKeyboardOrGamepadKey(int32_t scanCode) {
|
|
return scanCode < BTN_MOUSE
|
|
|| scanCode >= KEY_OK
|
|
|| (scanCode >= BTN_MISC && scanCode < BTN_MOUSE)
|
|
|| (scanCode >= BTN_JOYSTICK && scanCode < BTN_DIGI);
|
|
}
|
|
|
|
void KeyboardInputMapper::processKey(nsecs_t when, bool down, int32_t keyCode,
|
|
int32_t scanCode, uint32_t policyFlags) {
|
|
int32_t newMetaState;
|
|
nsecs_t downTime;
|
|
bool metaStateChanged = false;
|
|
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
if (down) {
|
|
// Rotate key codes according to orientation if needed.
|
|
// Note: getDisplayInfo is non-reentrant so we can continue holding the lock.
|
|
if (mParameters.orientationAware && mParameters.associatedDisplayId >= 0) {
|
|
int32_t orientation;
|
|
if (!getPolicy()->getDisplayInfo(mParameters.associatedDisplayId,
|
|
NULL, NULL, & orientation)) {
|
|
orientation = DISPLAY_ORIENTATION_0;
|
|
}
|
|
|
|
keyCode = rotateKeyCode(keyCode, orientation);
|
|
}
|
|
|
|
// Add key down.
|
|
ssize_t keyDownIndex = findKeyDownLocked(scanCode);
|
|
if (keyDownIndex >= 0) {
|
|
// key repeat, be sure to use same keycode as before in case of rotation
|
|
keyCode = mLocked.keyDowns.itemAt(keyDownIndex).keyCode;
|
|
} else {
|
|
// key down
|
|
if ((policyFlags & POLICY_FLAG_VIRTUAL)
|
|
&& mContext->shouldDropVirtualKey(when,
|
|
getDevice(), keyCode, scanCode)) {
|
|
return;
|
|
}
|
|
|
|
mLocked.keyDowns.push();
|
|
KeyDown& keyDown = mLocked.keyDowns.editTop();
|
|
keyDown.keyCode = keyCode;
|
|
keyDown.scanCode = scanCode;
|
|
}
|
|
|
|
mLocked.downTime = when;
|
|
} else {
|
|
// Remove key down.
|
|
ssize_t keyDownIndex = findKeyDownLocked(scanCode);
|
|
if (keyDownIndex >= 0) {
|
|
// key up, be sure to use same keycode as before in case of rotation
|
|
keyCode = mLocked.keyDowns.itemAt(keyDownIndex).keyCode;
|
|
mLocked.keyDowns.removeAt(size_t(keyDownIndex));
|
|
} else {
|
|
// key was not actually down
|
|
LOGI("Dropping key up from device %s because the key was not down. "
|
|
"keyCode=%d, scanCode=%d",
|
|
getDeviceName().string(), keyCode, scanCode);
|
|
return;
|
|
}
|
|
}
|
|
|
|
int32_t oldMetaState = mLocked.metaState;
|
|
newMetaState = updateMetaState(keyCode, down, oldMetaState);
|
|
if (oldMetaState != newMetaState) {
|
|
mLocked.metaState = newMetaState;
|
|
metaStateChanged = true;
|
|
updateLedStateLocked(false);
|
|
}
|
|
|
|
downTime = mLocked.downTime;
|
|
} // release lock
|
|
|
|
// Key down on external an keyboard should wake the device.
|
|
// We don't do this for internal keyboards to prevent them from waking up in your pocket.
|
|
// For internal keyboards, the key layout file should specify the policy flags for
|
|
// each wake key individually.
|
|
// TODO: Use the input device configuration to control this behavior more finely.
|
|
if (down && getDevice()->isExternal()
|
|
&& !(policyFlags & (POLICY_FLAG_WAKE | POLICY_FLAG_WAKE_DROPPED))) {
|
|
policyFlags |= POLICY_FLAG_WAKE_DROPPED;
|
|
}
|
|
|
|
if (metaStateChanged) {
|
|
getContext()->updateGlobalMetaState();
|
|
}
|
|
|
|
if (down && !isMetaKey(keyCode)) {
|
|
getContext()->fadePointer();
|
|
}
|
|
|
|
getDispatcher()->notifyKey(when, getDeviceId(), mSource, policyFlags,
|
|
down ? AKEY_EVENT_ACTION_DOWN : AKEY_EVENT_ACTION_UP,
|
|
AKEY_EVENT_FLAG_FROM_SYSTEM, keyCode, scanCode, newMetaState, downTime);
|
|
}
|
|
|
|
ssize_t KeyboardInputMapper::findKeyDownLocked(int32_t scanCode) {
|
|
size_t n = mLocked.keyDowns.size();
|
|
for (size_t i = 0; i < n; i++) {
|
|
if (mLocked.keyDowns[i].scanCode == scanCode) {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int32_t KeyboardInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
|
|
return getEventHub()->getKeyCodeState(getDeviceId(), keyCode);
|
|
}
|
|
|
|
int32_t KeyboardInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
|
|
return getEventHub()->getScanCodeState(getDeviceId(), scanCode);
|
|
}
|
|
|
|
bool KeyboardInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
|
|
const int32_t* keyCodes, uint8_t* outFlags) {
|
|
return getEventHub()->markSupportedKeyCodes(getDeviceId(), numCodes, keyCodes, outFlags);
|
|
}
|
|
|
|
int32_t KeyboardInputMapper::getMetaState() {
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
return mLocked.metaState;
|
|
} // release lock
|
|
}
|
|
|
|
void KeyboardInputMapper::resetLedStateLocked() {
|
|
initializeLedStateLocked(mLocked.capsLockLedState, LED_CAPSL);
|
|
initializeLedStateLocked(mLocked.numLockLedState, LED_NUML);
|
|
initializeLedStateLocked(mLocked.scrollLockLedState, LED_SCROLLL);
|
|
|
|
updateLedStateLocked(true);
|
|
}
|
|
|
|
void KeyboardInputMapper::initializeLedStateLocked(LockedState::LedState& ledState, int32_t led) {
|
|
ledState.avail = getEventHub()->hasLed(getDeviceId(), led);
|
|
ledState.on = false;
|
|
}
|
|
|
|
void KeyboardInputMapper::updateLedStateLocked(bool reset) {
|
|
updateLedStateForModifierLocked(mLocked.capsLockLedState, LED_CAPSL,
|
|
AMETA_CAPS_LOCK_ON, reset);
|
|
updateLedStateForModifierLocked(mLocked.numLockLedState, LED_NUML,
|
|
AMETA_NUM_LOCK_ON, reset);
|
|
updateLedStateForModifierLocked(mLocked.scrollLockLedState, LED_SCROLLL,
|
|
AMETA_SCROLL_LOCK_ON, reset);
|
|
}
|
|
|
|
void KeyboardInputMapper::updateLedStateForModifierLocked(LockedState::LedState& ledState,
|
|
int32_t led, int32_t modifier, bool reset) {
|
|
if (ledState.avail) {
|
|
bool desiredState = (mLocked.metaState & modifier) != 0;
|
|
if (reset || ledState.on != desiredState) {
|
|
getEventHub()->setLedState(getDeviceId(), led, desiredState);
|
|
ledState.on = desiredState;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// --- CursorInputMapper ---
|
|
|
|
CursorInputMapper::CursorInputMapper(InputDevice* device) :
|
|
InputMapper(device) {
|
|
initializeLocked();
|
|
}
|
|
|
|
CursorInputMapper::~CursorInputMapper() {
|
|
}
|
|
|
|
uint32_t CursorInputMapper::getSources() {
|
|
return mSource;
|
|
}
|
|
|
|
void CursorInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
|
|
InputMapper::populateDeviceInfo(info);
|
|
|
|
if (mParameters.mode == Parameters::MODE_POINTER) {
|
|
float minX, minY, maxX, maxY;
|
|
if (mPointerController->getBounds(&minX, &minY, &maxX, &maxY)) {
|
|
info->addMotionRange(AMOTION_EVENT_AXIS_X, mSource, minX, maxX, 0.0f, 0.0f);
|
|
info->addMotionRange(AMOTION_EVENT_AXIS_Y, mSource, minY, maxY, 0.0f, 0.0f);
|
|
}
|
|
} else {
|
|
info->addMotionRange(AMOTION_EVENT_AXIS_X, mSource, -1.0f, 1.0f, 0.0f, mXScale);
|
|
info->addMotionRange(AMOTION_EVENT_AXIS_Y, mSource, -1.0f, 1.0f, 0.0f, mYScale);
|
|
}
|
|
info->addMotionRange(AMOTION_EVENT_AXIS_PRESSURE, mSource, 0.0f, 1.0f, 0.0f, 0.0f);
|
|
|
|
if (mHaveVWheel) {
|
|
info->addMotionRange(AMOTION_EVENT_AXIS_VSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f);
|
|
}
|
|
if (mHaveHWheel) {
|
|
info->addMotionRange(AMOTION_EVENT_AXIS_HSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f);
|
|
}
|
|
}
|
|
|
|
void CursorInputMapper::dump(String8& dump) {
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
dump.append(INDENT2 "Cursor Input Mapper:\n");
|
|
dumpParameters(dump);
|
|
dump.appendFormat(INDENT3 "XScale: %0.3f\n", mXScale);
|
|
dump.appendFormat(INDENT3 "YScale: %0.3f\n", mYScale);
|
|
dump.appendFormat(INDENT3 "XPrecision: %0.3f\n", mXPrecision);
|
|
dump.appendFormat(INDENT3 "YPrecision: %0.3f\n", mYPrecision);
|
|
dump.appendFormat(INDENT3 "HaveVWheel: %s\n", toString(mHaveVWheel));
|
|
dump.appendFormat(INDENT3 "HaveHWheel: %s\n", toString(mHaveHWheel));
|
|
dump.appendFormat(INDENT3 "VWheelScale: %0.3f\n", mVWheelScale);
|
|
dump.appendFormat(INDENT3 "HWheelScale: %0.3f\n", mHWheelScale);
|
|
dump.appendFormat(INDENT3 "ButtonState: 0x%08x\n", mLocked.buttonState);
|
|
dump.appendFormat(INDENT3 "Down: %s\n", toString(isPointerDown(mLocked.buttonState)));
|
|
dump.appendFormat(INDENT3 "DownTime: %lld\n", mLocked.downTime);
|
|
} // release lock
|
|
}
|
|
|
|
void CursorInputMapper::configure(const InputReaderConfiguration* config, uint32_t changes) {
|
|
InputMapper::configure(config, changes);
|
|
|
|
if (!changes) { // first time only
|
|
// Configure basic parameters.
|
|
configureParameters();
|
|
|
|
// Configure device mode.
|
|
switch (mParameters.mode) {
|
|
case Parameters::MODE_POINTER:
|
|
mSource = AINPUT_SOURCE_MOUSE;
|
|
mXPrecision = 1.0f;
|
|
mYPrecision = 1.0f;
|
|
mXScale = 1.0f;
|
|
mYScale = 1.0f;
|
|
mPointerController = getPolicy()->obtainPointerController(getDeviceId());
|
|
break;
|
|
case Parameters::MODE_NAVIGATION:
|
|
mSource = AINPUT_SOURCE_TRACKBALL;
|
|
mXPrecision = TRACKBALL_MOVEMENT_THRESHOLD;
|
|
mYPrecision = TRACKBALL_MOVEMENT_THRESHOLD;
|
|
mXScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD;
|
|
mYScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD;
|
|
break;
|
|
}
|
|
|
|
mVWheelScale = 1.0f;
|
|
mHWheelScale = 1.0f;
|
|
|
|
mHaveVWheel = getEventHub()->hasRelativeAxis(getDeviceId(), REL_WHEEL);
|
|
mHaveHWheel = getEventHub()->hasRelativeAxis(getDeviceId(), REL_HWHEEL);
|
|
}
|
|
|
|
if (!changes || (changes & InputReaderConfiguration::CHANGE_POINTER_SPEED)) {
|
|
mPointerVelocityControl.setParameters(config->pointerVelocityControlParameters);
|
|
mWheelXVelocityControl.setParameters(config->wheelVelocityControlParameters);
|
|
mWheelYVelocityControl.setParameters(config->wheelVelocityControlParameters);
|
|
}
|
|
}
|
|
|
|
void CursorInputMapper::configureParameters() {
|
|
mParameters.mode = Parameters::MODE_POINTER;
|
|
String8 cursorModeString;
|
|
if (getDevice()->getConfiguration().tryGetProperty(String8("cursor.mode"), cursorModeString)) {
|
|
if (cursorModeString == "navigation") {
|
|
mParameters.mode = Parameters::MODE_NAVIGATION;
|
|
} else if (cursorModeString != "pointer" && cursorModeString != "default") {
|
|
LOGW("Invalid value for cursor.mode: '%s'", cursorModeString.string());
|
|
}
|
|
}
|
|
|
|
mParameters.orientationAware = false;
|
|
getDevice()->getConfiguration().tryGetProperty(String8("cursor.orientationAware"),
|
|
mParameters.orientationAware);
|
|
|
|
mParameters.associatedDisplayId = mParameters.mode == Parameters::MODE_POINTER
|
|
|| mParameters.orientationAware ? 0 : -1;
|
|
}
|
|
|
|
void CursorInputMapper::dumpParameters(String8& dump) {
|
|
dump.append(INDENT3 "Parameters:\n");
|
|
dump.appendFormat(INDENT4 "AssociatedDisplayId: %d\n",
|
|
mParameters.associatedDisplayId);
|
|
|
|
switch (mParameters.mode) {
|
|
case Parameters::MODE_POINTER:
|
|
dump.append(INDENT4 "Mode: pointer\n");
|
|
break;
|
|
case Parameters::MODE_NAVIGATION:
|
|
dump.append(INDENT4 "Mode: navigation\n");
|
|
break;
|
|
default:
|
|
LOG_ASSERT(false);
|
|
}
|
|
|
|
dump.appendFormat(INDENT4 "OrientationAware: %s\n",
|
|
toString(mParameters.orientationAware));
|
|
}
|
|
|
|
void CursorInputMapper::initializeLocked() {
|
|
mAccumulator.clear();
|
|
|
|
mLocked.buttonState = 0;
|
|
mLocked.downTime = 0;
|
|
}
|
|
|
|
void CursorInputMapper::reset() {
|
|
for (;;) {
|
|
int32_t buttonState;
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
buttonState = mLocked.buttonState;
|
|
if (!buttonState) {
|
|
initializeLocked();
|
|
break; // done
|
|
}
|
|
} // release lock
|
|
|
|
// Reset velocity.
|
|
mPointerVelocityControl.reset();
|
|
mWheelXVelocityControl.reset();
|
|
mWheelYVelocityControl.reset();
|
|
|
|
// Synthesize button up event on reset.
|
|
nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
|
|
mAccumulator.clear();
|
|
mAccumulator.buttonDown = 0;
|
|
mAccumulator.buttonUp = buttonState;
|
|
mAccumulator.fields = Accumulator::FIELD_BUTTONS;
|
|
sync(when);
|
|
}
|
|
|
|
InputMapper::reset();
|
|
}
|
|
|
|
void CursorInputMapper::process(const RawEvent* rawEvent) {
|
|
switch (rawEvent->type) {
|
|
case EV_KEY: {
|
|
int32_t buttonState = getButtonStateForScanCode(rawEvent->scanCode);
|
|
if (buttonState) {
|
|
if (rawEvent->value) {
|
|
mAccumulator.buttonDown = buttonState;
|
|
mAccumulator.buttonUp = 0;
|
|
} else {
|
|
mAccumulator.buttonDown = 0;
|
|
mAccumulator.buttonUp = buttonState;
|
|
}
|
|
mAccumulator.fields |= Accumulator::FIELD_BUTTONS;
|
|
|
|
// Sync now since BTN_MOUSE is not necessarily followed by SYN_REPORT and
|
|
// we need to ensure that we report the up/down promptly.
|
|
sync(rawEvent->when);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case EV_REL:
|
|
switch (rawEvent->scanCode) {
|
|
case REL_X:
|
|
mAccumulator.fields |= Accumulator::FIELD_REL_X;
|
|
mAccumulator.relX = rawEvent->value;
|
|
break;
|
|
case REL_Y:
|
|
mAccumulator.fields |= Accumulator::FIELD_REL_Y;
|
|
mAccumulator.relY = rawEvent->value;
|
|
break;
|
|
case REL_WHEEL:
|
|
mAccumulator.fields |= Accumulator::FIELD_REL_WHEEL;
|
|
mAccumulator.relWheel = rawEvent->value;
|
|
break;
|
|
case REL_HWHEEL:
|
|
mAccumulator.fields |= Accumulator::FIELD_REL_HWHEEL;
|
|
mAccumulator.relHWheel = rawEvent->value;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case EV_SYN:
|
|
switch (rawEvent->scanCode) {
|
|
case SYN_REPORT:
|
|
sync(rawEvent->when);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void CursorInputMapper::sync(nsecs_t when) {
|
|
uint32_t fields = mAccumulator.fields;
|
|
if (fields == 0) {
|
|
return; // no new state changes, so nothing to do
|
|
}
|
|
|
|
int32_t motionEventAction;
|
|
int32_t motionEventEdgeFlags;
|
|
int32_t lastButtonState, currentButtonState;
|
|
PointerProperties pointerProperties;
|
|
PointerCoords pointerCoords;
|
|
nsecs_t downTime;
|
|
float vscroll, hscroll;
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
lastButtonState = mLocked.buttonState;
|
|
|
|
bool down, downChanged;
|
|
bool wasDown = isPointerDown(mLocked.buttonState);
|
|
bool buttonsChanged = fields & Accumulator::FIELD_BUTTONS;
|
|
if (buttonsChanged) {
|
|
mLocked.buttonState = (mLocked.buttonState | mAccumulator.buttonDown)
|
|
& ~mAccumulator.buttonUp;
|
|
|
|
down = isPointerDown(mLocked.buttonState);
|
|
|
|
if (!wasDown && down) {
|
|
mLocked.downTime = when;
|
|
downChanged = true;
|
|
} else if (wasDown && !down) {
|
|
downChanged = true;
|
|
} else {
|
|
downChanged = false;
|
|
}
|
|
} else {
|
|
down = wasDown;
|
|
downChanged = false;
|
|
}
|
|
|
|
currentButtonState = mLocked.buttonState;
|
|
|
|
downTime = mLocked.downTime;
|
|
float deltaX = fields & Accumulator::FIELD_REL_X ? mAccumulator.relX * mXScale : 0.0f;
|
|
float deltaY = fields & Accumulator::FIELD_REL_Y ? mAccumulator.relY * mYScale : 0.0f;
|
|
|
|
if (downChanged) {
|
|
motionEventAction = down ? AMOTION_EVENT_ACTION_DOWN : AMOTION_EVENT_ACTION_UP;
|
|
} else if (down || mPointerController == NULL) {
|
|
motionEventAction = AMOTION_EVENT_ACTION_MOVE;
|
|
} else {
|
|
motionEventAction = AMOTION_EVENT_ACTION_HOVER_MOVE;
|
|
}
|
|
|
|
if (mParameters.orientationAware && mParameters.associatedDisplayId >= 0
|
|
&& (deltaX != 0.0f || deltaY != 0.0f)) {
|
|
// Rotate motion based on display orientation if needed.
|
|
// Note: getDisplayInfo is non-reentrant so we can continue holding the lock.
|
|
int32_t orientation;
|
|
if (! getPolicy()->getDisplayInfo(mParameters.associatedDisplayId,
|
|
NULL, NULL, & orientation)) {
|
|
orientation = DISPLAY_ORIENTATION_0;
|
|
}
|
|
|
|
float temp;
|
|
switch (orientation) {
|
|
case DISPLAY_ORIENTATION_90:
|
|
temp = deltaX;
|
|
deltaX = deltaY;
|
|
deltaY = -temp;
|
|
break;
|
|
|
|
case DISPLAY_ORIENTATION_180:
|
|
deltaX = -deltaX;
|
|
deltaY = -deltaY;
|
|
break;
|
|
|
|
case DISPLAY_ORIENTATION_270:
|
|
temp = deltaX;
|
|
deltaX = -deltaY;
|
|
deltaY = temp;
|
|
break;
|
|
}
|
|
}
|
|
|
|
motionEventEdgeFlags = AMOTION_EVENT_EDGE_FLAG_NONE;
|
|
|
|
pointerProperties.clear();
|
|
pointerProperties.id = 0;
|
|
pointerProperties.toolType = AMOTION_EVENT_TOOL_TYPE_MOUSE;
|
|
|
|
pointerCoords.clear();
|
|
|
|
if (mHaveVWheel && (fields & Accumulator::FIELD_REL_WHEEL)) {
|
|
vscroll = mAccumulator.relWheel;
|
|
} else {
|
|
vscroll = 0;
|
|
}
|
|
mWheelYVelocityControl.move(when, NULL, &vscroll);
|
|
|
|
if (mHaveHWheel && (fields & Accumulator::FIELD_REL_HWHEEL)) {
|
|
hscroll = mAccumulator.relHWheel;
|
|
} else {
|
|
hscroll = 0;
|
|
}
|
|
mWheelXVelocityControl.move(when, &hscroll, NULL);
|
|
|
|
mPointerVelocityControl.move(when, &deltaX, &deltaY);
|
|
|
|
if (mPointerController != NULL) {
|
|
if (deltaX != 0 || deltaY != 0 || vscroll != 0 || hscroll != 0
|
|
|| buttonsChanged) {
|
|
mPointerController->setPresentation(
|
|
PointerControllerInterface::PRESENTATION_POINTER);
|
|
|
|
if (deltaX != 0 || deltaY != 0) {
|
|
mPointerController->move(deltaX, deltaY);
|
|
}
|
|
|
|
if (buttonsChanged) {
|
|
mPointerController->setButtonState(mLocked.buttonState);
|
|
}
|
|
|
|
mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE);
|
|
}
|
|
|
|
float x, y;
|
|
mPointerController->getPosition(&x, &y);
|
|
pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x);
|
|
pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y);
|
|
|
|
if (motionEventAction == AMOTION_EVENT_ACTION_DOWN) {
|
|
motionEventEdgeFlags = calculateEdgeFlagsUsingPointerBounds(
|
|
mPointerController, x, y);
|
|
}
|
|
} else {
|
|
pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, deltaX);
|
|
pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, deltaY);
|
|
}
|
|
|
|
pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, down ? 1.0f : 0.0f);
|
|
} // release lock
|
|
|
|
// Moving an external trackball or mouse should wake the device.
|
|
// We don't do this for internal cursor devices to prevent them from waking up
|
|
// the device in your pocket.
|
|
// TODO: Use the input device configuration to control this behavior more finely.
|
|
uint32_t policyFlags = 0;
|
|
if (getDevice()->isExternal()) {
|
|
policyFlags |= POLICY_FLAG_WAKE_DROPPED;
|
|
}
|
|
|
|
// Synthesize key down from buttons if needed.
|
|
synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_DOWN, when, getDeviceId(), mSource,
|
|
policyFlags, lastButtonState, currentButtonState);
|
|
|
|
// Send motion event.
|
|
int32_t metaState = mContext->getGlobalMetaState();
|
|
getDispatcher()->notifyMotion(when, getDeviceId(), mSource, policyFlags,
|
|
motionEventAction, 0, metaState, currentButtonState, motionEventEdgeFlags,
|
|
1, &pointerProperties, &pointerCoords, mXPrecision, mYPrecision, downTime);
|
|
|
|
// Send hover move after UP to tell the application that the mouse is hovering now.
|
|
if (motionEventAction == AMOTION_EVENT_ACTION_UP
|
|
&& mPointerController != NULL) {
|
|
getDispatcher()->notifyMotion(when, getDeviceId(), mSource, policyFlags,
|
|
AMOTION_EVENT_ACTION_HOVER_MOVE, 0,
|
|
metaState, currentButtonState, AMOTION_EVENT_EDGE_FLAG_NONE,
|
|
1, &pointerProperties, &pointerCoords, mXPrecision, mYPrecision, downTime);
|
|
}
|
|
|
|
// Send scroll events.
|
|
if (vscroll != 0 || hscroll != 0) {
|
|
pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_VSCROLL, vscroll);
|
|
pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_HSCROLL, hscroll);
|
|
|
|
getDispatcher()->notifyMotion(when, getDeviceId(), mSource, policyFlags,
|
|
AMOTION_EVENT_ACTION_SCROLL, 0, metaState, currentButtonState,
|
|
AMOTION_EVENT_EDGE_FLAG_NONE,
|
|
1, &pointerProperties, &pointerCoords, mXPrecision, mYPrecision, downTime);
|
|
}
|
|
|
|
// Synthesize key up from buttons if needed.
|
|
synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_UP, when, getDeviceId(), mSource,
|
|
policyFlags, lastButtonState, currentButtonState);
|
|
|
|
mAccumulator.clear();
|
|
}
|
|
|
|
int32_t CursorInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
|
|
if (scanCode >= BTN_MOUSE && scanCode < BTN_JOYSTICK) {
|
|
return getEventHub()->getScanCodeState(getDeviceId(), scanCode);
|
|
} else {
|
|
return AKEY_STATE_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
void CursorInputMapper::fadePointer() {
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
if (mPointerController != NULL) {
|
|
mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL);
|
|
}
|
|
} // release lock
|
|
}
|
|
|
|
|
|
// --- TouchInputMapper ---
|
|
|
|
TouchInputMapper::TouchInputMapper(InputDevice* device) :
|
|
InputMapper(device) {
|
|
mLocked.surfaceOrientation = -1;
|
|
mLocked.surfaceWidth = -1;
|
|
mLocked.surfaceHeight = -1;
|
|
|
|
initializeLocked();
|
|
}
|
|
|
|
TouchInputMapper::~TouchInputMapper() {
|
|
}
|
|
|
|
uint32_t TouchInputMapper::getSources() {
|
|
return mTouchSource | mPointerSource;
|
|
}
|
|
|
|
void TouchInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
|
|
InputMapper::populateDeviceInfo(info);
|
|
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
// Ensure surface information is up to date so that orientation changes are
|
|
// noticed immediately.
|
|
if (!configureSurfaceLocked()) {
|
|
return;
|
|
}
|
|
|
|
info->addMotionRange(mLocked.orientedRanges.x);
|
|
info->addMotionRange(mLocked.orientedRanges.y);
|
|
|
|
if (mLocked.orientedRanges.havePressure) {
|
|
info->addMotionRange(mLocked.orientedRanges.pressure);
|
|
}
|
|
|
|
if (mLocked.orientedRanges.haveSize) {
|
|
info->addMotionRange(mLocked.orientedRanges.size);
|
|
}
|
|
|
|
if (mLocked.orientedRanges.haveTouchSize) {
|
|
info->addMotionRange(mLocked.orientedRanges.touchMajor);
|
|
info->addMotionRange(mLocked.orientedRanges.touchMinor);
|
|
}
|
|
|
|
if (mLocked.orientedRanges.haveToolSize) {
|
|
info->addMotionRange(mLocked.orientedRanges.toolMajor);
|
|
info->addMotionRange(mLocked.orientedRanges.toolMinor);
|
|
}
|
|
|
|
if (mLocked.orientedRanges.haveOrientation) {
|
|
info->addMotionRange(mLocked.orientedRanges.orientation);
|
|
}
|
|
|
|
if (mLocked.orientedRanges.haveDistance) {
|
|
info->addMotionRange(mLocked.orientedRanges.distance);
|
|
}
|
|
|
|
if (mPointerController != NULL) {
|
|
float minX, minY, maxX, maxY;
|
|
if (mPointerController->getBounds(&minX, &minY, &maxX, &maxY)) {
|
|
info->addMotionRange(AMOTION_EVENT_AXIS_X, mPointerSource,
|
|
minX, maxX, 0.0f, 0.0f);
|
|
info->addMotionRange(AMOTION_EVENT_AXIS_Y, mPointerSource,
|
|
minY, maxY, 0.0f, 0.0f);
|
|
}
|
|
info->addMotionRange(AMOTION_EVENT_AXIS_PRESSURE, mPointerSource,
|
|
0.0f, 1.0f, 0.0f, 0.0f);
|
|
}
|
|
} // release lock
|
|
}
|
|
|
|
void TouchInputMapper::dump(String8& dump) {
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
dump.append(INDENT2 "Touch Input Mapper:\n");
|
|
dumpParameters(dump);
|
|
dumpVirtualKeysLocked(dump);
|
|
dumpRawAxes(dump);
|
|
dumpCalibration(dump);
|
|
dumpSurfaceLocked(dump);
|
|
|
|
dump.appendFormat(INDENT3 "Translation and Scaling Factors:\n");
|
|
dump.appendFormat(INDENT4 "XScale: %0.3f\n", mLocked.xScale);
|
|
dump.appendFormat(INDENT4 "YScale: %0.3f\n", mLocked.yScale);
|
|
dump.appendFormat(INDENT4 "XPrecision: %0.3f\n", mLocked.xPrecision);
|
|
dump.appendFormat(INDENT4 "YPrecision: %0.3f\n", mLocked.yPrecision);
|
|
dump.appendFormat(INDENT4 "GeometricScale: %0.3f\n", mLocked.geometricScale);
|
|
dump.appendFormat(INDENT4 "ToolSizeLinearScale: %0.3f\n", mLocked.toolSizeLinearScale);
|
|
dump.appendFormat(INDENT4 "ToolSizeLinearBias: %0.3f\n", mLocked.toolSizeLinearBias);
|
|
dump.appendFormat(INDENT4 "ToolSizeAreaScale: %0.3f\n", mLocked.toolSizeAreaScale);
|
|
dump.appendFormat(INDENT4 "ToolSizeAreaBias: %0.3f\n", mLocked.toolSizeAreaBias);
|
|
dump.appendFormat(INDENT4 "PressureScale: %0.3f\n", mLocked.pressureScale);
|
|
dump.appendFormat(INDENT4 "SizeScale: %0.3f\n", mLocked.sizeScale);
|
|
dump.appendFormat(INDENT4 "OrientationScale: %0.3f\n", mLocked.orientationScale);
|
|
dump.appendFormat(INDENT4 "DistanceScale: %0.3f\n", mLocked.distanceScale);
|
|
|
|
dump.appendFormat(INDENT3 "Last Touch:\n");
|
|
dump.appendFormat(INDENT4 "Pointer Count: %d\n", mLastTouch.pointerCount);
|
|
dump.appendFormat(INDENT4 "Button State: 0x%08x\n", mLastTouch.buttonState);
|
|
|
|
if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) {
|
|
dump.appendFormat(INDENT3 "Pointer Gesture Detector:\n");
|
|
dump.appendFormat(INDENT4 "XMovementScale: %0.3f\n",
|
|
mLocked.pointerGestureXMovementScale);
|
|
dump.appendFormat(INDENT4 "YMovementScale: %0.3f\n",
|
|
mLocked.pointerGestureYMovementScale);
|
|
dump.appendFormat(INDENT4 "XZoomScale: %0.3f\n",
|
|
mLocked.pointerGestureXZoomScale);
|
|
dump.appendFormat(INDENT4 "YZoomScale: %0.3f\n",
|
|
mLocked.pointerGestureYZoomScale);
|
|
dump.appendFormat(INDENT4 "MaxSwipeWidth: %f\n",
|
|
mLocked.pointerGestureMaxSwipeWidth);
|
|
}
|
|
} // release lock
|
|
}
|
|
|
|
void TouchInputMapper::initializeLocked() {
|
|
mCurrentTouch.clear();
|
|
mLastTouch.clear();
|
|
mDownTime = 0;
|
|
|
|
for (uint32_t i = 0; i < MAX_POINTERS; i++) {
|
|
mAveragingTouchFilter.historyStart[i] = 0;
|
|
mAveragingTouchFilter.historyEnd[i] = 0;
|
|
}
|
|
|
|
mJumpyTouchFilter.jumpyPointsDropped = 0;
|
|
|
|
mLocked.currentVirtualKey.down = false;
|
|
|
|
mLocked.orientedRanges.havePressure = false;
|
|
mLocked.orientedRanges.haveSize = false;
|
|
mLocked.orientedRanges.haveTouchSize = false;
|
|
mLocked.orientedRanges.haveToolSize = false;
|
|
mLocked.orientedRanges.haveOrientation = false;
|
|
mLocked.orientedRanges.haveDistance = false;
|
|
|
|
mPointerGesture.reset();
|
|
}
|
|
|
|
void TouchInputMapper::configure(const InputReaderConfiguration* config, uint32_t changes) {
|
|
InputMapper::configure(config, changes);
|
|
|
|
mConfig = *config;
|
|
|
|
if (!changes) { // first time only
|
|
// Configure basic parameters.
|
|
configureParameters();
|
|
|
|
// Configure sources.
|
|
switch (mParameters.deviceType) {
|
|
case Parameters::DEVICE_TYPE_TOUCH_SCREEN:
|
|
mTouchSource = AINPUT_SOURCE_TOUCHSCREEN;
|
|
mPointerSource = 0;
|
|
break;
|
|
case Parameters::DEVICE_TYPE_TOUCH_PAD:
|
|
mTouchSource = AINPUT_SOURCE_TOUCHPAD;
|
|
mPointerSource = 0;
|
|
break;
|
|
case Parameters::DEVICE_TYPE_POINTER:
|
|
mTouchSource = AINPUT_SOURCE_TOUCHPAD;
|
|
mPointerSource = AINPUT_SOURCE_MOUSE;
|
|
break;
|
|
default:
|
|
LOG_ASSERT(false);
|
|
}
|
|
|
|
// Configure absolute axis information.
|
|
configureRawAxes();
|
|
|
|
// Prepare input device calibration.
|
|
parseCalibration();
|
|
resolveCalibration();
|
|
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
// Configure surface dimensions and orientation.
|
|
configureSurfaceLocked();
|
|
} // release lock
|
|
}
|
|
|
|
if (!changes || (changes & InputReaderConfiguration::CHANGE_POINTER_SPEED)) {
|
|
mPointerGesture.pointerVelocityControl.setParameters(
|
|
mConfig.pointerVelocityControlParameters);
|
|
}
|
|
|
|
if (!changes || (changes & InputReaderConfiguration::CHANGE_POINTER_GESTURE_ENABLEMENT)) {
|
|
// Reset the touch screen when pointer gesture enablement changes.
|
|
reset();
|
|
}
|
|
}
|
|
|
|
void TouchInputMapper::configureParameters() {
|
|
mParameters.useBadTouchFilter = mConfig.filterTouchEvents;
|
|
mParameters.useAveragingTouchFilter = mConfig.filterTouchEvents;
|
|
mParameters.useJumpyTouchFilter = mConfig.filterJumpyTouchEvents;
|
|
|
|
// Use the pointer presentation mode for devices that do not support distinct
|
|
// multitouch. The spot-based presentation relies on being able to accurately
|
|
// locate two or more fingers on the touch pad.
|
|
mParameters.gestureMode = getEventHub()->hasInputProperty(getDeviceId(), INPUT_PROP_SEMI_MT)
|
|
? Parameters::GESTURE_MODE_POINTER : Parameters::GESTURE_MODE_SPOTS;
|
|
|
|
String8 gestureModeString;
|
|
if (getDevice()->getConfiguration().tryGetProperty(String8("touch.gestureMode"),
|
|
gestureModeString)) {
|
|
if (gestureModeString == "pointer") {
|
|
mParameters.gestureMode = Parameters::GESTURE_MODE_POINTER;
|
|
} else if (gestureModeString == "spots") {
|
|
mParameters.gestureMode = Parameters::GESTURE_MODE_SPOTS;
|
|
} else if (gestureModeString != "default") {
|
|
LOGW("Invalid value for touch.gestureMode: '%s'", gestureModeString.string());
|
|
}
|
|
}
|
|
|
|
if (getEventHub()->hasRelativeAxis(getDeviceId(), REL_X)
|
|
|| getEventHub()->hasRelativeAxis(getDeviceId(), REL_Y)) {
|
|
// The device is a cursor device with a touch pad attached.
|
|
// By default don't use the touch pad to move the pointer.
|
|
mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_PAD;
|
|
} else if (getEventHub()->hasInputProperty(getDeviceId(), INPUT_PROP_POINTER)) {
|
|
// The device is a pointing device like a track pad.
|
|
mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER;
|
|
} else if (getEventHub()->hasInputProperty(getDeviceId(), INPUT_PROP_DIRECT)) {
|
|
// The device is a touch screen.
|
|
mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_SCREEN;
|
|
} else {
|
|
// The device is a touch pad of unknown purpose.
|
|
mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER;
|
|
}
|
|
|
|
String8 deviceTypeString;
|
|
if (getDevice()->getConfiguration().tryGetProperty(String8("touch.deviceType"),
|
|
deviceTypeString)) {
|
|
if (deviceTypeString == "touchScreen") {
|
|
mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_SCREEN;
|
|
} else if (deviceTypeString == "touchPad") {
|
|
mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_PAD;
|
|
} else if (deviceTypeString == "pointer") {
|
|
mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER;
|
|
} else if (deviceTypeString != "default") {
|
|
LOGW("Invalid value for touch.deviceType: '%s'", deviceTypeString.string());
|
|
}
|
|
}
|
|
|
|
mParameters.orientationAware = mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN;
|
|
getDevice()->getConfiguration().tryGetProperty(String8("touch.orientationAware"),
|
|
mParameters.orientationAware);
|
|
|
|
mParameters.associatedDisplayId = mParameters.orientationAware
|
|
|| mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN
|
|
|| mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER
|
|
? 0 : -1;
|
|
}
|
|
|
|
void TouchInputMapper::dumpParameters(String8& dump) {
|
|
dump.append(INDENT3 "Parameters:\n");
|
|
|
|
switch (mParameters.gestureMode) {
|
|
case Parameters::GESTURE_MODE_POINTER:
|
|
dump.append(INDENT4 "GestureMode: pointer\n");
|
|
break;
|
|
case Parameters::GESTURE_MODE_SPOTS:
|
|
dump.append(INDENT4 "GestureMode: spots\n");
|
|
break;
|
|
default:
|
|
assert(false);
|
|
}
|
|
|
|
switch (mParameters.deviceType) {
|
|
case Parameters::DEVICE_TYPE_TOUCH_SCREEN:
|
|
dump.append(INDENT4 "DeviceType: touchScreen\n");
|
|
break;
|
|
case Parameters::DEVICE_TYPE_TOUCH_PAD:
|
|
dump.append(INDENT4 "DeviceType: touchPad\n");
|
|
break;
|
|
case Parameters::DEVICE_TYPE_POINTER:
|
|
dump.append(INDENT4 "DeviceType: pointer\n");
|
|
break;
|
|
default:
|
|
LOG_ASSERT(false);
|
|
}
|
|
|
|
dump.appendFormat(INDENT4 "AssociatedDisplayId: %d\n",
|
|
mParameters.associatedDisplayId);
|
|
dump.appendFormat(INDENT4 "OrientationAware: %s\n",
|
|
toString(mParameters.orientationAware));
|
|
|
|
dump.appendFormat(INDENT4 "UseBadTouchFilter: %s\n",
|
|
toString(mParameters.useBadTouchFilter));
|
|
dump.appendFormat(INDENT4 "UseAveragingTouchFilter: %s\n",
|
|
toString(mParameters.useAveragingTouchFilter));
|
|
dump.appendFormat(INDENT4 "UseJumpyTouchFilter: %s\n",
|
|
toString(mParameters.useJumpyTouchFilter));
|
|
}
|
|
|
|
void TouchInputMapper::configureRawAxes() {
|
|
mRawAxes.x.clear();
|
|
mRawAxes.y.clear();
|
|
mRawAxes.pressure.clear();
|
|
mRawAxes.touchMajor.clear();
|
|
mRawAxes.touchMinor.clear();
|
|
mRawAxes.toolMajor.clear();
|
|
mRawAxes.toolMinor.clear();
|
|
mRawAxes.orientation.clear();
|
|
mRawAxes.distance.clear();
|
|
mRawAxes.trackingId.clear();
|
|
mRawAxes.slot.clear();
|
|
}
|
|
|
|
void TouchInputMapper::dumpRawAxes(String8& dump) {
|
|
dump.append(INDENT3 "Raw Axes:\n");
|
|
dumpRawAbsoluteAxisInfo(dump, mRawAxes.x, "X");
|
|
dumpRawAbsoluteAxisInfo(dump, mRawAxes.y, "Y");
|
|
dumpRawAbsoluteAxisInfo(dump, mRawAxes.pressure, "Pressure");
|
|
dumpRawAbsoluteAxisInfo(dump, mRawAxes.touchMajor, "TouchMajor");
|
|
dumpRawAbsoluteAxisInfo(dump, mRawAxes.touchMinor, "TouchMinor");
|
|
dumpRawAbsoluteAxisInfo(dump, mRawAxes.toolMajor, "ToolMajor");
|
|
dumpRawAbsoluteAxisInfo(dump, mRawAxes.toolMinor, "ToolMinor");
|
|
dumpRawAbsoluteAxisInfo(dump, mRawAxes.orientation, "Orientation");
|
|
dumpRawAbsoluteAxisInfo(dump, mRawAxes.distance, "Distance");
|
|
dumpRawAbsoluteAxisInfo(dump, mRawAxes.trackingId, "TrackingId");
|
|
dumpRawAbsoluteAxisInfo(dump, mRawAxes.slot, "Slot");
|
|
}
|
|
|
|
bool TouchInputMapper::configureSurfaceLocked() {
|
|
// Ensure we have valid X and Y axes.
|
|
if (!mRawAxes.x.valid || !mRawAxes.y.valid) {
|
|
LOGW(INDENT "Touch device '%s' did not report support for X or Y axis! "
|
|
"The device will be inoperable.", getDeviceName().string());
|
|
return false;
|
|
}
|
|
|
|
// Update orientation and dimensions if needed.
|
|
int32_t orientation = DISPLAY_ORIENTATION_0;
|
|
int32_t width = mRawAxes.x.maxValue - mRawAxes.x.minValue + 1;
|
|
int32_t height = mRawAxes.y.maxValue - mRawAxes.y.minValue + 1;
|
|
|
|
if (mParameters.associatedDisplayId >= 0) {
|
|
// Note: getDisplayInfo is non-reentrant so we can continue holding the lock.
|
|
if (! getPolicy()->getDisplayInfo(mParameters.associatedDisplayId,
|
|
&mLocked.associatedDisplayWidth, &mLocked.associatedDisplayHeight,
|
|
&mLocked.associatedDisplayOrientation)) {
|
|
return false;
|
|
}
|
|
|
|
// A touch screen inherits the dimensions of the display.
|
|
if (mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN) {
|
|
width = mLocked.associatedDisplayWidth;
|
|
height = mLocked.associatedDisplayHeight;
|
|
}
|
|
|
|
// The device inherits the orientation of the display if it is orientation aware.
|
|
if (mParameters.orientationAware) {
|
|
orientation = mLocked.associatedDisplayOrientation;
|
|
}
|
|
}
|
|
|
|
if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER
|
|
&& mPointerController == NULL) {
|
|
mPointerController = getPolicy()->obtainPointerController(getDeviceId());
|
|
}
|
|
|
|
bool orientationChanged = mLocked.surfaceOrientation != orientation;
|
|
if (orientationChanged) {
|
|
mLocked.surfaceOrientation = orientation;
|
|
}
|
|
|
|
bool sizeChanged = mLocked.surfaceWidth != width || mLocked.surfaceHeight != height;
|
|
if (sizeChanged) {
|
|
LOGI("Device reconfigured: id=%d, name='%s', surface size is now %dx%d",
|
|
getDeviceId(), getDeviceName().string(), width, height);
|
|
|
|
mLocked.surfaceWidth = width;
|
|
mLocked.surfaceHeight = height;
|
|
|
|
// Configure X and Y factors.
|
|
mLocked.xScale = float(width) / (mRawAxes.x.maxValue - mRawAxes.x.minValue + 1);
|
|
mLocked.yScale = float(height) / (mRawAxes.y.maxValue - mRawAxes.y.minValue + 1);
|
|
mLocked.xPrecision = 1.0f / mLocked.xScale;
|
|
mLocked.yPrecision = 1.0f / mLocked.yScale;
|
|
|
|
mLocked.orientedRanges.x.axis = AMOTION_EVENT_AXIS_X;
|
|
mLocked.orientedRanges.x.source = mTouchSource;
|
|
mLocked.orientedRanges.y.axis = AMOTION_EVENT_AXIS_Y;
|
|
mLocked.orientedRanges.y.source = mTouchSource;
|
|
|
|
configureVirtualKeysLocked();
|
|
|
|
// Scale factor for terms that are not oriented in a particular axis.
|
|
// If the pixels are square then xScale == yScale otherwise we fake it
|
|
// by choosing an average.
|
|
mLocked.geometricScale = avg(mLocked.xScale, mLocked.yScale);
|
|
|
|
// Size of diagonal axis.
|
|
float diagonalSize = hypotf(width, height);
|
|
|
|
// TouchMajor and TouchMinor factors.
|
|
if (mCalibration.touchSizeCalibration != Calibration::TOUCH_SIZE_CALIBRATION_NONE) {
|
|
mLocked.orientedRanges.haveTouchSize = true;
|
|
|
|
mLocked.orientedRanges.touchMajor.axis = AMOTION_EVENT_AXIS_TOUCH_MAJOR;
|
|
mLocked.orientedRanges.touchMajor.source = mTouchSource;
|
|
mLocked.orientedRanges.touchMajor.min = 0;
|
|
mLocked.orientedRanges.touchMajor.max = diagonalSize;
|
|
mLocked.orientedRanges.touchMajor.flat = 0;
|
|
mLocked.orientedRanges.touchMajor.fuzz = 0;
|
|
|
|
mLocked.orientedRanges.touchMinor = mLocked.orientedRanges.touchMajor;
|
|
mLocked.orientedRanges.touchMinor.axis = AMOTION_EVENT_AXIS_TOUCH_MINOR;
|
|
}
|
|
|
|
// ToolMajor and ToolMinor factors.
|
|
mLocked.toolSizeLinearScale = 0;
|
|
mLocked.toolSizeLinearBias = 0;
|
|
mLocked.toolSizeAreaScale = 0;
|
|
mLocked.toolSizeAreaBias = 0;
|
|
if (mCalibration.toolSizeCalibration != Calibration::TOOL_SIZE_CALIBRATION_NONE) {
|
|
if (mCalibration.toolSizeCalibration == Calibration::TOOL_SIZE_CALIBRATION_LINEAR) {
|
|
if (mCalibration.haveToolSizeLinearScale) {
|
|
mLocked.toolSizeLinearScale = mCalibration.toolSizeLinearScale;
|
|
} else if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) {
|
|
mLocked.toolSizeLinearScale = float(min(width, height))
|
|
/ mRawAxes.toolMajor.maxValue;
|
|
}
|
|
|
|
if (mCalibration.haveToolSizeLinearBias) {
|
|
mLocked.toolSizeLinearBias = mCalibration.toolSizeLinearBias;
|
|
}
|
|
} else if (mCalibration.toolSizeCalibration ==
|
|
Calibration::TOOL_SIZE_CALIBRATION_AREA) {
|
|
if (mCalibration.haveToolSizeLinearScale) {
|
|
mLocked.toolSizeLinearScale = mCalibration.toolSizeLinearScale;
|
|
} else {
|
|
mLocked.toolSizeLinearScale = min(width, height);
|
|
}
|
|
|
|
if (mCalibration.haveToolSizeLinearBias) {
|
|
mLocked.toolSizeLinearBias = mCalibration.toolSizeLinearBias;
|
|
}
|
|
|
|
if (mCalibration.haveToolSizeAreaScale) {
|
|
mLocked.toolSizeAreaScale = mCalibration.toolSizeAreaScale;
|
|
} else if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) {
|
|
mLocked.toolSizeAreaScale = 1.0f / mRawAxes.toolMajor.maxValue;
|
|
}
|
|
|
|
if (mCalibration.haveToolSizeAreaBias) {
|
|
mLocked.toolSizeAreaBias = mCalibration.toolSizeAreaBias;
|
|
}
|
|
}
|
|
|
|
mLocked.orientedRanges.haveToolSize = true;
|
|
|
|
mLocked.orientedRanges.toolMajor.axis = AMOTION_EVENT_AXIS_TOOL_MAJOR;
|
|
mLocked.orientedRanges.toolMajor.source = mTouchSource;
|
|
mLocked.orientedRanges.toolMajor.min = 0;
|
|
mLocked.orientedRanges.toolMajor.max = diagonalSize;
|
|
mLocked.orientedRanges.toolMajor.flat = 0;
|
|
mLocked.orientedRanges.toolMajor.fuzz = 0;
|
|
|
|
mLocked.orientedRanges.toolMinor = mLocked.orientedRanges.toolMajor;
|
|
mLocked.orientedRanges.toolMinor.axis = AMOTION_EVENT_AXIS_TOOL_MINOR;
|
|
}
|
|
|
|
// Pressure factors.
|
|
mLocked.pressureScale = 0;
|
|
if (mCalibration.pressureCalibration != Calibration::PRESSURE_CALIBRATION_NONE) {
|
|
RawAbsoluteAxisInfo rawPressureAxis;
|
|
switch (mCalibration.pressureSource) {
|
|
case Calibration::PRESSURE_SOURCE_PRESSURE:
|
|
rawPressureAxis = mRawAxes.pressure;
|
|
break;
|
|
case Calibration::PRESSURE_SOURCE_TOUCH:
|
|
rawPressureAxis = mRawAxes.touchMajor;
|
|
break;
|
|
default:
|
|
rawPressureAxis.clear();
|
|
}
|
|
|
|
if (mCalibration.pressureCalibration == Calibration::PRESSURE_CALIBRATION_PHYSICAL
|
|
|| mCalibration.pressureCalibration
|
|
== Calibration::PRESSURE_CALIBRATION_AMPLITUDE) {
|
|
if (mCalibration.havePressureScale) {
|
|
mLocked.pressureScale = mCalibration.pressureScale;
|
|
} else if (rawPressureAxis.valid && rawPressureAxis.maxValue != 0) {
|
|
mLocked.pressureScale = 1.0f / rawPressureAxis.maxValue;
|
|
}
|
|
}
|
|
|
|
mLocked.orientedRanges.havePressure = true;
|
|
|
|
mLocked.orientedRanges.pressure.axis = AMOTION_EVENT_AXIS_PRESSURE;
|
|
mLocked.orientedRanges.pressure.source = mTouchSource;
|
|
mLocked.orientedRanges.pressure.min = 0;
|
|
mLocked.orientedRanges.pressure.max = 1.0;
|
|
mLocked.orientedRanges.pressure.flat = 0;
|
|
mLocked.orientedRanges.pressure.fuzz = 0;
|
|
}
|
|
|
|
// Size factors.
|
|
mLocked.sizeScale = 0;
|
|
if (mCalibration.sizeCalibration != Calibration::SIZE_CALIBRATION_NONE) {
|
|
if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_NORMALIZED) {
|
|
if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) {
|
|
mLocked.sizeScale = 1.0f / mRawAxes.toolMajor.maxValue;
|
|
}
|
|
}
|
|
|
|
mLocked.orientedRanges.haveSize = true;
|
|
|
|
mLocked.orientedRanges.size.axis = AMOTION_EVENT_AXIS_SIZE;
|
|
mLocked.orientedRanges.size.source = mTouchSource;
|
|
mLocked.orientedRanges.size.min = 0;
|
|
mLocked.orientedRanges.size.max = 1.0;
|
|
mLocked.orientedRanges.size.flat = 0;
|
|
mLocked.orientedRanges.size.fuzz = 0;
|
|
}
|
|
|
|
// Orientation
|
|
mLocked.orientationScale = 0;
|
|
if (mCalibration.orientationCalibration != Calibration::ORIENTATION_CALIBRATION_NONE) {
|
|
if (mCalibration.orientationCalibration
|
|
== Calibration::ORIENTATION_CALIBRATION_INTERPOLATED) {
|
|
if (mRawAxes.orientation.valid && mRawAxes.orientation.maxValue != 0) {
|
|
mLocked.orientationScale = float(M_PI_2) / mRawAxes.orientation.maxValue;
|
|
}
|
|
}
|
|
|
|
mLocked.orientedRanges.haveOrientation = true;
|
|
|
|
mLocked.orientedRanges.orientation.axis = AMOTION_EVENT_AXIS_ORIENTATION;
|
|
mLocked.orientedRanges.orientation.source = mTouchSource;
|
|
mLocked.orientedRanges.orientation.min = - M_PI_2;
|
|
mLocked.orientedRanges.orientation.max = M_PI_2;
|
|
mLocked.orientedRanges.orientation.flat = 0;
|
|
mLocked.orientedRanges.orientation.fuzz = 0;
|
|
}
|
|
|
|
// Distance
|
|
mLocked.distanceScale = 0;
|
|
if (mCalibration.distanceCalibration != Calibration::DISTANCE_CALIBRATION_NONE) {
|
|
if (mCalibration.distanceCalibration
|
|
== Calibration::DISTANCE_CALIBRATION_SCALED) {
|
|
if (mCalibration.haveDistanceScale) {
|
|
mLocked.distanceScale = mCalibration.distanceScale;
|
|
} else {
|
|
mLocked.distanceScale = 1.0f;
|
|
}
|
|
}
|
|
|
|
mLocked.orientedRanges.haveDistance = true;
|
|
|
|
mLocked.orientedRanges.distance.axis = AMOTION_EVENT_AXIS_DISTANCE;
|
|
mLocked.orientedRanges.distance.source = mTouchSource;
|
|
mLocked.orientedRanges.distance.min =
|
|
mRawAxes.distance.minValue * mLocked.distanceScale;
|
|
mLocked.orientedRanges.distance.max =
|
|
mRawAxes.distance.minValue * mLocked.distanceScale;
|
|
mLocked.orientedRanges.distance.flat = 0;
|
|
mLocked.orientedRanges.distance.fuzz =
|
|
mRawAxes.distance.fuzz * mLocked.distanceScale;
|
|
}
|
|
}
|
|
|
|
if (orientationChanged || sizeChanged) {
|
|
// Compute oriented surface dimensions, precision, scales and ranges.
|
|
// Note that the maximum value reported is an inclusive maximum value so it is one
|
|
// unit less than the total width or height of surface.
|
|
switch (mLocked.surfaceOrientation) {
|
|
case DISPLAY_ORIENTATION_90:
|
|
case DISPLAY_ORIENTATION_270:
|
|
mLocked.orientedSurfaceWidth = mLocked.surfaceHeight;
|
|
mLocked.orientedSurfaceHeight = mLocked.surfaceWidth;
|
|
|
|
mLocked.orientedXPrecision = mLocked.yPrecision;
|
|
mLocked.orientedYPrecision = mLocked.xPrecision;
|
|
|
|
mLocked.orientedRanges.x.min = 0;
|
|
mLocked.orientedRanges.x.max = (mRawAxes.y.maxValue - mRawAxes.y.minValue)
|
|
* mLocked.yScale;
|
|
mLocked.orientedRanges.x.flat = 0;
|
|
mLocked.orientedRanges.x.fuzz = mLocked.yScale;
|
|
|
|
mLocked.orientedRanges.y.min = 0;
|
|
mLocked.orientedRanges.y.max = (mRawAxes.x.maxValue - mRawAxes.x.minValue)
|
|
* mLocked.xScale;
|
|
mLocked.orientedRanges.y.flat = 0;
|
|
mLocked.orientedRanges.y.fuzz = mLocked.xScale;
|
|
break;
|
|
|
|
default:
|
|
mLocked.orientedSurfaceWidth = mLocked.surfaceWidth;
|
|
mLocked.orientedSurfaceHeight = mLocked.surfaceHeight;
|
|
|
|
mLocked.orientedXPrecision = mLocked.xPrecision;
|
|
mLocked.orientedYPrecision = mLocked.yPrecision;
|
|
|
|
mLocked.orientedRanges.x.min = 0;
|
|
mLocked.orientedRanges.x.max = (mRawAxes.x.maxValue - mRawAxes.x.minValue)
|
|
* mLocked.xScale;
|
|
mLocked.orientedRanges.x.flat = 0;
|
|
mLocked.orientedRanges.x.fuzz = mLocked.xScale;
|
|
|
|
mLocked.orientedRanges.y.min = 0;
|
|
mLocked.orientedRanges.y.max = (mRawAxes.y.maxValue - mRawAxes.y.minValue)
|
|
* mLocked.yScale;
|
|
mLocked.orientedRanges.y.flat = 0;
|
|
mLocked.orientedRanges.y.fuzz = mLocked.yScale;
|
|
break;
|
|
}
|
|
|
|
// Compute pointer gesture detection parameters.
|
|
// TODO: These factors should not be hardcoded.
|
|
if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) {
|
|
int32_t rawWidth = mRawAxes.x.maxValue - mRawAxes.x.minValue + 1;
|
|
int32_t rawHeight = mRawAxes.y.maxValue - mRawAxes.y.minValue + 1;
|
|
float rawDiagonal = hypotf(rawWidth, rawHeight);
|
|
float displayDiagonal = hypotf(mLocked.associatedDisplayWidth,
|
|
mLocked.associatedDisplayHeight);
|
|
|
|
// Scale movements such that one whole swipe of the touch pad covers a
|
|
// given area relative to the diagonal size of the display when no acceleration
|
|
// is applied.
|
|
// Assume that the touch pad has a square aspect ratio such that movements in
|
|
// X and Y of the same number of raw units cover the same physical distance.
|
|
mLocked.pointerGestureXMovementScale = mConfig.pointerGestureMovementSpeedRatio
|
|
* displayDiagonal / rawDiagonal;
|
|
mLocked.pointerGestureYMovementScale = mLocked.pointerGestureXMovementScale;
|
|
|
|
// Scale zooms to cover a smaller range of the display than movements do.
|
|
// This value determines the area around the pointer that is affected by freeform
|
|
// pointer gestures.
|
|
mLocked.pointerGestureXZoomScale = mConfig.pointerGestureZoomSpeedRatio
|
|
* displayDiagonal / rawDiagonal;
|
|
mLocked.pointerGestureYZoomScale = mLocked.pointerGestureXZoomScale;
|
|
|
|
// Max width between pointers to detect a swipe gesture is more than some fraction
|
|
// of the diagonal axis of the touch pad. Touches that are wider than this are
|
|
// translated into freeform gestures.
|
|
mLocked.pointerGestureMaxSwipeWidth =
|
|
mConfig.pointerGestureSwipeMaxWidthRatio * rawDiagonal;
|
|
|
|
// Reset the current pointer gesture.
|
|
mPointerGesture.reset();
|
|
|
|
// Remove any current spots.
|
|
if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
|
|
mPointerController->clearSpots();
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void TouchInputMapper::dumpSurfaceLocked(String8& dump) {
|
|
dump.appendFormat(INDENT3 "SurfaceWidth: %dpx\n", mLocked.surfaceWidth);
|
|
dump.appendFormat(INDENT3 "SurfaceHeight: %dpx\n", mLocked.surfaceHeight);
|
|
dump.appendFormat(INDENT3 "SurfaceOrientation: %d\n", mLocked.surfaceOrientation);
|
|
}
|
|
|
|
void TouchInputMapper::configureVirtualKeysLocked() {
|
|
Vector<VirtualKeyDefinition> virtualKeyDefinitions;
|
|
getEventHub()->getVirtualKeyDefinitions(getDeviceId(), virtualKeyDefinitions);
|
|
|
|
mLocked.virtualKeys.clear();
|
|
|
|
if (virtualKeyDefinitions.size() == 0) {
|
|
return;
|
|
}
|
|
|
|
mLocked.virtualKeys.setCapacity(virtualKeyDefinitions.size());
|
|
|
|
int32_t touchScreenLeft = mRawAxes.x.minValue;
|
|
int32_t touchScreenTop = mRawAxes.y.minValue;
|
|
int32_t touchScreenWidth = mRawAxes.x.maxValue - mRawAxes.x.minValue + 1;
|
|
int32_t touchScreenHeight = mRawAxes.y.maxValue - mRawAxes.y.minValue + 1;
|
|
|
|
for (size_t i = 0; i < virtualKeyDefinitions.size(); i++) {
|
|
const VirtualKeyDefinition& virtualKeyDefinition =
|
|
virtualKeyDefinitions[i];
|
|
|
|
mLocked.virtualKeys.add();
|
|
VirtualKey& virtualKey = mLocked.virtualKeys.editTop();
|
|
|
|
virtualKey.scanCode = virtualKeyDefinition.scanCode;
|
|
int32_t keyCode;
|
|
uint32_t flags;
|
|
if (getEventHub()->mapKey(getDeviceId(), virtualKey.scanCode,
|
|
& keyCode, & flags)) {
|
|
LOGW(INDENT "VirtualKey %d: could not obtain key code, ignoring",
|
|
virtualKey.scanCode);
|
|
mLocked.virtualKeys.pop(); // drop the key
|
|
continue;
|
|
}
|
|
|
|
virtualKey.keyCode = keyCode;
|
|
virtualKey.flags = flags;
|
|
|
|
// convert the key definition's display coordinates into touch coordinates for a hit box
|
|
int32_t halfWidth = virtualKeyDefinition.width / 2;
|
|
int32_t halfHeight = virtualKeyDefinition.height / 2;
|
|
|
|
virtualKey.hitLeft = (virtualKeyDefinition.centerX - halfWidth)
|
|
* touchScreenWidth / mLocked.surfaceWidth + touchScreenLeft;
|
|
virtualKey.hitRight= (virtualKeyDefinition.centerX + halfWidth)
|
|
* touchScreenWidth / mLocked.surfaceWidth + touchScreenLeft;
|
|
virtualKey.hitTop = (virtualKeyDefinition.centerY - halfHeight)
|
|
* touchScreenHeight / mLocked.surfaceHeight + touchScreenTop;
|
|
virtualKey.hitBottom = (virtualKeyDefinition.centerY + halfHeight)
|
|
* touchScreenHeight / mLocked.surfaceHeight + touchScreenTop;
|
|
}
|
|
}
|
|
|
|
void TouchInputMapper::dumpVirtualKeysLocked(String8& dump) {
|
|
if (!mLocked.virtualKeys.isEmpty()) {
|
|
dump.append(INDENT3 "Virtual Keys:\n");
|
|
|
|
for (size_t i = 0; i < mLocked.virtualKeys.size(); i++) {
|
|
const VirtualKey& virtualKey = mLocked.virtualKeys.itemAt(i);
|
|
dump.appendFormat(INDENT4 "%d: scanCode=%d, keyCode=%d, "
|
|
"hitLeft=%d, hitRight=%d, hitTop=%d, hitBottom=%d\n",
|
|
i, virtualKey.scanCode, virtualKey.keyCode,
|
|
virtualKey.hitLeft, virtualKey.hitRight,
|
|
virtualKey.hitTop, virtualKey.hitBottom);
|
|
}
|
|
}
|
|
}
|
|
|
|
void TouchInputMapper::parseCalibration() {
|
|
const PropertyMap& in = getDevice()->getConfiguration();
|
|
Calibration& out = mCalibration;
|
|
|
|
// Touch Size
|
|
out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_DEFAULT;
|
|
String8 touchSizeCalibrationString;
|
|
if (in.tryGetProperty(String8("touch.touchSize.calibration"), touchSizeCalibrationString)) {
|
|
if (touchSizeCalibrationString == "none") {
|
|
out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_NONE;
|
|
} else if (touchSizeCalibrationString == "geometric") {
|
|
out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC;
|
|
} else if (touchSizeCalibrationString == "pressure") {
|
|
out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE;
|
|
} else if (touchSizeCalibrationString != "default") {
|
|
LOGW("Invalid value for touch.touchSize.calibration: '%s'",
|
|
touchSizeCalibrationString.string());
|
|
}
|
|
}
|
|
|
|
// Tool Size
|
|
out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_DEFAULT;
|
|
String8 toolSizeCalibrationString;
|
|
if (in.tryGetProperty(String8("touch.toolSize.calibration"), toolSizeCalibrationString)) {
|
|
if (toolSizeCalibrationString == "none") {
|
|
out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_NONE;
|
|
} else if (toolSizeCalibrationString == "geometric") {
|
|
out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC;
|
|
} else if (toolSizeCalibrationString == "linear") {
|
|
out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_LINEAR;
|
|
} else if (toolSizeCalibrationString == "area") {
|
|
out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_AREA;
|
|
} else if (toolSizeCalibrationString != "default") {
|
|
LOGW("Invalid value for touch.toolSize.calibration: '%s'",
|
|
toolSizeCalibrationString.string());
|
|
}
|
|
}
|
|
|
|
out.haveToolSizeLinearScale = in.tryGetProperty(String8("touch.toolSize.linearScale"),
|
|
out.toolSizeLinearScale);
|
|
out.haveToolSizeLinearBias = in.tryGetProperty(String8("touch.toolSize.linearBias"),
|
|
out.toolSizeLinearBias);
|
|
out.haveToolSizeAreaScale = in.tryGetProperty(String8("touch.toolSize.areaScale"),
|
|
out.toolSizeAreaScale);
|
|
out.haveToolSizeAreaBias = in.tryGetProperty(String8("touch.toolSize.areaBias"),
|
|
out.toolSizeAreaBias);
|
|
out.haveToolSizeIsSummed = in.tryGetProperty(String8("touch.toolSize.isSummed"),
|
|
out.toolSizeIsSummed);
|
|
|
|
// Pressure
|
|
out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_DEFAULT;
|
|
String8 pressureCalibrationString;
|
|
if (in.tryGetProperty(String8("touch.pressure.calibration"), pressureCalibrationString)) {
|
|
if (pressureCalibrationString == "none") {
|
|
out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE;
|
|
} else if (pressureCalibrationString == "physical") {
|
|
out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_PHYSICAL;
|
|
} else if (pressureCalibrationString == "amplitude") {
|
|
out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_AMPLITUDE;
|
|
} else if (pressureCalibrationString != "default") {
|
|
LOGW("Invalid value for touch.pressure.calibration: '%s'",
|
|
pressureCalibrationString.string());
|
|
}
|
|
}
|
|
|
|
out.pressureSource = Calibration::PRESSURE_SOURCE_DEFAULT;
|
|
String8 pressureSourceString;
|
|
if (in.tryGetProperty(String8("touch.pressure.source"), pressureSourceString)) {
|
|
if (pressureSourceString == "pressure") {
|
|
out.pressureSource = Calibration::PRESSURE_SOURCE_PRESSURE;
|
|
} else if (pressureSourceString == "touch") {
|
|
out.pressureSource = Calibration::PRESSURE_SOURCE_TOUCH;
|
|
} else if (pressureSourceString != "default") {
|
|
LOGW("Invalid value for touch.pressure.source: '%s'",
|
|
pressureSourceString.string());
|
|
}
|
|
}
|
|
|
|
out.havePressureScale = in.tryGetProperty(String8("touch.pressure.scale"),
|
|
out.pressureScale);
|
|
|
|
// Size
|
|
out.sizeCalibration = Calibration::SIZE_CALIBRATION_DEFAULT;
|
|
String8 sizeCalibrationString;
|
|
if (in.tryGetProperty(String8("touch.size.calibration"), sizeCalibrationString)) {
|
|
if (sizeCalibrationString == "none") {
|
|
out.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE;
|
|
} else if (sizeCalibrationString == "normalized") {
|
|
out.sizeCalibration = Calibration::SIZE_CALIBRATION_NORMALIZED;
|
|
} else if (sizeCalibrationString != "default") {
|
|
LOGW("Invalid value for touch.size.calibration: '%s'",
|
|
sizeCalibrationString.string());
|
|
}
|
|
}
|
|
|
|
// Orientation
|
|
out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_DEFAULT;
|
|
String8 orientationCalibrationString;
|
|
if (in.tryGetProperty(String8("touch.orientation.calibration"), orientationCalibrationString)) {
|
|
if (orientationCalibrationString == "none") {
|
|
out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE;
|
|
} else if (orientationCalibrationString == "interpolated") {
|
|
out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED;
|
|
} else if (orientationCalibrationString == "vector") {
|
|
out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_VECTOR;
|
|
} else if (orientationCalibrationString != "default") {
|
|
LOGW("Invalid value for touch.orientation.calibration: '%s'",
|
|
orientationCalibrationString.string());
|
|
}
|
|
}
|
|
|
|
// Distance
|
|
out.distanceCalibration = Calibration::DISTANCE_CALIBRATION_DEFAULT;
|
|
String8 distanceCalibrationString;
|
|
if (in.tryGetProperty(String8("touch.distance.calibration"), distanceCalibrationString)) {
|
|
if (distanceCalibrationString == "none") {
|
|
out.distanceCalibration = Calibration::DISTANCE_CALIBRATION_NONE;
|
|
} else if (distanceCalibrationString == "scaled") {
|
|
out.distanceCalibration = Calibration::DISTANCE_CALIBRATION_SCALED;
|
|
} else if (distanceCalibrationString != "default") {
|
|
LOGW("Invalid value for touch.distance.calibration: '%s'",
|
|
distanceCalibrationString.string());
|
|
}
|
|
}
|
|
|
|
out.haveDistanceScale = in.tryGetProperty(String8("touch.distance.scale"),
|
|
out.distanceScale);
|
|
}
|
|
|
|
void TouchInputMapper::resolveCalibration() {
|
|
// Pressure
|
|
switch (mCalibration.pressureSource) {
|
|
case Calibration::PRESSURE_SOURCE_DEFAULT:
|
|
if (mRawAxes.pressure.valid) {
|
|
mCalibration.pressureSource = Calibration::PRESSURE_SOURCE_PRESSURE;
|
|
} else if (mRawAxes.touchMajor.valid) {
|
|
mCalibration.pressureSource = Calibration::PRESSURE_SOURCE_TOUCH;
|
|
}
|
|
break;
|
|
|
|
case Calibration::PRESSURE_SOURCE_PRESSURE:
|
|
if (! mRawAxes.pressure.valid) {
|
|
LOGW("Calibration property touch.pressure.source is 'pressure' but "
|
|
"the pressure axis is not available.");
|
|
}
|
|
break;
|
|
|
|
case Calibration::PRESSURE_SOURCE_TOUCH:
|
|
if (! mRawAxes.touchMajor.valid) {
|
|
LOGW("Calibration property touch.pressure.source is 'touch' but "
|
|
"the touchMajor axis is not available.");
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
switch (mCalibration.pressureCalibration) {
|
|
case Calibration::PRESSURE_CALIBRATION_DEFAULT:
|
|
if (mCalibration.pressureSource != Calibration::PRESSURE_SOURCE_DEFAULT) {
|
|
mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_AMPLITUDE;
|
|
} else {
|
|
mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Tool Size
|
|
switch (mCalibration.toolSizeCalibration) {
|
|
case Calibration::TOOL_SIZE_CALIBRATION_DEFAULT:
|
|
if (mRawAxes.toolMajor.valid) {
|
|
mCalibration.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_LINEAR;
|
|
} else {
|
|
mCalibration.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_NONE;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Touch Size
|
|
switch (mCalibration.touchSizeCalibration) {
|
|
case Calibration::TOUCH_SIZE_CALIBRATION_DEFAULT:
|
|
if (mCalibration.pressureCalibration != Calibration::PRESSURE_CALIBRATION_NONE
|
|
&& mCalibration.toolSizeCalibration != Calibration::TOOL_SIZE_CALIBRATION_NONE) {
|
|
mCalibration.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE;
|
|
} else {
|
|
mCalibration.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_NONE;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Size
|
|
switch (mCalibration.sizeCalibration) {
|
|
case Calibration::SIZE_CALIBRATION_DEFAULT:
|
|
if (mRawAxes.toolMajor.valid) {
|
|
mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_NORMALIZED;
|
|
} else {
|
|
mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Orientation
|
|
switch (mCalibration.orientationCalibration) {
|
|
case Calibration::ORIENTATION_CALIBRATION_DEFAULT:
|
|
if (mRawAxes.orientation.valid) {
|
|
mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED;
|
|
} else {
|
|
mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Distance
|
|
switch (mCalibration.distanceCalibration) {
|
|
case Calibration::DISTANCE_CALIBRATION_DEFAULT:
|
|
if (mRawAxes.distance.valid) {
|
|
mCalibration.distanceCalibration = Calibration::DISTANCE_CALIBRATION_SCALED;
|
|
} else {
|
|
mCalibration.distanceCalibration = Calibration::DISTANCE_CALIBRATION_NONE;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void TouchInputMapper::dumpCalibration(String8& dump) {
|
|
dump.append(INDENT3 "Calibration:\n");
|
|
|
|
// Touch Size
|
|
switch (mCalibration.touchSizeCalibration) {
|
|
case Calibration::TOUCH_SIZE_CALIBRATION_NONE:
|
|
dump.append(INDENT4 "touch.touchSize.calibration: none\n");
|
|
break;
|
|
case Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC:
|
|
dump.append(INDENT4 "touch.touchSize.calibration: geometric\n");
|
|
break;
|
|
case Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE:
|
|
dump.append(INDENT4 "touch.touchSize.calibration: pressure\n");
|
|
break;
|
|
default:
|
|
LOG_ASSERT(false);
|
|
}
|
|
|
|
// Tool Size
|
|
switch (mCalibration.toolSizeCalibration) {
|
|
case Calibration::TOOL_SIZE_CALIBRATION_NONE:
|
|
dump.append(INDENT4 "touch.toolSize.calibration: none\n");
|
|
break;
|
|
case Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC:
|
|
dump.append(INDENT4 "touch.toolSize.calibration: geometric\n");
|
|
break;
|
|
case Calibration::TOOL_SIZE_CALIBRATION_LINEAR:
|
|
dump.append(INDENT4 "touch.toolSize.calibration: linear\n");
|
|
break;
|
|
case Calibration::TOOL_SIZE_CALIBRATION_AREA:
|
|
dump.append(INDENT4 "touch.toolSize.calibration: area\n");
|
|
break;
|
|
default:
|
|
LOG_ASSERT(false);
|
|
}
|
|
|
|
if (mCalibration.haveToolSizeLinearScale) {
|
|
dump.appendFormat(INDENT4 "touch.toolSize.linearScale: %0.3f\n",
|
|
mCalibration.toolSizeLinearScale);
|
|
}
|
|
|
|
if (mCalibration.haveToolSizeLinearBias) {
|
|
dump.appendFormat(INDENT4 "touch.toolSize.linearBias: %0.3f\n",
|
|
mCalibration.toolSizeLinearBias);
|
|
}
|
|
|
|
if (mCalibration.haveToolSizeAreaScale) {
|
|
dump.appendFormat(INDENT4 "touch.toolSize.areaScale: %0.3f\n",
|
|
mCalibration.toolSizeAreaScale);
|
|
}
|
|
|
|
if (mCalibration.haveToolSizeAreaBias) {
|
|
dump.appendFormat(INDENT4 "touch.toolSize.areaBias: %0.3f\n",
|
|
mCalibration.toolSizeAreaBias);
|
|
}
|
|
|
|
if (mCalibration.haveToolSizeIsSummed) {
|
|
dump.appendFormat(INDENT4 "touch.toolSize.isSummed: %s\n",
|
|
toString(mCalibration.toolSizeIsSummed));
|
|
}
|
|
|
|
// Pressure
|
|
switch (mCalibration.pressureCalibration) {
|
|
case Calibration::PRESSURE_CALIBRATION_NONE:
|
|
dump.append(INDENT4 "touch.pressure.calibration: none\n");
|
|
break;
|
|
case Calibration::PRESSURE_CALIBRATION_PHYSICAL:
|
|
dump.append(INDENT4 "touch.pressure.calibration: physical\n");
|
|
break;
|
|
case Calibration::PRESSURE_CALIBRATION_AMPLITUDE:
|
|
dump.append(INDENT4 "touch.pressure.calibration: amplitude\n");
|
|
break;
|
|
default:
|
|
LOG_ASSERT(false);
|
|
}
|
|
|
|
switch (mCalibration.pressureSource) {
|
|
case Calibration::PRESSURE_SOURCE_PRESSURE:
|
|
dump.append(INDENT4 "touch.pressure.source: pressure\n");
|
|
break;
|
|
case Calibration::PRESSURE_SOURCE_TOUCH:
|
|
dump.append(INDENT4 "touch.pressure.source: touch\n");
|
|
break;
|
|
case Calibration::PRESSURE_SOURCE_DEFAULT:
|
|
break;
|
|
default:
|
|
LOG_ASSERT(false);
|
|
}
|
|
|
|
if (mCalibration.havePressureScale) {
|
|
dump.appendFormat(INDENT4 "touch.pressure.scale: %0.3f\n",
|
|
mCalibration.pressureScale);
|
|
}
|
|
|
|
// Size
|
|
switch (mCalibration.sizeCalibration) {
|
|
case Calibration::SIZE_CALIBRATION_NONE:
|
|
dump.append(INDENT4 "touch.size.calibration: none\n");
|
|
break;
|
|
case Calibration::SIZE_CALIBRATION_NORMALIZED:
|
|
dump.append(INDENT4 "touch.size.calibration: normalized\n");
|
|
break;
|
|
default:
|
|
LOG_ASSERT(false);
|
|
}
|
|
|
|
// Orientation
|
|
switch (mCalibration.orientationCalibration) {
|
|
case Calibration::ORIENTATION_CALIBRATION_NONE:
|
|
dump.append(INDENT4 "touch.orientation.calibration: none\n");
|
|
break;
|
|
case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED:
|
|
dump.append(INDENT4 "touch.orientation.calibration: interpolated\n");
|
|
break;
|
|
case Calibration::ORIENTATION_CALIBRATION_VECTOR:
|
|
dump.append(INDENT4 "touch.orientation.calibration: vector\n");
|
|
break;
|
|
default:
|
|
LOG_ASSERT(false);
|
|
}
|
|
|
|
// Distance
|
|
switch (mCalibration.distanceCalibration) {
|
|
case Calibration::DISTANCE_CALIBRATION_NONE:
|
|
dump.append(INDENT4 "touch.distance.calibration: none\n");
|
|
break;
|
|
case Calibration::DISTANCE_CALIBRATION_SCALED:
|
|
dump.append(INDENT4 "touch.distance.calibration: scaled\n");
|
|
break;
|
|
default:
|
|
LOG_ASSERT(false);
|
|
}
|
|
|
|
if (mCalibration.haveDistanceScale) {
|
|
dump.appendFormat(INDENT4 "touch.distance.scale: %0.3f\n",
|
|
mCalibration.distanceScale);
|
|
}
|
|
}
|
|
|
|
void TouchInputMapper::reset() {
|
|
// Synthesize touch up event if touch is currently down.
|
|
// This will also take care of finishing virtual key processing if needed.
|
|
if (mLastTouch.pointerCount != 0) {
|
|
nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
|
|
mCurrentTouch.clear();
|
|
syncTouch(when, true);
|
|
}
|
|
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
initializeLocked();
|
|
|
|
if (mPointerController != NULL
|
|
&& mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
|
|
mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL);
|
|
mPointerController->clearSpots();
|
|
}
|
|
} // release lock
|
|
|
|
InputMapper::reset();
|
|
}
|
|
|
|
void TouchInputMapper::syncTouch(nsecs_t when, bool havePointerIds) {
|
|
#if DEBUG_RAW_EVENTS
|
|
if (!havePointerIds) {
|
|
LOGD("syncTouch: pointerCount=%d, no pointer ids", mCurrentTouch.pointerCount);
|
|
} else {
|
|
LOGD("syncTouch: pointerCount=%d, up=0x%08x, down=0x%08x, move=0x%08x, "
|
|
"last=0x%08x, current=0x%08x", mCurrentTouch.pointerCount,
|
|
mLastTouch.idBits.value & ~mCurrentTouch.idBits.value,
|
|
mCurrentTouch.idBits.value & ~mLastTouch.idBits.value,
|
|
mLastTouch.idBits.value & mCurrentTouch.idBits.value,
|
|
mLastTouch.idBits.value, mCurrentTouch.idBits.value);
|
|
}
|
|
#endif
|
|
|
|
// Preprocess pointer data.
|
|
if (mParameters.useBadTouchFilter) {
|
|
if (applyBadTouchFilter()) {
|
|
havePointerIds = false;
|
|
}
|
|
}
|
|
|
|
if (mParameters.useJumpyTouchFilter) {
|
|
if (applyJumpyTouchFilter()) {
|
|
havePointerIds = false;
|
|
}
|
|
}
|
|
|
|
if (!havePointerIds) {
|
|
calculatePointerIds();
|
|
}
|
|
|
|
TouchData temp;
|
|
TouchData* savedTouch;
|
|
if (mParameters.useAveragingTouchFilter) {
|
|
temp.copyFrom(mCurrentTouch);
|
|
savedTouch = & temp;
|
|
|
|
applyAveragingTouchFilter();
|
|
} else {
|
|
savedTouch = & mCurrentTouch;
|
|
}
|
|
|
|
uint32_t policyFlags = 0;
|
|
if (mLastTouch.pointerCount == 0 && mCurrentTouch.pointerCount != 0) {
|
|
if (mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN) {
|
|
// If this is a touch screen, hide the pointer on an initial down.
|
|
getContext()->fadePointer();
|
|
}
|
|
|
|
// Initial downs on external touch devices should wake the device.
|
|
// We don't do this for internal touch screens to prevent them from waking
|
|
// up in your pocket.
|
|
// TODO: Use the input device configuration to control this behavior more finely.
|
|
if (getDevice()->isExternal()) {
|
|
policyFlags |= POLICY_FLAG_WAKE_DROPPED;
|
|
}
|
|
}
|
|
|
|
// Synthesize key down from buttons if needed.
|
|
synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_DOWN, when, getDeviceId(), mTouchSource,
|
|
policyFlags, mLastTouch.buttonState, mCurrentTouch.buttonState);
|
|
|
|
// Send motion events.
|
|
TouchResult touchResult;
|
|
if (mLastTouch.pointerCount == 0 && mCurrentTouch.pointerCount == 0
|
|
&& mLastTouch.buttonState == mCurrentTouch.buttonState) {
|
|
// Drop spurious syncs.
|
|
touchResult = DROP_STROKE;
|
|
} else {
|
|
// Process touches and virtual keys.
|
|
touchResult = consumeOffScreenTouches(when, policyFlags);
|
|
if (touchResult == DISPATCH_TOUCH) {
|
|
suppressSwipeOntoVirtualKeys(when);
|
|
if (mPointerController != NULL && mConfig.pointerGesturesEnabled) {
|
|
dispatchPointerGestures(when, policyFlags, false /*isTimeout*/);
|
|
}
|
|
dispatchTouches(when, policyFlags);
|
|
}
|
|
}
|
|
|
|
// Synthesize key up from buttons if needed.
|
|
synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_UP, when, getDeviceId(), mTouchSource,
|
|
policyFlags, mLastTouch.buttonState, mCurrentTouch.buttonState);
|
|
|
|
// Copy current touch to last touch in preparation for the next cycle.
|
|
// Keep the button state so we can track edge-triggered button state changes.
|
|
if (touchResult == DROP_STROKE) {
|
|
mLastTouch.clear();
|
|
mLastTouch.buttonState = savedTouch->buttonState;
|
|
} else {
|
|
mLastTouch.copyFrom(*savedTouch);
|
|
}
|
|
}
|
|
|
|
void TouchInputMapper::timeoutExpired(nsecs_t when) {
|
|
if (mPointerController != NULL) {
|
|
dispatchPointerGestures(when, 0 /*policyFlags*/, true /*isTimeout*/);
|
|
}
|
|
}
|
|
|
|
TouchInputMapper::TouchResult TouchInputMapper::consumeOffScreenTouches(
|
|
nsecs_t when, uint32_t policyFlags) {
|
|
int32_t keyEventAction, keyEventFlags;
|
|
int32_t keyCode, scanCode, downTime;
|
|
TouchResult touchResult;
|
|
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
// Update surface size and orientation, including virtual key positions.
|
|
if (! configureSurfaceLocked()) {
|
|
return DROP_STROKE;
|
|
}
|
|
|
|
// Check for virtual key press.
|
|
if (mLocked.currentVirtualKey.down) {
|
|
if (mCurrentTouch.pointerCount == 0) {
|
|
// Pointer went up while virtual key was down.
|
|
mLocked.currentVirtualKey.down = false;
|
|
#if DEBUG_VIRTUAL_KEYS
|
|
LOGD("VirtualKeys: Generating key up: keyCode=%d, scanCode=%d",
|
|
mLocked.currentVirtualKey.keyCode, mLocked.currentVirtualKey.scanCode);
|
|
#endif
|
|
keyEventAction = AKEY_EVENT_ACTION_UP;
|
|
keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY;
|
|
touchResult = SKIP_TOUCH;
|
|
goto DispatchVirtualKey;
|
|
}
|
|
|
|
if (mCurrentTouch.pointerCount == 1) {
|
|
int32_t x = mCurrentTouch.pointers[0].x;
|
|
int32_t y = mCurrentTouch.pointers[0].y;
|
|
const VirtualKey* virtualKey = findVirtualKeyHitLocked(x, y);
|
|
if (virtualKey && virtualKey->keyCode == mLocked.currentVirtualKey.keyCode) {
|
|
// Pointer is still within the space of the virtual key.
|
|
return SKIP_TOUCH;
|
|
}
|
|
}
|
|
|
|
// Pointer left virtual key area or another pointer also went down.
|
|
// Send key cancellation and drop the stroke so subsequent motions will be
|
|
// considered fresh downs. This is useful when the user swipes away from the
|
|
// virtual key area into the main display surface.
|
|
mLocked.currentVirtualKey.down = false;
|
|
#if DEBUG_VIRTUAL_KEYS
|
|
LOGD("VirtualKeys: Canceling key: keyCode=%d, scanCode=%d",
|
|
mLocked.currentVirtualKey.keyCode, mLocked.currentVirtualKey.scanCode);
|
|
#endif
|
|
keyEventAction = AKEY_EVENT_ACTION_UP;
|
|
keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY
|
|
| AKEY_EVENT_FLAG_CANCELED;
|
|
|
|
// Check whether the pointer moved inside the display area where we should
|
|
// start a new stroke.
|
|
int32_t x = mCurrentTouch.pointers[0].x;
|
|
int32_t y = mCurrentTouch.pointers[0].y;
|
|
if (isPointInsideSurfaceLocked(x, y)) {
|
|
mLastTouch.clear();
|
|
touchResult = DISPATCH_TOUCH;
|
|
} else {
|
|
touchResult = DROP_STROKE;
|
|
}
|
|
} else {
|
|
if (mCurrentTouch.pointerCount >= 1 && mLastTouch.pointerCount == 0) {
|
|
// Pointer just went down. Handle off-screen touches, if needed.
|
|
int32_t x = mCurrentTouch.pointers[0].x;
|
|
int32_t y = mCurrentTouch.pointers[0].y;
|
|
if (! isPointInsideSurfaceLocked(x, y)) {
|
|
// If exactly one pointer went down, check for virtual key hit.
|
|
// Otherwise we will drop the entire stroke.
|
|
if (mCurrentTouch.pointerCount == 1) {
|
|
const VirtualKey* virtualKey = findVirtualKeyHitLocked(x, y);
|
|
if (virtualKey) {
|
|
if (mContext->shouldDropVirtualKey(when, getDevice(),
|
|
virtualKey->keyCode, virtualKey->scanCode)) {
|
|
return DROP_STROKE;
|
|
}
|
|
|
|
mLocked.currentVirtualKey.down = true;
|
|
mLocked.currentVirtualKey.downTime = when;
|
|
mLocked.currentVirtualKey.keyCode = virtualKey->keyCode;
|
|
mLocked.currentVirtualKey.scanCode = virtualKey->scanCode;
|
|
#if DEBUG_VIRTUAL_KEYS
|
|
LOGD("VirtualKeys: Generating key down: keyCode=%d, scanCode=%d",
|
|
mLocked.currentVirtualKey.keyCode,
|
|
mLocked.currentVirtualKey.scanCode);
|
|
#endif
|
|
keyEventAction = AKEY_EVENT_ACTION_DOWN;
|
|
keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM
|
|
| AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY;
|
|
touchResult = SKIP_TOUCH;
|
|
goto DispatchVirtualKey;
|
|
}
|
|
}
|
|
return DROP_STROKE;
|
|
}
|
|
}
|
|
return DISPATCH_TOUCH;
|
|
}
|
|
|
|
DispatchVirtualKey:
|
|
// Collect remaining state needed to dispatch virtual key.
|
|
keyCode = mLocked.currentVirtualKey.keyCode;
|
|
scanCode = mLocked.currentVirtualKey.scanCode;
|
|
downTime = mLocked.currentVirtualKey.downTime;
|
|
} // release lock
|
|
|
|
// Dispatch virtual key.
|
|
int32_t metaState = mContext->getGlobalMetaState();
|
|
policyFlags |= POLICY_FLAG_VIRTUAL;
|
|
getDispatcher()->notifyKey(when, getDeviceId(), AINPUT_SOURCE_KEYBOARD, policyFlags,
|
|
keyEventAction, keyEventFlags, keyCode, scanCode, metaState, downTime);
|
|
return touchResult;
|
|
}
|
|
|
|
void TouchInputMapper::suppressSwipeOntoVirtualKeys(nsecs_t when) {
|
|
// Disable all virtual key touches that happen within a short time interval of the
|
|
// most recent touch. The idea is to filter out stray virtual key presses when
|
|
// interacting with the touch screen.
|
|
//
|
|
// Problems we're trying to solve:
|
|
//
|
|
// 1. While scrolling a list or dragging the window shade, the user swipes down into a
|
|
// virtual key area that is implemented by a separate touch panel and accidentally
|
|
// triggers a virtual key.
|
|
//
|
|
// 2. While typing in the on screen keyboard, the user taps slightly outside the screen
|
|
// area and accidentally triggers a virtual key. This often happens when virtual keys
|
|
// are layed out below the screen near to where the on screen keyboard's space bar
|
|
// is displayed.
|
|
if (mConfig.virtualKeyQuietTime > 0 && mCurrentTouch.pointerCount != 0) {
|
|
mContext->disableVirtualKeysUntil(when + mConfig.virtualKeyQuietTime);
|
|
}
|
|
}
|
|
|
|
void TouchInputMapper::dispatchTouches(nsecs_t when, uint32_t policyFlags) {
|
|
uint32_t currentPointerCount = mCurrentTouch.pointerCount;
|
|
uint32_t lastPointerCount = mLastTouch.pointerCount;
|
|
if (currentPointerCount == 0 && lastPointerCount == 0) {
|
|
return; // nothing to do!
|
|
}
|
|
|
|
// Update current touch coordinates.
|
|
int32_t edgeFlags;
|
|
float xPrecision, yPrecision;
|
|
prepareTouches(&edgeFlags, &xPrecision, &yPrecision);
|
|
|
|
// Dispatch motions.
|
|
BitSet32 currentIdBits = mCurrentTouch.idBits;
|
|
BitSet32 lastIdBits = mLastTouch.idBits;
|
|
int32_t metaState = getContext()->getGlobalMetaState();
|
|
int32_t buttonState = mCurrentTouch.buttonState;
|
|
|
|
if (currentIdBits == lastIdBits) {
|
|
// No pointer id changes so this is a move event.
|
|
// The dispatcher takes care of batching moves so we don't have to deal with that here.
|
|
dispatchMotion(when, policyFlags, mTouchSource,
|
|
AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState,
|
|
AMOTION_EVENT_EDGE_FLAG_NONE,
|
|
mCurrentTouchProperties, mCurrentTouchCoords,
|
|
mCurrentTouch.idToIndex, currentIdBits, -1,
|
|
xPrecision, yPrecision, mDownTime);
|
|
} else {
|
|
// There may be pointers going up and pointers going down and pointers moving
|
|
// all at the same time.
|
|
BitSet32 upIdBits(lastIdBits.value & ~currentIdBits.value);
|
|
BitSet32 downIdBits(currentIdBits.value & ~lastIdBits.value);
|
|
BitSet32 moveIdBits(lastIdBits.value & currentIdBits.value);
|
|
BitSet32 dispatchedIdBits(lastIdBits.value);
|
|
|
|
// Update last coordinates of pointers that have moved so that we observe the new
|
|
// pointer positions at the same time as other pointers that have just gone up.
|
|
bool moveNeeded = updateMovedPointers(
|
|
mCurrentTouchProperties, mCurrentTouchCoords, mCurrentTouch.idToIndex,
|
|
mLastTouchProperties, mLastTouchCoords, mLastTouch.idToIndex,
|
|
moveIdBits);
|
|
if (buttonState != mLastTouch.buttonState) {
|
|
moveNeeded = true;
|
|
}
|
|
|
|
// Dispatch pointer up events.
|
|
while (!upIdBits.isEmpty()) {
|
|
uint32_t upId = upIdBits.firstMarkedBit();
|
|
upIdBits.clearBit(upId);
|
|
|
|
dispatchMotion(when, policyFlags, mTouchSource,
|
|
AMOTION_EVENT_ACTION_POINTER_UP, 0, metaState, buttonState, 0,
|
|
mLastTouchProperties, mLastTouchCoords,
|
|
mLastTouch.idToIndex, dispatchedIdBits, upId,
|
|
xPrecision, yPrecision, mDownTime);
|
|
dispatchedIdBits.clearBit(upId);
|
|
}
|
|
|
|
// Dispatch move events if any of the remaining pointers moved from their old locations.
|
|
// Although applications receive new locations as part of individual pointer up
|
|
// events, they do not generally handle them except when presented in a move event.
|
|
if (moveNeeded) {
|
|
LOG_ASSERT(moveIdBits.value == dispatchedIdBits.value);
|
|
dispatchMotion(when, policyFlags, mTouchSource,
|
|
AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState, 0,
|
|
mCurrentTouchProperties, mCurrentTouchCoords,
|
|
mCurrentTouch.idToIndex, dispatchedIdBits, -1,
|
|
xPrecision, yPrecision, mDownTime);
|
|
}
|
|
|
|
// Dispatch pointer down events using the new pointer locations.
|
|
while (!downIdBits.isEmpty()) {
|
|
uint32_t downId = downIdBits.firstMarkedBit();
|
|
downIdBits.clearBit(downId);
|
|
dispatchedIdBits.markBit(downId);
|
|
|
|
if (dispatchedIdBits.count() == 1) {
|
|
// First pointer is going down. Set down time.
|
|
mDownTime = when;
|
|
} else {
|
|
// Only send edge flags with first pointer down.
|
|
edgeFlags = AMOTION_EVENT_EDGE_FLAG_NONE;
|
|
}
|
|
|
|
dispatchMotion(when, policyFlags, mTouchSource,
|
|
AMOTION_EVENT_ACTION_POINTER_DOWN, 0, metaState, buttonState, edgeFlags,
|
|
mCurrentTouchProperties, mCurrentTouchCoords,
|
|
mCurrentTouch.idToIndex, dispatchedIdBits, downId,
|
|
xPrecision, yPrecision, mDownTime);
|
|
}
|
|
}
|
|
|
|
// Update state for next time.
|
|
for (uint32_t i = 0; i < currentPointerCount; i++) {
|
|
mLastTouchProperties[i].copyFrom(mCurrentTouchProperties[i]);
|
|
mLastTouchCoords[i].copyFrom(mCurrentTouchCoords[i]);
|
|
}
|
|
}
|
|
|
|
void TouchInputMapper::prepareTouches(int32_t* outEdgeFlags,
|
|
float* outXPrecision, float* outYPrecision) {
|
|
uint32_t currentPointerCount = mCurrentTouch.pointerCount;
|
|
uint32_t lastPointerCount = mLastTouch.pointerCount;
|
|
|
|
AutoMutex _l(mLock);
|
|
|
|
// Walk through the the active pointers and map touch screen coordinates (TouchData) into
|
|
// display or surface coordinates (PointerCoords) and adjust for display orientation.
|
|
for (uint32_t i = 0; i < currentPointerCount; i++) {
|
|
const PointerData& in = mCurrentTouch.pointers[i];
|
|
|
|
// ToolMajor and ToolMinor
|
|
float toolMajor, toolMinor;
|
|
switch (mCalibration.toolSizeCalibration) {
|
|
case Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC:
|
|
toolMajor = in.toolMajor * mLocked.geometricScale;
|
|
if (mRawAxes.toolMinor.valid) {
|
|
toolMinor = in.toolMinor * mLocked.geometricScale;
|
|
} else {
|
|
toolMinor = toolMajor;
|
|
}
|
|
break;
|
|
case Calibration::TOOL_SIZE_CALIBRATION_LINEAR:
|
|
toolMajor = in.toolMajor != 0
|
|
? in.toolMajor * mLocked.toolSizeLinearScale + mLocked.toolSizeLinearBias
|
|
: 0;
|
|
if (mRawAxes.toolMinor.valid) {
|
|
toolMinor = in.toolMinor != 0
|
|
? in.toolMinor * mLocked.toolSizeLinearScale
|
|
+ mLocked.toolSizeLinearBias
|
|
: 0;
|
|
} else {
|
|
toolMinor = toolMajor;
|
|
}
|
|
break;
|
|
case Calibration::TOOL_SIZE_CALIBRATION_AREA:
|
|
if (in.toolMajor != 0) {
|
|
float diameter = sqrtf(in.toolMajor
|
|
* mLocked.toolSizeAreaScale + mLocked.toolSizeAreaBias);
|
|
toolMajor = diameter * mLocked.toolSizeLinearScale + mLocked.toolSizeLinearBias;
|
|
} else {
|
|
toolMajor = 0;
|
|
}
|
|
toolMinor = toolMajor;
|
|
break;
|
|
default:
|
|
toolMajor = 0;
|
|
toolMinor = 0;
|
|
break;
|
|
}
|
|
|
|
if (mCalibration.haveToolSizeIsSummed && mCalibration.toolSizeIsSummed) {
|
|
toolMajor /= currentPointerCount;
|
|
toolMinor /= currentPointerCount;
|
|
}
|
|
|
|
// Pressure
|
|
float rawPressure;
|
|
switch (mCalibration.pressureSource) {
|
|
case Calibration::PRESSURE_SOURCE_PRESSURE:
|
|
rawPressure = in.pressure;
|
|
break;
|
|
case Calibration::PRESSURE_SOURCE_TOUCH:
|
|
rawPressure = in.touchMajor;
|
|
break;
|
|
default:
|
|
rawPressure = 0;
|
|
}
|
|
|
|
float pressure;
|
|
switch (mCalibration.pressureCalibration) {
|
|
case Calibration::PRESSURE_CALIBRATION_PHYSICAL:
|
|
case Calibration::PRESSURE_CALIBRATION_AMPLITUDE:
|
|
pressure = rawPressure * mLocked.pressureScale;
|
|
break;
|
|
default:
|
|
pressure = 1;
|
|
break;
|
|
}
|
|
|
|
// TouchMajor and TouchMinor
|
|
float touchMajor, touchMinor;
|
|
switch (mCalibration.touchSizeCalibration) {
|
|
case Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC:
|
|
touchMajor = in.touchMajor * mLocked.geometricScale;
|
|
if (mRawAxes.touchMinor.valid) {
|
|
touchMinor = in.touchMinor * mLocked.geometricScale;
|
|
} else {
|
|
touchMinor = touchMajor;
|
|
}
|
|
break;
|
|
case Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE:
|
|
touchMajor = toolMajor * pressure;
|
|
touchMinor = toolMinor * pressure;
|
|
break;
|
|
default:
|
|
touchMajor = 0;
|
|
touchMinor = 0;
|
|
break;
|
|
}
|
|
|
|
if (touchMajor > toolMajor) {
|
|
touchMajor = toolMajor;
|
|
}
|
|
if (touchMinor > toolMinor) {
|
|
touchMinor = toolMinor;
|
|
}
|
|
|
|
// Size
|
|
float size;
|
|
switch (mCalibration.sizeCalibration) {
|
|
case Calibration::SIZE_CALIBRATION_NORMALIZED: {
|
|
float rawSize = mRawAxes.toolMinor.valid
|
|
? avg(in.toolMajor, in.toolMinor)
|
|
: in.toolMajor;
|
|
size = rawSize * mLocked.sizeScale;
|
|
break;
|
|
}
|
|
default:
|
|
size = 0;
|
|
break;
|
|
}
|
|
|
|
// Orientation
|
|
float orientation;
|
|
switch (mCalibration.orientationCalibration) {
|
|
case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED:
|
|
orientation = in.orientation * mLocked.orientationScale;
|
|
break;
|
|
case Calibration::ORIENTATION_CALIBRATION_VECTOR: {
|
|
int32_t c1 = signExtendNybble((in.orientation & 0xf0) >> 4);
|
|
int32_t c2 = signExtendNybble(in.orientation & 0x0f);
|
|
if (c1 != 0 || c2 != 0) {
|
|
orientation = atan2f(c1, c2) * 0.5f;
|
|
float scale = 1.0f + hypotf(c1, c2) / 16.0f;
|
|
touchMajor *= scale;
|
|
touchMinor /= scale;
|
|
toolMajor *= scale;
|
|
toolMinor /= scale;
|
|
} else {
|
|
orientation = 0;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
orientation = 0;
|
|
}
|
|
|
|
// Distance
|
|
float distance;
|
|
switch (mCalibration.distanceCalibration) {
|
|
case Calibration::DISTANCE_CALIBRATION_SCALED:
|
|
distance = in.distance * mLocked.distanceScale;
|
|
break;
|
|
default:
|
|
distance = 0;
|
|
}
|
|
|
|
// X and Y
|
|
// Adjust coords for surface orientation.
|
|
float x, y;
|
|
switch (mLocked.surfaceOrientation) {
|
|
case DISPLAY_ORIENTATION_90:
|
|
x = float(in.y - mRawAxes.y.minValue) * mLocked.yScale;
|
|
y = float(mRawAxes.x.maxValue - in.x) * mLocked.xScale;
|
|
orientation -= M_PI_2;
|
|
if (orientation < - M_PI_2) {
|
|
orientation += M_PI;
|
|
}
|
|
break;
|
|
case DISPLAY_ORIENTATION_180:
|
|
x = float(mRawAxes.x.maxValue - in.x) * mLocked.xScale;
|
|
y = float(mRawAxes.y.maxValue - in.y) * mLocked.yScale;
|
|
break;
|
|
case DISPLAY_ORIENTATION_270:
|
|
x = float(mRawAxes.y.maxValue - in.y) * mLocked.yScale;
|
|
y = float(in.x - mRawAxes.x.minValue) * mLocked.xScale;
|
|
orientation += M_PI_2;
|
|
if (orientation > M_PI_2) {
|
|
orientation -= M_PI;
|
|
}
|
|
break;
|
|
default:
|
|
x = float(in.x - mRawAxes.x.minValue) * mLocked.xScale;
|
|
y = float(in.y - mRawAxes.y.minValue) * mLocked.yScale;
|
|
break;
|
|
}
|
|
|
|
// Write output coords.
|
|
PointerCoords& out = mCurrentTouchCoords[i];
|
|
out.clear();
|
|
out.setAxisValue(AMOTION_EVENT_AXIS_X, x);
|
|
out.setAxisValue(AMOTION_EVENT_AXIS_Y, y);
|
|
out.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, pressure);
|
|
out.setAxisValue(AMOTION_EVENT_AXIS_SIZE, size);
|
|
out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, touchMajor);
|
|
out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, touchMinor);
|
|
out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, toolMajor);
|
|
out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, toolMinor);
|
|
out.setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, orientation);
|
|
if (distance != 0) {
|
|
out.setAxisValue(AMOTION_EVENT_AXIS_DISTANCE, distance);
|
|
}
|
|
|
|
// Write output properties.
|
|
PointerProperties& properties = mCurrentTouchProperties[i];
|
|
properties.clear();
|
|
properties.id = mCurrentTouch.pointers[i].id;
|
|
properties.toolType = getTouchToolType(mCurrentTouch.pointers[i].isStylus);
|
|
}
|
|
|
|
// Check edge flags by looking only at the first pointer since the flags are
|
|
// global to the event.
|
|
*outEdgeFlags = AMOTION_EVENT_EDGE_FLAG_NONE;
|
|
if (lastPointerCount == 0 && currentPointerCount > 0) {
|
|
const PointerData& in = mCurrentTouch.pointers[0];
|
|
|
|
if (in.x <= mRawAxes.x.minValue) {
|
|
*outEdgeFlags |= rotateEdgeFlag(AMOTION_EVENT_EDGE_FLAG_LEFT,
|
|
mLocked.surfaceOrientation);
|
|
} else if (in.x >= mRawAxes.x.maxValue) {
|
|
*outEdgeFlags |= rotateEdgeFlag(AMOTION_EVENT_EDGE_FLAG_RIGHT,
|
|
mLocked.surfaceOrientation);
|
|
}
|
|
if (in.y <= mRawAxes.y.minValue) {
|
|
*outEdgeFlags |= rotateEdgeFlag(AMOTION_EVENT_EDGE_FLAG_TOP,
|
|
mLocked.surfaceOrientation);
|
|
} else if (in.y >= mRawAxes.y.maxValue) {
|
|
*outEdgeFlags |= rotateEdgeFlag(AMOTION_EVENT_EDGE_FLAG_BOTTOM,
|
|
mLocked.surfaceOrientation);
|
|
}
|
|
}
|
|
|
|
*outXPrecision = mLocked.orientedXPrecision;
|
|
*outYPrecision = mLocked.orientedYPrecision;
|
|
}
|
|
|
|
void TouchInputMapper::dispatchPointerGestures(nsecs_t when, uint32_t policyFlags,
|
|
bool isTimeout) {
|
|
// Update current gesture coordinates.
|
|
bool cancelPreviousGesture, finishPreviousGesture;
|
|
bool sendEvents = preparePointerGestures(when,
|
|
&cancelPreviousGesture, &finishPreviousGesture, isTimeout);
|
|
if (!sendEvents) {
|
|
return;
|
|
}
|
|
if (finishPreviousGesture) {
|
|
cancelPreviousGesture = false;
|
|
}
|
|
|
|
// Update the pointer presentation and spots.
|
|
if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
|
|
mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_SPOT);
|
|
if (finishPreviousGesture || cancelPreviousGesture) {
|
|
mPointerController->clearSpots();
|
|
}
|
|
mPointerController->setSpots(mPointerGesture.currentGestureCoords,
|
|
mPointerGesture.currentGestureIdToIndex,
|
|
mPointerGesture.currentGestureIdBits);
|
|
} else {
|
|
mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_POINTER);
|
|
}
|
|
|
|
// Show or hide the pointer if needed.
|
|
switch (mPointerGesture.currentGestureMode) {
|
|
case PointerGesture::NEUTRAL:
|
|
case PointerGesture::QUIET:
|
|
if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS
|
|
&& (mPointerGesture.lastGestureMode == PointerGesture::SWIPE
|
|
|| mPointerGesture.lastGestureMode == PointerGesture::FREEFORM)) {
|
|
// Remind the user of where the pointer is after finishing a gesture with spots.
|
|
mPointerController->unfade(PointerControllerInterface::TRANSITION_GRADUAL);
|
|
}
|
|
break;
|
|
case PointerGesture::TAP:
|
|
case PointerGesture::TAP_DRAG:
|
|
case PointerGesture::BUTTON_CLICK_OR_DRAG:
|
|
case PointerGesture::HOVER:
|
|
case PointerGesture::PRESS:
|
|
// Unfade the pointer when the current gesture manipulates the
|
|
// area directly under the pointer.
|
|
mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE);
|
|
break;
|
|
case PointerGesture::SWIPE:
|
|
case PointerGesture::FREEFORM:
|
|
// Fade the pointer when the current gesture manipulates a different
|
|
// area and there are spots to guide the user experience.
|
|
if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
|
|
mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL);
|
|
} else {
|
|
mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE);
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Send events!
|
|
int32_t metaState = getContext()->getGlobalMetaState();
|
|
int32_t buttonState = mCurrentTouch.buttonState;
|
|
|
|
// Update last coordinates of pointers that have moved so that we observe the new
|
|
// pointer positions at the same time as other pointers that have just gone up.
|
|
bool down = mPointerGesture.currentGestureMode == PointerGesture::TAP
|
|
|| mPointerGesture.currentGestureMode == PointerGesture::TAP_DRAG
|
|
|| mPointerGesture.currentGestureMode == PointerGesture::BUTTON_CLICK_OR_DRAG
|
|
|| mPointerGesture.currentGestureMode == PointerGesture::PRESS
|
|
|| mPointerGesture.currentGestureMode == PointerGesture::SWIPE
|
|
|| mPointerGesture.currentGestureMode == PointerGesture::FREEFORM;
|
|
bool moveNeeded = false;
|
|
if (down && !cancelPreviousGesture && !finishPreviousGesture
|
|
&& !mPointerGesture.lastGestureIdBits.isEmpty()
|
|
&& !mPointerGesture.currentGestureIdBits.isEmpty()) {
|
|
BitSet32 movedGestureIdBits(mPointerGesture.currentGestureIdBits.value
|
|
& mPointerGesture.lastGestureIdBits.value);
|
|
moveNeeded = updateMovedPointers(mPointerGesture.currentGestureProperties,
|
|
mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex,
|
|
mPointerGesture.lastGestureProperties,
|
|
mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex,
|
|
movedGestureIdBits);
|
|
if (buttonState != mLastTouch.buttonState) {
|
|
moveNeeded = true;
|
|
}
|
|
}
|
|
|
|
// Send motion events for all pointers that went up or were canceled.
|
|
BitSet32 dispatchedGestureIdBits(mPointerGesture.lastGestureIdBits);
|
|
if (!dispatchedGestureIdBits.isEmpty()) {
|
|
if (cancelPreviousGesture) {
|
|
dispatchMotion(when, policyFlags, mPointerSource,
|
|
AMOTION_EVENT_ACTION_CANCEL, 0, metaState, buttonState,
|
|
AMOTION_EVENT_EDGE_FLAG_NONE,
|
|
mPointerGesture.lastGestureProperties,
|
|
mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex,
|
|
dispatchedGestureIdBits, -1,
|
|
0, 0, mPointerGesture.downTime);
|
|
|
|
dispatchedGestureIdBits.clear();
|
|
} else {
|
|
BitSet32 upGestureIdBits;
|
|
if (finishPreviousGesture) {
|
|
upGestureIdBits = dispatchedGestureIdBits;
|
|
} else {
|
|
upGestureIdBits.value = dispatchedGestureIdBits.value
|
|
& ~mPointerGesture.currentGestureIdBits.value;
|
|
}
|
|
while (!upGestureIdBits.isEmpty()) {
|
|
uint32_t id = upGestureIdBits.firstMarkedBit();
|
|
upGestureIdBits.clearBit(id);
|
|
|
|
dispatchMotion(when, policyFlags, mPointerSource,
|
|
AMOTION_EVENT_ACTION_POINTER_UP, 0,
|
|
metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE,
|
|
mPointerGesture.lastGestureProperties,
|
|
mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex,
|
|
dispatchedGestureIdBits, id,
|
|
0, 0, mPointerGesture.downTime);
|
|
|
|
dispatchedGestureIdBits.clearBit(id);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Send motion events for all pointers that moved.
|
|
if (moveNeeded) {
|
|
dispatchMotion(when, policyFlags, mPointerSource,
|
|
AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE,
|
|
mPointerGesture.currentGestureProperties,
|
|
mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex,
|
|
dispatchedGestureIdBits, -1,
|
|
0, 0, mPointerGesture.downTime);
|
|
}
|
|
|
|
// Send motion events for all pointers that went down.
|
|
if (down) {
|
|
BitSet32 downGestureIdBits(mPointerGesture.currentGestureIdBits.value
|
|
& ~dispatchedGestureIdBits.value);
|
|
while (!downGestureIdBits.isEmpty()) {
|
|
uint32_t id = downGestureIdBits.firstMarkedBit();
|
|
downGestureIdBits.clearBit(id);
|
|
dispatchedGestureIdBits.markBit(id);
|
|
|
|
int32_t edgeFlags = AMOTION_EVENT_EDGE_FLAG_NONE;
|
|
if (dispatchedGestureIdBits.count() == 1) {
|
|
// First pointer is going down. Calculate edge flags and set down time.
|
|
uint32_t index = mPointerGesture.currentGestureIdToIndex[id];
|
|
const PointerCoords& downCoords = mPointerGesture.currentGestureCoords[index];
|
|
edgeFlags = calculateEdgeFlagsUsingPointerBounds(mPointerController,
|
|
downCoords.getAxisValue(AMOTION_EVENT_AXIS_X),
|
|
downCoords.getAxisValue(AMOTION_EVENT_AXIS_Y));
|
|
mPointerGesture.downTime = when;
|
|
}
|
|
|
|
dispatchMotion(when, policyFlags, mPointerSource,
|
|
AMOTION_EVENT_ACTION_POINTER_DOWN, 0, metaState, buttonState, edgeFlags,
|
|
mPointerGesture.currentGestureProperties,
|
|
mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex,
|
|
dispatchedGestureIdBits, id,
|
|
0, 0, mPointerGesture.downTime);
|
|
}
|
|
}
|
|
|
|
// Send motion events for hover.
|
|
if (mPointerGesture.currentGestureMode == PointerGesture::HOVER) {
|
|
dispatchMotion(when, policyFlags, mPointerSource,
|
|
AMOTION_EVENT_ACTION_HOVER_MOVE, 0,
|
|
metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE,
|
|
mPointerGesture.currentGestureProperties,
|
|
mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex,
|
|
mPointerGesture.currentGestureIdBits, -1,
|
|
0, 0, mPointerGesture.downTime);
|
|
}
|
|
|
|
// Update state.
|
|
mPointerGesture.lastGestureMode = mPointerGesture.currentGestureMode;
|
|
if (!down) {
|
|
mPointerGesture.lastGestureIdBits.clear();
|
|
} else {
|
|
mPointerGesture.lastGestureIdBits = mPointerGesture.currentGestureIdBits;
|
|
for (BitSet32 idBits(mPointerGesture.currentGestureIdBits); !idBits.isEmpty(); ) {
|
|
uint32_t id = idBits.firstMarkedBit();
|
|
idBits.clearBit(id);
|
|
uint32_t index = mPointerGesture.currentGestureIdToIndex[id];
|
|
mPointerGesture.lastGestureProperties[index].copyFrom(
|
|
mPointerGesture.currentGestureProperties[index]);
|
|
mPointerGesture.lastGestureCoords[index].copyFrom(
|
|
mPointerGesture.currentGestureCoords[index]);
|
|
mPointerGesture.lastGestureIdToIndex[id] = index;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool TouchInputMapper::preparePointerGestures(nsecs_t when,
|
|
bool* outCancelPreviousGesture, bool* outFinishPreviousGesture, bool isTimeout) {
|
|
*outCancelPreviousGesture = false;
|
|
*outFinishPreviousGesture = false;
|
|
|
|
AutoMutex _l(mLock);
|
|
|
|
// Handle TAP timeout.
|
|
if (isTimeout) {
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: Processing timeout");
|
|
#endif
|
|
|
|
if (mPointerGesture.lastGestureMode == PointerGesture::TAP) {
|
|
if (when <= mPointerGesture.tapUpTime + mConfig.pointerGestureTapDragInterval) {
|
|
// The tap/drag timeout has not yet expired.
|
|
getContext()->requestTimeoutAtTime(mPointerGesture.tapUpTime
|
|
+ mConfig.pointerGestureTapDragInterval);
|
|
} else {
|
|
// The tap is finished.
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: TAP finished");
|
|
#endif
|
|
*outFinishPreviousGesture = true;
|
|
|
|
mPointerGesture.activeGestureId = -1;
|
|
mPointerGesture.currentGestureMode = PointerGesture::NEUTRAL;
|
|
mPointerGesture.currentGestureIdBits.clear();
|
|
|
|
mPointerGesture.pointerVelocityControl.reset();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// We did not handle this timeout.
|
|
return false;
|
|
}
|
|
|
|
// Update the velocity tracker.
|
|
{
|
|
VelocityTracker::Position positions[MAX_POINTERS];
|
|
uint32_t count = 0;
|
|
for (BitSet32 idBits(mCurrentTouch.idBits); !idBits.isEmpty(); count++) {
|
|
uint32_t id = idBits.firstMarkedBit();
|
|
idBits.clearBit(id);
|
|
uint32_t index = mCurrentTouch.idToIndex[id];
|
|
positions[count].x = mCurrentTouch.pointers[index].x
|
|
* mLocked.pointerGestureXMovementScale;
|
|
positions[count].y = mCurrentTouch.pointers[index].y
|
|
* mLocked.pointerGestureYMovementScale;
|
|
}
|
|
mPointerGesture.velocityTracker.addMovement(when, mCurrentTouch.idBits, positions);
|
|
}
|
|
|
|
// Pick a new active touch id if needed.
|
|
// Choose an arbitrary pointer that just went down, if there is one.
|
|
// Otherwise choose an arbitrary remaining pointer.
|
|
// This guarantees we always have an active touch id when there is at least one pointer.
|
|
// We keep the same active touch id for as long as possible.
|
|
bool activeTouchChanged = false;
|
|
int32_t lastActiveTouchId = mPointerGesture.activeTouchId;
|
|
int32_t activeTouchId = lastActiveTouchId;
|
|
if (activeTouchId < 0) {
|
|
if (!mCurrentTouch.idBits.isEmpty()) {
|
|
activeTouchChanged = true;
|
|
activeTouchId = mPointerGesture.activeTouchId = mCurrentTouch.idBits.firstMarkedBit();
|
|
mPointerGesture.firstTouchTime = when;
|
|
}
|
|
} else if (!mCurrentTouch.idBits.hasBit(activeTouchId)) {
|
|
activeTouchChanged = true;
|
|
if (!mCurrentTouch.idBits.isEmpty()) {
|
|
activeTouchId = mPointerGesture.activeTouchId = mCurrentTouch.idBits.firstMarkedBit();
|
|
} else {
|
|
activeTouchId = mPointerGesture.activeTouchId = -1;
|
|
}
|
|
}
|
|
|
|
// Determine whether we are in quiet time.
|
|
bool isQuietTime = false;
|
|
if (activeTouchId < 0) {
|
|
mPointerGesture.resetQuietTime();
|
|
} else {
|
|
isQuietTime = when < mPointerGesture.quietTime + mConfig.pointerGestureQuietInterval;
|
|
if (!isQuietTime) {
|
|
if ((mPointerGesture.lastGestureMode == PointerGesture::PRESS
|
|
|| mPointerGesture.lastGestureMode == PointerGesture::SWIPE
|
|
|| mPointerGesture.lastGestureMode == PointerGesture::FREEFORM)
|
|
&& mCurrentTouch.pointerCount < 2) {
|
|
// Enter quiet time when exiting swipe or freeform state.
|
|
// This is to prevent accidentally entering the hover state and flinging the
|
|
// pointer when finishing a swipe and there is still one pointer left onscreen.
|
|
isQuietTime = true;
|
|
} else if (mPointerGesture.lastGestureMode == PointerGesture::BUTTON_CLICK_OR_DRAG
|
|
&& mCurrentTouch.pointerCount >= 2
|
|
&& !isPointerDown(mCurrentTouch.buttonState)) {
|
|
// Enter quiet time when releasing the button and there are still two or more
|
|
// fingers down. This may indicate that one finger was used to press the button
|
|
// but it has not gone up yet.
|
|
isQuietTime = true;
|
|
}
|
|
if (isQuietTime) {
|
|
mPointerGesture.quietTime = when;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Switch states based on button and pointer state.
|
|
if (isQuietTime) {
|
|
// Case 1: Quiet time. (QUIET)
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: QUIET for next %0.3fms", (mPointerGesture.quietTime
|
|
+ mConfig.pointerGestureQuietInterval - when) * 0.000001f);
|
|
#endif
|
|
if (mPointerGesture.lastGestureMode != PointerGesture::QUIET) {
|
|
*outFinishPreviousGesture = true;
|
|
}
|
|
|
|
mPointerGesture.activeGestureId = -1;
|
|
mPointerGesture.currentGestureMode = PointerGesture::QUIET;
|
|
mPointerGesture.currentGestureIdBits.clear();
|
|
|
|
mPointerGesture.pointerVelocityControl.reset();
|
|
} else if (isPointerDown(mCurrentTouch.buttonState)) {
|
|
// Case 2: Button is pressed. (BUTTON_CLICK_OR_DRAG)
|
|
// The pointer follows the active touch point.
|
|
// Emit DOWN, MOVE, UP events at the pointer location.
|
|
//
|
|
// Only the active touch matters; other fingers are ignored. This policy helps
|
|
// to handle the case where the user places a second finger on the touch pad
|
|
// to apply the necessary force to depress an integrated button below the surface.
|
|
// We don't want the second finger to be delivered to applications.
|
|
//
|
|
// For this to work well, we need to make sure to track the pointer that is really
|
|
// active. If the user first puts one finger down to click then adds another
|
|
// finger to drag then the active pointer should switch to the finger that is
|
|
// being dragged.
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: BUTTON_CLICK_OR_DRAG activeTouchId=%d, "
|
|
"currentTouchPointerCount=%d", activeTouchId, mCurrentTouch.pointerCount);
|
|
#endif
|
|
// Reset state when just starting.
|
|
if (mPointerGesture.lastGestureMode != PointerGesture::BUTTON_CLICK_OR_DRAG) {
|
|
*outFinishPreviousGesture = true;
|
|
mPointerGesture.activeGestureId = 0;
|
|
}
|
|
|
|
// Switch pointers if needed.
|
|
// Find the fastest pointer and follow it.
|
|
if (activeTouchId >= 0 && mCurrentTouch.pointerCount > 1) {
|
|
int32_t bestId = -1;
|
|
float bestSpeed = mConfig.pointerGestureDragMinSwitchSpeed;
|
|
for (uint32_t i = 0; i < mCurrentTouch.pointerCount; i++) {
|
|
uint32_t id = mCurrentTouch.pointers[i].id;
|
|
float vx, vy;
|
|
if (mPointerGesture.velocityTracker.getVelocity(id, &vx, &vy)) {
|
|
float speed = hypotf(vx, vy);
|
|
if (speed > bestSpeed) {
|
|
bestId = id;
|
|
bestSpeed = speed;
|
|
}
|
|
}
|
|
}
|
|
if (bestId >= 0 && bestId != activeTouchId) {
|
|
mPointerGesture.activeTouchId = activeTouchId = bestId;
|
|
activeTouchChanged = true;
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: BUTTON_CLICK_OR_DRAG switched pointers, "
|
|
"bestId=%d, bestSpeed=%0.3f", bestId, bestSpeed);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (activeTouchId >= 0 && mLastTouch.idBits.hasBit(activeTouchId)) {
|
|
const PointerData& currentPointer =
|
|
mCurrentTouch.pointers[mCurrentTouch.idToIndex[activeTouchId]];
|
|
const PointerData& lastPointer =
|
|
mLastTouch.pointers[mLastTouch.idToIndex[activeTouchId]];
|
|
float deltaX = (currentPointer.x - lastPointer.x)
|
|
* mLocked.pointerGestureXMovementScale;
|
|
float deltaY = (currentPointer.y - lastPointer.y)
|
|
* mLocked.pointerGestureYMovementScale;
|
|
|
|
mPointerGesture.pointerVelocityControl.move(when, &deltaX, &deltaY);
|
|
|
|
// Move the pointer using a relative motion.
|
|
// When using spots, the click will occur at the position of the anchor
|
|
// spot and all other spots will move there.
|
|
mPointerController->move(deltaX, deltaY);
|
|
} else {
|
|
mPointerGesture.pointerVelocityControl.reset();
|
|
}
|
|
|
|
float x, y;
|
|
mPointerController->getPosition(&x, &y);
|
|
|
|
mPointerGesture.currentGestureMode = PointerGesture::BUTTON_CLICK_OR_DRAG;
|
|
mPointerGesture.currentGestureIdBits.clear();
|
|
mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId);
|
|
mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0;
|
|
mPointerGesture.currentGestureProperties[0].clear();
|
|
mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId;
|
|
mPointerGesture.currentGestureProperties[0].toolType =
|
|
AMOTION_EVENT_TOOL_TYPE_INDIRECT_FINGER;
|
|
mPointerGesture.currentGestureCoords[0].clear();
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x);
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y);
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
|
|
} else if (mCurrentTouch.pointerCount == 0) {
|
|
// Case 3. No fingers down and button is not pressed. (NEUTRAL)
|
|
if (mPointerGesture.lastGestureMode != PointerGesture::NEUTRAL) {
|
|
*outFinishPreviousGesture = true;
|
|
}
|
|
|
|
// Watch for taps coming out of HOVER or TAP_DRAG mode.
|
|
// Checking for taps after TAP_DRAG allows us to detect double-taps.
|
|
bool tapped = false;
|
|
if ((mPointerGesture.lastGestureMode == PointerGesture::HOVER
|
|
|| mPointerGesture.lastGestureMode == PointerGesture::TAP_DRAG)
|
|
&& mLastTouch.pointerCount == 1) {
|
|
if (when <= mPointerGesture.tapDownTime + mConfig.pointerGestureTapInterval) {
|
|
float x, y;
|
|
mPointerController->getPosition(&x, &y);
|
|
if (fabs(x - mPointerGesture.tapX) <= mConfig.pointerGestureTapSlop
|
|
&& fabs(y - mPointerGesture.tapY) <= mConfig.pointerGestureTapSlop) {
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: TAP");
|
|
#endif
|
|
|
|
mPointerGesture.tapUpTime = when;
|
|
getContext()->requestTimeoutAtTime(when
|
|
+ mConfig.pointerGestureTapDragInterval);
|
|
|
|
mPointerGesture.activeGestureId = 0;
|
|
mPointerGesture.currentGestureMode = PointerGesture::TAP;
|
|
mPointerGesture.currentGestureIdBits.clear();
|
|
mPointerGesture.currentGestureIdBits.markBit(
|
|
mPointerGesture.activeGestureId);
|
|
mPointerGesture.currentGestureIdToIndex[
|
|
mPointerGesture.activeGestureId] = 0;
|
|
mPointerGesture.currentGestureProperties[0].clear();
|
|
mPointerGesture.currentGestureProperties[0].id =
|
|
mPointerGesture.activeGestureId;
|
|
mPointerGesture.currentGestureProperties[0].toolType =
|
|
AMOTION_EVENT_TOOL_TYPE_INDIRECT_FINGER;
|
|
mPointerGesture.currentGestureCoords[0].clear();
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(
|
|
AMOTION_EVENT_AXIS_X, mPointerGesture.tapX);
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(
|
|
AMOTION_EVENT_AXIS_Y, mPointerGesture.tapY);
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(
|
|
AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
|
|
|
|
tapped = true;
|
|
} else {
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: Not a TAP, deltaX=%f, deltaY=%f",
|
|
x - mPointerGesture.tapX,
|
|
y - mPointerGesture.tapY);
|
|
#endif
|
|
}
|
|
} else {
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: Not a TAP, %0.3fms since down",
|
|
(when - mPointerGesture.tapDownTime) * 0.000001f);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
mPointerGesture.pointerVelocityControl.reset();
|
|
|
|
if (!tapped) {
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: NEUTRAL");
|
|
#endif
|
|
mPointerGesture.activeGestureId = -1;
|
|
mPointerGesture.currentGestureMode = PointerGesture::NEUTRAL;
|
|
mPointerGesture.currentGestureIdBits.clear();
|
|
}
|
|
} else if (mCurrentTouch.pointerCount == 1) {
|
|
// Case 4. Exactly one finger down, button is not pressed. (HOVER or TAP_DRAG)
|
|
// The pointer follows the active touch point.
|
|
// When in HOVER, emit HOVER_MOVE events at the pointer location.
|
|
// When in TAP_DRAG, emit MOVE events at the pointer location.
|
|
LOG_ASSERT(activeTouchId >= 0);
|
|
|
|
mPointerGesture.currentGestureMode = PointerGesture::HOVER;
|
|
if (mPointerGesture.lastGestureMode == PointerGesture::TAP) {
|
|
if (when <= mPointerGesture.tapUpTime + mConfig.pointerGestureTapDragInterval) {
|
|
float x, y;
|
|
mPointerController->getPosition(&x, &y);
|
|
if (fabs(x - mPointerGesture.tapX) <= mConfig.pointerGestureTapSlop
|
|
&& fabs(y - mPointerGesture.tapY) <= mConfig.pointerGestureTapSlop) {
|
|
mPointerGesture.currentGestureMode = PointerGesture::TAP_DRAG;
|
|
} else {
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: Not a TAP_DRAG, deltaX=%f, deltaY=%f",
|
|
x - mPointerGesture.tapX,
|
|
y - mPointerGesture.tapY);
|
|
#endif
|
|
}
|
|
} else {
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: Not a TAP_DRAG, %0.3fms time since up",
|
|
(when - mPointerGesture.tapUpTime) * 0.000001f);
|
|
#endif
|
|
}
|
|
} else if (mPointerGesture.lastGestureMode == PointerGesture::TAP_DRAG) {
|
|
mPointerGesture.currentGestureMode = PointerGesture::TAP_DRAG;
|
|
}
|
|
|
|
if (mLastTouch.idBits.hasBit(activeTouchId)) {
|
|
const PointerData& currentPointer =
|
|
mCurrentTouch.pointers[mCurrentTouch.idToIndex[activeTouchId]];
|
|
const PointerData& lastPointer =
|
|
mLastTouch.pointers[mLastTouch.idToIndex[activeTouchId]];
|
|
float deltaX = (currentPointer.x - lastPointer.x)
|
|
* mLocked.pointerGestureXMovementScale;
|
|
float deltaY = (currentPointer.y - lastPointer.y)
|
|
* mLocked.pointerGestureYMovementScale;
|
|
|
|
mPointerGesture.pointerVelocityControl.move(when, &deltaX, &deltaY);
|
|
|
|
// Move the pointer using a relative motion.
|
|
// When using spots, the hover or drag will occur at the position of the anchor spot.
|
|
mPointerController->move(deltaX, deltaY);
|
|
} else {
|
|
mPointerGesture.pointerVelocityControl.reset();
|
|
}
|
|
|
|
bool down;
|
|
if (mPointerGesture.currentGestureMode == PointerGesture::TAP_DRAG) {
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: TAP_DRAG");
|
|
#endif
|
|
down = true;
|
|
} else {
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: HOVER");
|
|
#endif
|
|
if (mPointerGesture.lastGestureMode != PointerGesture::HOVER) {
|
|
*outFinishPreviousGesture = true;
|
|
}
|
|
mPointerGesture.activeGestureId = 0;
|
|
down = false;
|
|
}
|
|
|
|
float x, y;
|
|
mPointerController->getPosition(&x, &y);
|
|
|
|
mPointerGesture.currentGestureIdBits.clear();
|
|
mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId);
|
|
mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0;
|
|
mPointerGesture.currentGestureProperties[0].clear();
|
|
mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId;
|
|
mPointerGesture.currentGestureProperties[0].toolType =
|
|
AMOTION_EVENT_TOOL_TYPE_INDIRECT_FINGER;
|
|
mPointerGesture.currentGestureCoords[0].clear();
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x);
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y);
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE,
|
|
down ? 1.0f : 0.0f);
|
|
|
|
if (mLastTouch.pointerCount == 0 && mCurrentTouch.pointerCount != 0) {
|
|
mPointerGesture.resetTap();
|
|
mPointerGesture.tapDownTime = when;
|
|
mPointerGesture.tapX = x;
|
|
mPointerGesture.tapY = y;
|
|
}
|
|
} else {
|
|
// Case 5. At least two fingers down, button is not pressed. (PRESS, SWIPE or FREEFORM)
|
|
// We need to provide feedback for each finger that goes down so we cannot wait
|
|
// for the fingers to move before deciding what to do.
|
|
//
|
|
// The ambiguous case is deciding what to do when there are two fingers down but they
|
|
// have not moved enough to determine whether they are part of a drag or part of a
|
|
// freeform gesture, or just a press or long-press at the pointer location.
|
|
//
|
|
// When there are two fingers we start with the PRESS hypothesis and we generate a
|
|
// down at the pointer location.
|
|
//
|
|
// When the two fingers move enough or when additional fingers are added, we make
|
|
// a decision to transition into SWIPE or FREEFORM mode accordingly.
|
|
LOG_ASSERT(activeTouchId >= 0);
|
|
|
|
bool settled = when >= mPointerGesture.firstTouchTime
|
|
+ mConfig.pointerGestureMultitouchSettleInterval;
|
|
if (mPointerGesture.lastGestureMode != PointerGesture::PRESS
|
|
&& mPointerGesture.lastGestureMode != PointerGesture::SWIPE
|
|
&& mPointerGesture.lastGestureMode != PointerGesture::FREEFORM) {
|
|
*outFinishPreviousGesture = true;
|
|
} else if (!settled && mCurrentTouch.pointerCount > mLastTouch.pointerCount) {
|
|
// Additional pointers have gone down but not yet settled.
|
|
// Reset the gesture.
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: Resetting gesture since additional pointers went down for MULTITOUCH, "
|
|
"settle time remaining %0.3fms", (mPointerGesture.firstTouchTime
|
|
+ mConfig.pointerGestureMultitouchSettleInterval - when)
|
|
* 0.000001f);
|
|
#endif
|
|
*outCancelPreviousGesture = true;
|
|
} else {
|
|
// Continue previous gesture.
|
|
mPointerGesture.currentGestureMode = mPointerGesture.lastGestureMode;
|
|
}
|
|
|
|
if (*outFinishPreviousGesture || *outCancelPreviousGesture) {
|
|
mPointerGesture.currentGestureMode = PointerGesture::PRESS;
|
|
mPointerGesture.activeGestureId = 0;
|
|
mPointerGesture.referenceIdBits.clear();
|
|
mPointerGesture.pointerVelocityControl.reset();
|
|
|
|
// Use the centroid and pointer location as the reference points for the gesture.
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: Using centroid as reference for MULTITOUCH, "
|
|
"settle time remaining %0.3fms", (mPointerGesture.firstTouchTime
|
|
+ mConfig.pointerGestureMultitouchSettleInterval - when)
|
|
* 0.000001f);
|
|
#endif
|
|
mCurrentTouch.getCentroid(&mPointerGesture.referenceTouchX,
|
|
&mPointerGesture.referenceTouchY);
|
|
mPointerController->getPosition(&mPointerGesture.referenceGestureX,
|
|
&mPointerGesture.referenceGestureY);
|
|
}
|
|
|
|
// Clear the reference deltas for fingers not yet included in the reference calculation.
|
|
for (BitSet32 idBits(mCurrentTouch.idBits.value & ~mPointerGesture.referenceIdBits.value);
|
|
!idBits.isEmpty(); ) {
|
|
uint32_t id = idBits.firstMarkedBit();
|
|
idBits.clearBit(id);
|
|
|
|
mPointerGesture.referenceDeltas[id].dx = 0;
|
|
mPointerGesture.referenceDeltas[id].dy = 0;
|
|
}
|
|
mPointerGesture.referenceIdBits = mCurrentTouch.idBits;
|
|
|
|
// Add delta for all fingers and calculate a common movement delta.
|
|
float commonDeltaX = 0, commonDeltaY = 0;
|
|
BitSet32 commonIdBits(mLastTouch.idBits.value & mCurrentTouch.idBits.value);
|
|
for (BitSet32 idBits(commonIdBits); !idBits.isEmpty(); ) {
|
|
bool first = (idBits == commonIdBits);
|
|
uint32_t id = idBits.firstMarkedBit();
|
|
idBits.clearBit(id);
|
|
|
|
const PointerData& cpd = mCurrentTouch.pointers[mCurrentTouch.idToIndex[id]];
|
|
const PointerData& lpd = mLastTouch.pointers[mLastTouch.idToIndex[id]];
|
|
PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id];
|
|
delta.dx += cpd.x - lpd.x;
|
|
delta.dy += cpd.y - lpd.y;
|
|
|
|
if (first) {
|
|
commonDeltaX = delta.dx;
|
|
commonDeltaY = delta.dy;
|
|
} else {
|
|
commonDeltaX = calculateCommonVector(commonDeltaX, delta.dx);
|
|
commonDeltaY = calculateCommonVector(commonDeltaY, delta.dy);
|
|
}
|
|
}
|
|
|
|
// Consider transitions from PRESS to SWIPE or MULTITOUCH.
|
|
if (mPointerGesture.currentGestureMode == PointerGesture::PRESS) {
|
|
float dist[MAX_POINTER_ID + 1];
|
|
int32_t distOverThreshold = 0;
|
|
for (BitSet32 idBits(mPointerGesture.referenceIdBits); !idBits.isEmpty(); ) {
|
|
uint32_t id = idBits.firstMarkedBit();
|
|
idBits.clearBit(id);
|
|
|
|
PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id];
|
|
dist[id] = hypotf(delta.dx * mLocked.pointerGestureXZoomScale,
|
|
delta.dy * mLocked.pointerGestureYZoomScale);
|
|
if (dist[id] > mConfig.pointerGestureMultitouchMinDistance) {
|
|
distOverThreshold += 1;
|
|
}
|
|
}
|
|
|
|
// Only transition when at least two pointers have moved further than
|
|
// the minimum distance threshold.
|
|
if (distOverThreshold >= 2) {
|
|
float d;
|
|
if (mCurrentTouch.pointerCount > 2) {
|
|
// There are more than two pointers, switch to FREEFORM.
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: PRESS transitioned to FREEFORM, number of pointers %d > 2",
|
|
mCurrentTouch.pointerCount);
|
|
#endif
|
|
*outCancelPreviousGesture = true;
|
|
mPointerGesture.currentGestureMode = PointerGesture::FREEFORM;
|
|
} else if (((d = distance(
|
|
mCurrentTouch.pointers[0].x, mCurrentTouch.pointers[0].y,
|
|
mCurrentTouch.pointers[1].x, mCurrentTouch.pointers[1].y))
|
|
> mLocked.pointerGestureMaxSwipeWidth)) {
|
|
// There are two pointers but they are too far apart for a SWIPE,
|
|
// switch to FREEFORM.
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: PRESS transitioned to FREEFORM, distance %0.3f > %0.3f",
|
|
d, mLocked.pointerGestureMaxSwipeWidth);
|
|
#endif
|
|
*outCancelPreviousGesture = true;
|
|
mPointerGesture.currentGestureMode = PointerGesture::FREEFORM;
|
|
} else {
|
|
// There are two pointers. Wait for both pointers to start moving
|
|
// before deciding whether this is a SWIPE or FREEFORM gesture.
|
|
uint32_t id1 = mCurrentTouch.pointers[0].id;
|
|
uint32_t id2 = mCurrentTouch.pointers[1].id;
|
|
float dist1 = dist[id1];
|
|
float dist2 = dist[id2];
|
|
if (dist1 >= mConfig.pointerGestureMultitouchMinDistance
|
|
&& dist2 >= mConfig.pointerGestureMultitouchMinDistance) {
|
|
// Calculate the dot product of the displacement vectors.
|
|
// When the vectors are oriented in approximately the same direction,
|
|
// the angle betweeen them is near zero and the cosine of the angle
|
|
// approches 1.0. Recall that dot(v1, v2) = cos(angle) * mag(v1) * mag(v2).
|
|
PointerGesture::Delta& delta1 = mPointerGesture.referenceDeltas[id1];
|
|
PointerGesture::Delta& delta2 = mPointerGesture.referenceDeltas[id2];
|
|
float dx1 = delta1.dx * mLocked.pointerGestureXZoomScale;
|
|
float dy1 = delta1.dy * mLocked.pointerGestureYZoomScale;
|
|
float dx2 = delta2.dx * mLocked.pointerGestureXZoomScale;
|
|
float dy2 = delta2.dy * mLocked.pointerGestureYZoomScale;
|
|
float dot = dx1 * dx2 + dy1 * dy2;
|
|
float cosine = dot / (dist1 * dist2); // denominator always > 0
|
|
if (cosine >= mConfig.pointerGestureSwipeTransitionAngleCosine) {
|
|
// Pointers are moving in the same direction. Switch to SWIPE.
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: PRESS transitioned to SWIPE, "
|
|
"dist1 %0.3f >= %0.3f, dist2 %0.3f >= %0.3f, "
|
|
"cosine %0.3f >= %0.3f",
|
|
dist1, mConfig.pointerGestureMultitouchMinDistance,
|
|
dist2, mConfig.pointerGestureMultitouchMinDistance,
|
|
cosine, mConfig.pointerGestureSwipeTransitionAngleCosine);
|
|
#endif
|
|
mPointerGesture.currentGestureMode = PointerGesture::SWIPE;
|
|
} else {
|
|
// Pointers are moving in different directions. Switch to FREEFORM.
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: PRESS transitioned to FREEFORM, "
|
|
"dist1 %0.3f >= %0.3f, dist2 %0.3f >= %0.3f, "
|
|
"cosine %0.3f < %0.3f",
|
|
dist1, mConfig.pointerGestureMultitouchMinDistance,
|
|
dist2, mConfig.pointerGestureMultitouchMinDistance,
|
|
cosine, mConfig.pointerGestureSwipeTransitionAngleCosine);
|
|
#endif
|
|
*outCancelPreviousGesture = true;
|
|
mPointerGesture.currentGestureMode = PointerGesture::FREEFORM;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else if (mPointerGesture.currentGestureMode == PointerGesture::SWIPE) {
|
|
// Switch from SWIPE to FREEFORM if additional pointers go down.
|
|
// Cancel previous gesture.
|
|
if (mCurrentTouch.pointerCount > 2) {
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: SWIPE transitioned to FREEFORM, number of pointers %d > 2",
|
|
mCurrentTouch.pointerCount);
|
|
#endif
|
|
*outCancelPreviousGesture = true;
|
|
mPointerGesture.currentGestureMode = PointerGesture::FREEFORM;
|
|
}
|
|
}
|
|
|
|
// Move the reference points based on the overall group motion of the fingers
|
|
// except in PRESS mode while waiting for a transition to occur.
|
|
if (mPointerGesture.currentGestureMode != PointerGesture::PRESS
|
|
&& (commonDeltaX || commonDeltaY)) {
|
|
for (BitSet32 idBits(mPointerGesture.referenceIdBits); !idBits.isEmpty(); ) {
|
|
uint32_t id = idBits.firstMarkedBit();
|
|
idBits.clearBit(id);
|
|
|
|
PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id];
|
|
delta.dx = 0;
|
|
delta.dy = 0;
|
|
}
|
|
|
|
mPointerGesture.referenceTouchX += commonDeltaX;
|
|
mPointerGesture.referenceTouchY += commonDeltaY;
|
|
|
|
commonDeltaX *= mLocked.pointerGestureXMovementScale;
|
|
commonDeltaY *= mLocked.pointerGestureYMovementScale;
|
|
mPointerGesture.pointerVelocityControl.move(when, &commonDeltaX, &commonDeltaY);
|
|
|
|
mPointerGesture.referenceGestureX += commonDeltaX;
|
|
mPointerGesture.referenceGestureY += commonDeltaY;
|
|
}
|
|
|
|
// Report gestures.
|
|
if (mPointerGesture.currentGestureMode == PointerGesture::PRESS) {
|
|
// PRESS mode.
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: PRESS activeTouchId=%d,"
|
|
"activeGestureId=%d, currentTouchPointerCount=%d",
|
|
activeTouchId, mPointerGesture.activeGestureId, mCurrentTouch.pointerCount);
|
|
#endif
|
|
LOG_ASSERT(mPointerGesture.activeGestureId >= 0);
|
|
|
|
mPointerGesture.currentGestureIdBits.clear();
|
|
mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId);
|
|
mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0;
|
|
mPointerGesture.currentGestureProperties[0].clear();
|
|
mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId;
|
|
mPointerGesture.currentGestureProperties[0].toolType =
|
|
AMOTION_EVENT_TOOL_TYPE_INDIRECT_FINGER;
|
|
mPointerGesture.currentGestureCoords[0].clear();
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X,
|
|
mPointerGesture.referenceGestureX);
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y,
|
|
mPointerGesture.referenceGestureY);
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
|
|
} else if (mPointerGesture.currentGestureMode == PointerGesture::SWIPE) {
|
|
// SWIPE mode.
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: SWIPE activeTouchId=%d,"
|
|
"activeGestureId=%d, currentTouchPointerCount=%d",
|
|
activeTouchId, mPointerGesture.activeGestureId, mCurrentTouch.pointerCount);
|
|
#endif
|
|
LOG_ASSERT(mPointerGesture.activeGestureId >= 0);
|
|
|
|
mPointerGesture.currentGestureIdBits.clear();
|
|
mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId);
|
|
mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0;
|
|
mPointerGesture.currentGestureProperties[0].clear();
|
|
mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId;
|
|
mPointerGesture.currentGestureProperties[0].toolType =
|
|
AMOTION_EVENT_TOOL_TYPE_INDIRECT_FINGER;
|
|
mPointerGesture.currentGestureCoords[0].clear();
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X,
|
|
mPointerGesture.referenceGestureX);
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y,
|
|
mPointerGesture.referenceGestureY);
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
|
|
} else if (mPointerGesture.currentGestureMode == PointerGesture::FREEFORM) {
|
|
// FREEFORM mode.
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: FREEFORM activeTouchId=%d,"
|
|
"activeGestureId=%d, currentTouchPointerCount=%d",
|
|
activeTouchId, mPointerGesture.activeGestureId, mCurrentTouch.pointerCount);
|
|
#endif
|
|
LOG_ASSERT(mPointerGesture.activeGestureId >= 0);
|
|
|
|
mPointerGesture.currentGestureIdBits.clear();
|
|
|
|
BitSet32 mappedTouchIdBits;
|
|
BitSet32 usedGestureIdBits;
|
|
if (mPointerGesture.lastGestureMode != PointerGesture::FREEFORM) {
|
|
// Initially, assign the active gesture id to the active touch point
|
|
// if there is one. No other touch id bits are mapped yet.
|
|
if (!*outCancelPreviousGesture) {
|
|
mappedTouchIdBits.markBit(activeTouchId);
|
|
usedGestureIdBits.markBit(mPointerGesture.activeGestureId);
|
|
mPointerGesture.freeformTouchToGestureIdMap[activeTouchId] =
|
|
mPointerGesture.activeGestureId;
|
|
} else {
|
|
mPointerGesture.activeGestureId = -1;
|
|
}
|
|
} else {
|
|
// Otherwise, assume we mapped all touches from the previous frame.
|
|
// Reuse all mappings that are still applicable.
|
|
mappedTouchIdBits.value = mLastTouch.idBits.value & mCurrentTouch.idBits.value;
|
|
usedGestureIdBits = mPointerGesture.lastGestureIdBits;
|
|
|
|
// Check whether we need to choose a new active gesture id because the
|
|
// current went went up.
|
|
for (BitSet32 upTouchIdBits(mLastTouch.idBits.value & ~mCurrentTouch.idBits.value);
|
|
!upTouchIdBits.isEmpty(); ) {
|
|
uint32_t upTouchId = upTouchIdBits.firstMarkedBit();
|
|
upTouchIdBits.clearBit(upTouchId);
|
|
uint32_t upGestureId = mPointerGesture.freeformTouchToGestureIdMap[upTouchId];
|
|
if (upGestureId == uint32_t(mPointerGesture.activeGestureId)) {
|
|
mPointerGesture.activeGestureId = -1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: FREEFORM follow up "
|
|
"mappedTouchIdBits=0x%08x, usedGestureIdBits=0x%08x, "
|
|
"activeGestureId=%d",
|
|
mappedTouchIdBits.value, usedGestureIdBits.value,
|
|
mPointerGesture.activeGestureId);
|
|
#endif
|
|
|
|
for (uint32_t i = 0; i < mCurrentTouch.pointerCount; i++) {
|
|
uint32_t touchId = mCurrentTouch.pointers[i].id;
|
|
uint32_t gestureId;
|
|
if (!mappedTouchIdBits.hasBit(touchId)) {
|
|
gestureId = usedGestureIdBits.firstUnmarkedBit();
|
|
usedGestureIdBits.markBit(gestureId);
|
|
mPointerGesture.freeformTouchToGestureIdMap[touchId] = gestureId;
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: FREEFORM "
|
|
"new mapping for touch id %d -> gesture id %d",
|
|
touchId, gestureId);
|
|
#endif
|
|
} else {
|
|
gestureId = mPointerGesture.freeformTouchToGestureIdMap[touchId];
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: FREEFORM "
|
|
"existing mapping for touch id %d -> gesture id %d",
|
|
touchId, gestureId);
|
|
#endif
|
|
}
|
|
mPointerGesture.currentGestureIdBits.markBit(gestureId);
|
|
mPointerGesture.currentGestureIdToIndex[gestureId] = i;
|
|
|
|
float x = (mCurrentTouch.pointers[i].x - mPointerGesture.referenceTouchX)
|
|
* mLocked.pointerGestureXZoomScale + mPointerGesture.referenceGestureX;
|
|
float y = (mCurrentTouch.pointers[i].y - mPointerGesture.referenceTouchY)
|
|
* mLocked.pointerGestureYZoomScale + mPointerGesture.referenceGestureY;
|
|
|
|
mPointerGesture.currentGestureProperties[i].clear();
|
|
mPointerGesture.currentGestureProperties[i].id = gestureId;
|
|
mPointerGesture.currentGestureProperties[i].toolType =
|
|
AMOTION_EVENT_TOOL_TYPE_INDIRECT_FINGER;
|
|
mPointerGesture.currentGestureCoords[i].clear();
|
|
mPointerGesture.currentGestureCoords[i].setAxisValue(
|
|
AMOTION_EVENT_AXIS_X, x);
|
|
mPointerGesture.currentGestureCoords[i].setAxisValue(
|
|
AMOTION_EVENT_AXIS_Y, y);
|
|
mPointerGesture.currentGestureCoords[i].setAxisValue(
|
|
AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
|
|
}
|
|
|
|
if (mPointerGesture.activeGestureId < 0) {
|
|
mPointerGesture.activeGestureId =
|
|
mPointerGesture.currentGestureIdBits.firstMarkedBit();
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: FREEFORM new "
|
|
"activeGestureId=%d", mPointerGesture.activeGestureId);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
mPointerController->setButtonState(mCurrentTouch.buttonState);
|
|
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: finishPreviousGesture=%s, cancelPreviousGesture=%s, "
|
|
"currentGestureMode=%d, currentGestureIdBits=0x%08x, "
|
|
"lastGestureMode=%d, lastGestureIdBits=0x%08x",
|
|
toString(*outFinishPreviousGesture), toString(*outCancelPreviousGesture),
|
|
mPointerGesture.currentGestureMode, mPointerGesture.currentGestureIdBits.value,
|
|
mPointerGesture.lastGestureMode, mPointerGesture.lastGestureIdBits.value);
|
|
for (BitSet32 idBits = mPointerGesture.currentGestureIdBits; !idBits.isEmpty(); ) {
|
|
uint32_t id = idBits.firstMarkedBit();
|
|
idBits.clearBit(id);
|
|
uint32_t index = mPointerGesture.currentGestureIdToIndex[id];
|
|
const PointerProperties& properties = mPointerGesture.currentGestureProperties[index];
|
|
const PointerCoords& coords = mPointerGesture.currentGestureCoords[index];
|
|
LOGD(" currentGesture[%d]: index=%d, toolType=%d, "
|
|
"x=%0.3f, y=%0.3f, pressure=%0.3f",
|
|
id, index, properties.toolType,
|
|
coords.getAxisValue(AMOTION_EVENT_AXIS_X),
|
|
coords.getAxisValue(AMOTION_EVENT_AXIS_Y),
|
|
coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE));
|
|
}
|
|
for (BitSet32 idBits = mPointerGesture.lastGestureIdBits; !idBits.isEmpty(); ) {
|
|
uint32_t id = idBits.firstMarkedBit();
|
|
idBits.clearBit(id);
|
|
uint32_t index = mPointerGesture.lastGestureIdToIndex[id];
|
|
const PointerProperties& properties = mPointerGesture.lastGestureProperties[index];
|
|
const PointerCoords& coords = mPointerGesture.lastGestureCoords[index];
|
|
LOGD(" lastGesture[%d]: index=%d, toolType=%d, "
|
|
"x=%0.3f, y=%0.3f, pressure=%0.3f",
|
|
id, index, properties.toolType,
|
|
coords.getAxisValue(AMOTION_EVENT_AXIS_X),
|
|
coords.getAxisValue(AMOTION_EVENT_AXIS_Y),
|
|
coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE));
|
|
}
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
void TouchInputMapper::dispatchMotion(nsecs_t when, uint32_t policyFlags, uint32_t source,
|
|
int32_t action, int32_t flags, int32_t metaState, int32_t buttonState, int32_t edgeFlags,
|
|
const PointerProperties* properties, const PointerCoords* coords,
|
|
const uint32_t* idToIndex, BitSet32 idBits,
|
|
int32_t changedId, float xPrecision, float yPrecision, nsecs_t downTime) {
|
|
PointerCoords pointerCoords[MAX_POINTERS];
|
|
PointerProperties pointerProperties[MAX_POINTERS];
|
|
uint32_t pointerCount = 0;
|
|
while (!idBits.isEmpty()) {
|
|
uint32_t id = idBits.firstMarkedBit();
|
|
idBits.clearBit(id);
|
|
uint32_t index = idToIndex[id];
|
|
pointerProperties[pointerCount].copyFrom(properties[index]);
|
|
pointerCoords[pointerCount].copyFrom(coords[index]);
|
|
|
|
if (changedId >= 0 && id == uint32_t(changedId)) {
|
|
action |= pointerCount << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
|
|
}
|
|
|
|
pointerCount += 1;
|
|
}
|
|
|
|
LOG_ASSERT(pointerCount != 0);
|
|
|
|
if (changedId >= 0 && pointerCount == 1) {
|
|
// Replace initial down and final up action.
|
|
// We can compare the action without masking off the changed pointer index
|
|
// because we know the index is 0.
|
|
if (action == AMOTION_EVENT_ACTION_POINTER_DOWN) {
|
|
action = AMOTION_EVENT_ACTION_DOWN;
|
|
} else if (action == AMOTION_EVENT_ACTION_POINTER_UP) {
|
|
action = AMOTION_EVENT_ACTION_UP;
|
|
} else {
|
|
// Can't happen.
|
|
LOG_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
getDispatcher()->notifyMotion(when, getDeviceId(), source, policyFlags,
|
|
action, flags, metaState, buttonState, edgeFlags,
|
|
pointerCount, pointerProperties, pointerCoords, xPrecision, yPrecision, downTime);
|
|
}
|
|
|
|
bool TouchInputMapper::updateMovedPointers(const PointerProperties* inProperties,
|
|
const PointerCoords* inCoords, const uint32_t* inIdToIndex,
|
|
PointerProperties* outProperties, PointerCoords* outCoords, const uint32_t* outIdToIndex,
|
|
BitSet32 idBits) const {
|
|
bool changed = false;
|
|
while (!idBits.isEmpty()) {
|
|
uint32_t id = idBits.firstMarkedBit();
|
|
idBits.clearBit(id);
|
|
|
|
uint32_t inIndex = inIdToIndex[id];
|
|
uint32_t outIndex = outIdToIndex[id];
|
|
|
|
const PointerProperties& curInProperties = inProperties[inIndex];
|
|
const PointerCoords& curInCoords = inCoords[inIndex];
|
|
PointerProperties& curOutProperties = outProperties[outIndex];
|
|
PointerCoords& curOutCoords = outCoords[outIndex];
|
|
|
|
if (curInProperties != curOutProperties) {
|
|
curOutProperties.copyFrom(curInProperties);
|
|
changed = true;
|
|
}
|
|
|
|
if (curInCoords != curOutCoords) {
|
|
curOutCoords.copyFrom(curInCoords);
|
|
changed = true;
|
|
}
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
void TouchInputMapper::fadePointer() {
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
if (mPointerController != NULL) {
|
|
mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL);
|
|
}
|
|
} // release lock
|
|
}
|
|
|
|
int32_t TouchInputMapper::getTouchToolType(bool isStylus) const {
|
|
if (mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN) {
|
|
return isStylus ? AMOTION_EVENT_TOOL_TYPE_STYLUS : AMOTION_EVENT_TOOL_TYPE_FINGER;
|
|
} else {
|
|
return isStylus ? AMOTION_EVENT_TOOL_TYPE_INDIRECT_STYLUS
|
|
: AMOTION_EVENT_TOOL_TYPE_INDIRECT_FINGER;
|
|
}
|
|
}
|
|
|
|
bool TouchInputMapper::isPointInsideSurfaceLocked(int32_t x, int32_t y) {
|
|
return x >= mRawAxes.x.minValue && x <= mRawAxes.x.maxValue
|
|
&& y >= mRawAxes.y.minValue && y <= mRawAxes.y.maxValue;
|
|
}
|
|
|
|
const TouchInputMapper::VirtualKey* TouchInputMapper::findVirtualKeyHitLocked(
|
|
int32_t x, int32_t y) {
|
|
size_t numVirtualKeys = mLocked.virtualKeys.size();
|
|
for (size_t i = 0; i < numVirtualKeys; i++) {
|
|
const VirtualKey& virtualKey = mLocked.virtualKeys[i];
|
|
|
|
#if DEBUG_VIRTUAL_KEYS
|
|
LOGD("VirtualKeys: Hit test (%d, %d): keyCode=%d, scanCode=%d, "
|
|
"left=%d, top=%d, right=%d, bottom=%d",
|
|
x, y,
|
|
virtualKey.keyCode, virtualKey.scanCode,
|
|
virtualKey.hitLeft, virtualKey.hitTop,
|
|
virtualKey.hitRight, virtualKey.hitBottom);
|
|
#endif
|
|
|
|
if (virtualKey.isHit(x, y)) {
|
|
return & virtualKey;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void TouchInputMapper::calculatePointerIds() {
|
|
uint32_t currentPointerCount = mCurrentTouch.pointerCount;
|
|
uint32_t lastPointerCount = mLastTouch.pointerCount;
|
|
|
|
if (currentPointerCount == 0) {
|
|
// No pointers to assign.
|
|
mCurrentTouch.idBits.clear();
|
|
} else if (lastPointerCount == 0) {
|
|
// All pointers are new.
|
|
mCurrentTouch.idBits.clear();
|
|
for (uint32_t i = 0; i < currentPointerCount; i++) {
|
|
mCurrentTouch.pointers[i].id = i;
|
|
mCurrentTouch.idToIndex[i] = i;
|
|
mCurrentTouch.idBits.markBit(i);
|
|
}
|
|
} else if (currentPointerCount == 1 && lastPointerCount == 1) {
|
|
// Only one pointer and no change in count so it must have the same id as before.
|
|
uint32_t id = mLastTouch.pointers[0].id;
|
|
mCurrentTouch.pointers[0].id = id;
|
|
mCurrentTouch.idToIndex[id] = 0;
|
|
mCurrentTouch.idBits.value = BitSet32::valueForBit(id);
|
|
} else {
|
|
// General case.
|
|
// We build a heap of squared euclidean distances between current and last pointers
|
|
// associated with the current and last pointer indices. Then, we find the best
|
|
// match (by distance) for each current pointer.
|
|
PointerDistanceHeapElement heap[MAX_POINTERS * MAX_POINTERS];
|
|
|
|
uint32_t heapSize = 0;
|
|
for (uint32_t currentPointerIndex = 0; currentPointerIndex < currentPointerCount;
|
|
currentPointerIndex++) {
|
|
for (uint32_t lastPointerIndex = 0; lastPointerIndex < lastPointerCount;
|
|
lastPointerIndex++) {
|
|
int64_t deltaX = mCurrentTouch.pointers[currentPointerIndex].x
|
|
- mLastTouch.pointers[lastPointerIndex].x;
|
|
int64_t deltaY = mCurrentTouch.pointers[currentPointerIndex].y
|
|
- mLastTouch.pointers[lastPointerIndex].y;
|
|
|
|
uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY);
|
|
|
|
// Insert new element into the heap (sift up).
|
|
heap[heapSize].currentPointerIndex = currentPointerIndex;
|
|
heap[heapSize].lastPointerIndex = lastPointerIndex;
|
|
heap[heapSize].distance = distance;
|
|
heapSize += 1;
|
|
}
|
|
}
|
|
|
|
// Heapify
|
|
for (uint32_t startIndex = heapSize / 2; startIndex != 0; ) {
|
|
startIndex -= 1;
|
|
for (uint32_t parentIndex = startIndex; ;) {
|
|
uint32_t childIndex = parentIndex * 2 + 1;
|
|
if (childIndex >= heapSize) {
|
|
break;
|
|
}
|
|
|
|
if (childIndex + 1 < heapSize
|
|
&& heap[childIndex + 1].distance < heap[childIndex].distance) {
|
|
childIndex += 1;
|
|
}
|
|
|
|
if (heap[parentIndex].distance <= heap[childIndex].distance) {
|
|
break;
|
|
}
|
|
|
|
swap(heap[parentIndex], heap[childIndex]);
|
|
parentIndex = childIndex;
|
|
}
|
|
}
|
|
|
|
#if DEBUG_POINTER_ASSIGNMENT
|
|
LOGD("calculatePointerIds - initial distance min-heap: size=%d", heapSize);
|
|
for (size_t i = 0; i < heapSize; i++) {
|
|
LOGD(" heap[%d]: cur=%d, last=%d, distance=%lld",
|
|
i, heap[i].currentPointerIndex, heap[i].lastPointerIndex,
|
|
heap[i].distance);
|
|
}
|
|
#endif
|
|
|
|
// Pull matches out by increasing order of distance.
|
|
// To avoid reassigning pointers that have already been matched, the loop keeps track
|
|
// of which last and current pointers have been matched using the matchedXXXBits variables.
|
|
// It also tracks the used pointer id bits.
|
|
BitSet32 matchedLastBits(0);
|
|
BitSet32 matchedCurrentBits(0);
|
|
BitSet32 usedIdBits(0);
|
|
bool first = true;
|
|
for (uint32_t i = min(currentPointerCount, lastPointerCount); i > 0; i--) {
|
|
for (;;) {
|
|
if (first) {
|
|
// The first time through the loop, we just consume the root element of
|
|
// the heap (the one with smallest distance).
|
|
first = false;
|
|
} else {
|
|
// Previous iterations consumed the root element of the heap.
|
|
// Pop root element off of the heap (sift down).
|
|
heapSize -= 1;
|
|
LOG_ASSERT(heapSize > 0);
|
|
|
|
// Sift down.
|
|
heap[0] = heap[heapSize];
|
|
for (uint32_t parentIndex = 0; ;) {
|
|
uint32_t childIndex = parentIndex * 2 + 1;
|
|
if (childIndex >= heapSize) {
|
|
break;
|
|
}
|
|
|
|
if (childIndex + 1 < heapSize
|
|
&& heap[childIndex + 1].distance < heap[childIndex].distance) {
|
|
childIndex += 1;
|
|
}
|
|
|
|
if (heap[parentIndex].distance <= heap[childIndex].distance) {
|
|
break;
|
|
}
|
|
|
|
swap(heap[parentIndex], heap[childIndex]);
|
|
parentIndex = childIndex;
|
|
}
|
|
|
|
#if DEBUG_POINTER_ASSIGNMENT
|
|
LOGD("calculatePointerIds - reduced distance min-heap: size=%d", heapSize);
|
|
for (size_t i = 0; i < heapSize; i++) {
|
|
LOGD(" heap[%d]: cur=%d, last=%d, distance=%lld",
|
|
i, heap[i].currentPointerIndex, heap[i].lastPointerIndex,
|
|
heap[i].distance);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
uint32_t currentPointerIndex = heap[0].currentPointerIndex;
|
|
if (matchedCurrentBits.hasBit(currentPointerIndex)) continue; // already matched
|
|
|
|
uint32_t lastPointerIndex = heap[0].lastPointerIndex;
|
|
if (matchedLastBits.hasBit(lastPointerIndex)) continue; // already matched
|
|
|
|
matchedCurrentBits.markBit(currentPointerIndex);
|
|
matchedLastBits.markBit(lastPointerIndex);
|
|
|
|
uint32_t id = mLastTouch.pointers[lastPointerIndex].id;
|
|
mCurrentTouch.pointers[currentPointerIndex].id = id;
|
|
mCurrentTouch.idToIndex[id] = currentPointerIndex;
|
|
usedIdBits.markBit(id);
|
|
|
|
#if DEBUG_POINTER_ASSIGNMENT
|
|
LOGD("calculatePointerIds - matched: cur=%d, last=%d, id=%d, distance=%lld",
|
|
lastPointerIndex, currentPointerIndex, id, heap[0].distance);
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Assign fresh ids to new pointers.
|
|
if (currentPointerCount > lastPointerCount) {
|
|
for (uint32_t i = currentPointerCount - lastPointerCount; ;) {
|
|
uint32_t currentPointerIndex = matchedCurrentBits.firstUnmarkedBit();
|
|
uint32_t id = usedIdBits.firstUnmarkedBit();
|
|
|
|
mCurrentTouch.pointers[currentPointerIndex].id = id;
|
|
mCurrentTouch.idToIndex[id] = currentPointerIndex;
|
|
usedIdBits.markBit(id);
|
|
|
|
#if DEBUG_POINTER_ASSIGNMENT
|
|
LOGD("calculatePointerIds - assigned: cur=%d, id=%d",
|
|
currentPointerIndex, id);
|
|
#endif
|
|
|
|
if (--i == 0) break; // done
|
|
matchedCurrentBits.markBit(currentPointerIndex);
|
|
}
|
|
}
|
|
|
|
// Fix id bits.
|
|
mCurrentTouch.idBits = usedIdBits;
|
|
}
|
|
}
|
|
|
|
/* Special hack for devices that have bad screen data: if one of the
|
|
* points has moved more than a screen height from the last position,
|
|
* then drop it. */
|
|
bool TouchInputMapper::applyBadTouchFilter() {
|
|
uint32_t pointerCount = mCurrentTouch.pointerCount;
|
|
|
|
// Nothing to do if there are no points.
|
|
if (pointerCount == 0) {
|
|
return false;
|
|
}
|
|
|
|
// Don't do anything if a finger is going down or up. We run
|
|
// here before assigning pointer IDs, so there isn't a good
|
|
// way to do per-finger matching.
|
|
if (pointerCount != mLastTouch.pointerCount) {
|
|
return false;
|
|
}
|
|
|
|
// We consider a single movement across more than a 7/16 of
|
|
// the long size of the screen to be bad. This was a magic value
|
|
// determined by looking at the maximum distance it is feasible
|
|
// to actually move in one sample.
|
|
int32_t maxDeltaY = (mRawAxes.y.maxValue - mRawAxes.y.minValue + 1) * 7 / 16;
|
|
|
|
// XXX The original code in InputDevice.java included commented out
|
|
// code for testing the X axis. Note that when we drop a point
|
|
// we don't actually restore the old X either. Strange.
|
|
// The old code also tries to track when bad points were previously
|
|
// detected but it turns out that due to the placement of a "break"
|
|
// at the end of the loop, we never set mDroppedBadPoint to true
|
|
// so it is effectively dead code.
|
|
// Need to figure out if the old code is busted or just overcomplicated
|
|
// but working as intended.
|
|
|
|
// Look through all new points and see if any are farther than
|
|
// acceptable from all previous points.
|
|
for (uint32_t i = pointerCount; i-- > 0; ) {
|
|
int32_t y = mCurrentTouch.pointers[i].y;
|
|
int32_t closestY = INT_MAX;
|
|
int32_t closestDeltaY = 0;
|
|
|
|
#if DEBUG_HACKS
|
|
LOGD("BadTouchFilter: Looking at next point #%d: y=%d", i, y);
|
|
#endif
|
|
|
|
for (uint32_t j = pointerCount; j-- > 0; ) {
|
|
int32_t lastY = mLastTouch.pointers[j].y;
|
|
int32_t deltaY = abs(y - lastY);
|
|
|
|
#if DEBUG_HACKS
|
|
LOGD("BadTouchFilter: Comparing with last point #%d: y=%d deltaY=%d",
|
|
j, lastY, deltaY);
|
|
#endif
|
|
|
|
if (deltaY < maxDeltaY) {
|
|
goto SkipSufficientlyClosePoint;
|
|
}
|
|
if (deltaY < closestDeltaY) {
|
|
closestDeltaY = deltaY;
|
|
closestY = lastY;
|
|
}
|
|
}
|
|
|
|
// Must not have found a close enough match.
|
|
#if DEBUG_HACKS
|
|
LOGD("BadTouchFilter: Dropping bad point #%d: newY=%d oldY=%d deltaY=%d maxDeltaY=%d",
|
|
i, y, closestY, closestDeltaY, maxDeltaY);
|
|
#endif
|
|
|
|
mCurrentTouch.pointers[i].y = closestY;
|
|
return true; // XXX original code only corrects one point
|
|
|
|
SkipSufficientlyClosePoint: ;
|
|
}
|
|
|
|
// No change.
|
|
return false;
|
|
}
|
|
|
|
/* Special hack for devices that have bad screen data: drop points where
|
|
* the coordinate value for one axis has jumped to the other pointer's location.
|
|
*/
|
|
bool TouchInputMapper::applyJumpyTouchFilter() {
|
|
uint32_t pointerCount = mCurrentTouch.pointerCount;
|
|
if (mLastTouch.pointerCount != pointerCount) {
|
|
#if DEBUG_HACKS
|
|
LOGD("JumpyTouchFilter: Different pointer count %d -> %d",
|
|
mLastTouch.pointerCount, pointerCount);
|
|
for (uint32_t i = 0; i < pointerCount; i++) {
|
|
LOGD(" Pointer %d (%d, %d)", i,
|
|
mCurrentTouch.pointers[i].x, mCurrentTouch.pointers[i].y);
|
|
}
|
|
#endif
|
|
|
|
if (mJumpyTouchFilter.jumpyPointsDropped < JUMPY_TRANSITION_DROPS) {
|
|
if (mLastTouch.pointerCount == 1 && pointerCount == 2) {
|
|
// Just drop the first few events going from 1 to 2 pointers.
|
|
// They're bad often enough that they're not worth considering.
|
|
mCurrentTouch.pointerCount = 1;
|
|
mJumpyTouchFilter.jumpyPointsDropped += 1;
|
|
|
|
#if DEBUG_HACKS
|
|
LOGD("JumpyTouchFilter: Pointer 2 dropped");
|
|
#endif
|
|
return true;
|
|
} else if (mLastTouch.pointerCount == 2 && pointerCount == 1) {
|
|
// The event when we go from 2 -> 1 tends to be messed up too
|
|
mCurrentTouch.pointerCount = 2;
|
|
mCurrentTouch.pointers[0] = mLastTouch.pointers[0];
|
|
mCurrentTouch.pointers[1] = mLastTouch.pointers[1];
|
|
mJumpyTouchFilter.jumpyPointsDropped += 1;
|
|
|
|
#if DEBUG_HACKS
|
|
for (int32_t i = 0; i < 2; i++) {
|
|
LOGD("JumpyTouchFilter: Pointer %d replaced (%d, %d)", i,
|
|
mCurrentTouch.pointers[i].x, mCurrentTouch.pointers[i].y);
|
|
}
|
|
#endif
|
|
return true;
|
|
}
|
|
}
|
|
// Reset jumpy points dropped on other transitions or if limit exceeded.
|
|
mJumpyTouchFilter.jumpyPointsDropped = 0;
|
|
|
|
#if DEBUG_HACKS
|
|
LOGD("JumpyTouchFilter: Transition - drop limit reset");
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
// We have the same number of pointers as last time.
|
|
// A 'jumpy' point is one where the coordinate value for one axis
|
|
// has jumped to the other pointer's location. No need to do anything
|
|
// else if we only have one pointer.
|
|
if (pointerCount < 2) {
|
|
return false;
|
|
}
|
|
|
|
if (mJumpyTouchFilter.jumpyPointsDropped < JUMPY_DROP_LIMIT) {
|
|
int jumpyEpsilon = (mRawAxes.y.maxValue - mRawAxes.y.minValue + 1) / JUMPY_EPSILON_DIVISOR;
|
|
|
|
// We only replace the single worst jumpy point as characterized by pointer distance
|
|
// in a single axis.
|
|
int32_t badPointerIndex = -1;
|
|
int32_t badPointerReplacementIndex = -1;
|
|
int32_t badPointerDistance = INT_MIN; // distance to be corrected
|
|
|
|
for (uint32_t i = pointerCount; i-- > 0; ) {
|
|
int32_t x = mCurrentTouch.pointers[i].x;
|
|
int32_t y = mCurrentTouch.pointers[i].y;
|
|
|
|
#if DEBUG_HACKS
|
|
LOGD("JumpyTouchFilter: Point %d (%d, %d)", i, x, y);
|
|
#endif
|
|
|
|
// Check if a touch point is too close to another's coordinates
|
|
bool dropX = false, dropY = false;
|
|
for (uint32_t j = 0; j < pointerCount; j++) {
|
|
if (i == j) {
|
|
continue;
|
|
}
|
|
|
|
if (abs(x - mCurrentTouch.pointers[j].x) <= jumpyEpsilon) {
|
|
dropX = true;
|
|
break;
|
|
}
|
|
|
|
if (abs(y - mCurrentTouch.pointers[j].y) <= jumpyEpsilon) {
|
|
dropY = true;
|
|
break;
|
|
}
|
|
}
|
|
if (! dropX && ! dropY) {
|
|
continue; // not jumpy
|
|
}
|
|
|
|
// Find a replacement candidate by comparing with older points on the
|
|
// complementary (non-jumpy) axis.
|
|
int32_t distance = INT_MIN; // distance to be corrected
|
|
int32_t replacementIndex = -1;
|
|
|
|
if (dropX) {
|
|
// X looks too close. Find an older replacement point with a close Y.
|
|
int32_t smallestDeltaY = INT_MAX;
|
|
for (uint32_t j = 0; j < pointerCount; j++) {
|
|
int32_t deltaY = abs(y - mLastTouch.pointers[j].y);
|
|
if (deltaY < smallestDeltaY) {
|
|
smallestDeltaY = deltaY;
|
|
replacementIndex = j;
|
|
}
|
|
}
|
|
distance = abs(x - mLastTouch.pointers[replacementIndex].x);
|
|
} else {
|
|
// Y looks too close. Find an older replacement point with a close X.
|
|
int32_t smallestDeltaX = INT_MAX;
|
|
for (uint32_t j = 0; j < pointerCount; j++) {
|
|
int32_t deltaX = abs(x - mLastTouch.pointers[j].x);
|
|
if (deltaX < smallestDeltaX) {
|
|
smallestDeltaX = deltaX;
|
|
replacementIndex = j;
|
|
}
|
|
}
|
|
distance = abs(y - mLastTouch.pointers[replacementIndex].y);
|
|
}
|
|
|
|
// If replacing this pointer would correct a worse error than the previous ones
|
|
// considered, then use this replacement instead.
|
|
if (distance > badPointerDistance) {
|
|
badPointerIndex = i;
|
|
badPointerReplacementIndex = replacementIndex;
|
|
badPointerDistance = distance;
|
|
}
|
|
}
|
|
|
|
// Correct the jumpy pointer if one was found.
|
|
if (badPointerIndex >= 0) {
|
|
#if DEBUG_HACKS
|
|
LOGD("JumpyTouchFilter: Replacing bad pointer %d with (%d, %d)",
|
|
badPointerIndex,
|
|
mLastTouch.pointers[badPointerReplacementIndex].x,
|
|
mLastTouch.pointers[badPointerReplacementIndex].y);
|
|
#endif
|
|
|
|
mCurrentTouch.pointers[badPointerIndex].x =
|
|
mLastTouch.pointers[badPointerReplacementIndex].x;
|
|
mCurrentTouch.pointers[badPointerIndex].y =
|
|
mLastTouch.pointers[badPointerReplacementIndex].y;
|
|
mJumpyTouchFilter.jumpyPointsDropped += 1;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
mJumpyTouchFilter.jumpyPointsDropped = 0;
|
|
return false;
|
|
}
|
|
|
|
/* Special hack for devices that have bad screen data: aggregate and
|
|
* compute averages of the coordinate data, to reduce the amount of
|
|
* jitter seen by applications. */
|
|
void TouchInputMapper::applyAveragingTouchFilter() {
|
|
for (uint32_t currentIndex = 0; currentIndex < mCurrentTouch.pointerCount; currentIndex++) {
|
|
uint32_t id = mCurrentTouch.pointers[currentIndex].id;
|
|
int32_t x = mCurrentTouch.pointers[currentIndex].x;
|
|
int32_t y = mCurrentTouch.pointers[currentIndex].y;
|
|
int32_t pressure;
|
|
switch (mCalibration.pressureSource) {
|
|
case Calibration::PRESSURE_SOURCE_PRESSURE:
|
|
pressure = mCurrentTouch.pointers[currentIndex].pressure;
|
|
break;
|
|
case Calibration::PRESSURE_SOURCE_TOUCH:
|
|
pressure = mCurrentTouch.pointers[currentIndex].touchMajor;
|
|
break;
|
|
default:
|
|
pressure = 1;
|
|
break;
|
|
}
|
|
|
|
if (mLastTouch.idBits.hasBit(id)) {
|
|
// Pointer was down before and is still down now.
|
|
// Compute average over history trace.
|
|
uint32_t start = mAveragingTouchFilter.historyStart[id];
|
|
uint32_t end = mAveragingTouchFilter.historyEnd[id];
|
|
|
|
int64_t deltaX = x - mAveragingTouchFilter.historyData[end].pointers[id].x;
|
|
int64_t deltaY = y - mAveragingTouchFilter.historyData[end].pointers[id].y;
|
|
uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY);
|
|
|
|
#if DEBUG_HACKS
|
|
LOGD("AveragingTouchFilter: Pointer id %d - Distance from last sample: %lld",
|
|
id, distance);
|
|
#endif
|
|
|
|
if (distance < AVERAGING_DISTANCE_LIMIT) {
|
|
// Increment end index in preparation for recording new historical data.
|
|
end += 1;
|
|
if (end > AVERAGING_HISTORY_SIZE) {
|
|
end = 0;
|
|
}
|
|
|
|
// If the end index has looped back to the start index then we have filled
|
|
// the historical trace up to the desired size so we drop the historical
|
|
// data at the start of the trace.
|
|
if (end == start) {
|
|
start += 1;
|
|
if (start > AVERAGING_HISTORY_SIZE) {
|
|
start = 0;
|
|
}
|
|
}
|
|
|
|
// Add the raw data to the historical trace.
|
|
mAveragingTouchFilter.historyStart[id] = start;
|
|
mAveragingTouchFilter.historyEnd[id] = end;
|
|
mAveragingTouchFilter.historyData[end].pointers[id].x = x;
|
|
mAveragingTouchFilter.historyData[end].pointers[id].y = y;
|
|
mAveragingTouchFilter.historyData[end].pointers[id].pressure = pressure;
|
|
|
|
// Average over all historical positions in the trace by total pressure.
|
|
int32_t averagedX = 0;
|
|
int32_t averagedY = 0;
|
|
int32_t totalPressure = 0;
|
|
for (;;) {
|
|
int32_t historicalX = mAveragingTouchFilter.historyData[start].pointers[id].x;
|
|
int32_t historicalY = mAveragingTouchFilter.historyData[start].pointers[id].y;
|
|
int32_t historicalPressure = mAveragingTouchFilter.historyData[start]
|
|
.pointers[id].pressure;
|
|
|
|
averagedX += historicalX * historicalPressure;
|
|
averagedY += historicalY * historicalPressure;
|
|
totalPressure += historicalPressure;
|
|
|
|
if (start == end) {
|
|
break;
|
|
}
|
|
|
|
start += 1;
|
|
if (start > AVERAGING_HISTORY_SIZE) {
|
|
start = 0;
|
|
}
|
|
}
|
|
|
|
if (totalPressure != 0) {
|
|
averagedX /= totalPressure;
|
|
averagedY /= totalPressure;
|
|
|
|
#if DEBUG_HACKS
|
|
LOGD("AveragingTouchFilter: Pointer id %d - "
|
|
"totalPressure=%d, averagedX=%d, averagedY=%d", id, totalPressure,
|
|
averagedX, averagedY);
|
|
#endif
|
|
|
|
mCurrentTouch.pointers[currentIndex].x = averagedX;
|
|
mCurrentTouch.pointers[currentIndex].y = averagedY;
|
|
}
|
|
} else {
|
|
#if DEBUG_HACKS
|
|
LOGD("AveragingTouchFilter: Pointer id %d - Exceeded max distance", id);
|
|
#endif
|
|
}
|
|
} else {
|
|
#if DEBUG_HACKS
|
|
LOGD("AveragingTouchFilter: Pointer id %d - Pointer went up", id);
|
|
#endif
|
|
}
|
|
|
|
// Reset pointer history.
|
|
mAveragingTouchFilter.historyStart[id] = 0;
|
|
mAveragingTouchFilter.historyEnd[id] = 0;
|
|
mAveragingTouchFilter.historyData[0].pointers[id].x = x;
|
|
mAveragingTouchFilter.historyData[0].pointers[id].y = y;
|
|
mAveragingTouchFilter.historyData[0].pointers[id].pressure = pressure;
|
|
}
|
|
}
|
|
|
|
int32_t TouchInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
if (mLocked.currentVirtualKey.down && mLocked.currentVirtualKey.keyCode == keyCode) {
|
|
return AKEY_STATE_VIRTUAL;
|
|
}
|
|
|
|
size_t numVirtualKeys = mLocked.virtualKeys.size();
|
|
for (size_t i = 0; i < numVirtualKeys; i++) {
|
|
const VirtualKey& virtualKey = mLocked.virtualKeys[i];
|
|
if (virtualKey.keyCode == keyCode) {
|
|
return AKEY_STATE_UP;
|
|
}
|
|
}
|
|
} // release lock
|
|
|
|
return AKEY_STATE_UNKNOWN;
|
|
}
|
|
|
|
int32_t TouchInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
if (mLocked.currentVirtualKey.down && mLocked.currentVirtualKey.scanCode == scanCode) {
|
|
return AKEY_STATE_VIRTUAL;
|
|
}
|
|
|
|
size_t numVirtualKeys = mLocked.virtualKeys.size();
|
|
for (size_t i = 0; i < numVirtualKeys; i++) {
|
|
const VirtualKey& virtualKey = mLocked.virtualKeys[i];
|
|
if (virtualKey.scanCode == scanCode) {
|
|
return AKEY_STATE_UP;
|
|
}
|
|
}
|
|
} // release lock
|
|
|
|
return AKEY_STATE_UNKNOWN;
|
|
}
|
|
|
|
bool TouchInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
|
|
const int32_t* keyCodes, uint8_t* outFlags) {
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
size_t numVirtualKeys = mLocked.virtualKeys.size();
|
|
for (size_t i = 0; i < numVirtualKeys; i++) {
|
|
const VirtualKey& virtualKey = mLocked.virtualKeys[i];
|
|
|
|
for (size_t i = 0; i < numCodes; i++) {
|
|
if (virtualKey.keyCode == keyCodes[i]) {
|
|
outFlags[i] = 1;
|
|
}
|
|
}
|
|
}
|
|
} // release lock
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
// --- SingleTouchInputMapper ---
|
|
|
|
SingleTouchInputMapper::SingleTouchInputMapper(InputDevice* device) :
|
|
TouchInputMapper(device) {
|
|
clearState();
|
|
}
|
|
|
|
SingleTouchInputMapper::~SingleTouchInputMapper() {
|
|
}
|
|
|
|
void SingleTouchInputMapper::clearState() {
|
|
mAccumulator.clear();
|
|
|
|
mDown = false;
|
|
mX = 0;
|
|
mY = 0;
|
|
mPressure = 0; // default to 0 for devices that don't report pressure
|
|
mToolWidth = 0; // default to 0 for devices that don't report tool width
|
|
mButtonState = 0;
|
|
}
|
|
|
|
void SingleTouchInputMapper::reset() {
|
|
TouchInputMapper::reset();
|
|
|
|
clearState();
|
|
}
|
|
|
|
void SingleTouchInputMapper::process(const RawEvent* rawEvent) {
|
|
switch (rawEvent->type) {
|
|
case EV_KEY:
|
|
switch (rawEvent->scanCode) {
|
|
case BTN_TOUCH:
|
|
mAccumulator.fields |= Accumulator::FIELD_BTN_TOUCH;
|
|
mAccumulator.btnTouch = rawEvent->value != 0;
|
|
// Don't sync immediately. Wait until the next SYN_REPORT since we might
|
|
// not have received valid position information yet. This logic assumes that
|
|
// BTN_TOUCH is always followed by SYN_REPORT as part of a complete packet.
|
|
break;
|
|
default:
|
|
if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) {
|
|
int32_t buttonState = getButtonStateForScanCode(rawEvent->scanCode);
|
|
if (buttonState) {
|
|
if (rawEvent->value) {
|
|
mAccumulator.buttonDown |= buttonState;
|
|
} else {
|
|
mAccumulator.buttonUp |= buttonState;
|
|
}
|
|
mAccumulator.fields |= Accumulator::FIELD_BUTTONS;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case EV_ABS:
|
|
switch (rawEvent->scanCode) {
|
|
case ABS_X:
|
|
mAccumulator.fields |= Accumulator::FIELD_ABS_X;
|
|
mAccumulator.absX = rawEvent->value;
|
|
break;
|
|
case ABS_Y:
|
|
mAccumulator.fields |= Accumulator::FIELD_ABS_Y;
|
|
mAccumulator.absY = rawEvent->value;
|
|
break;
|
|
case ABS_PRESSURE:
|
|
mAccumulator.fields |= Accumulator::FIELD_ABS_PRESSURE;
|
|
mAccumulator.absPressure = rawEvent->value;
|
|
break;
|
|
case ABS_TOOL_WIDTH:
|
|
mAccumulator.fields |= Accumulator::FIELD_ABS_TOOL_WIDTH;
|
|
mAccumulator.absToolWidth = rawEvent->value;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case EV_SYN:
|
|
switch (rawEvent->scanCode) {
|
|
case SYN_REPORT:
|
|
sync(rawEvent->when);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void SingleTouchInputMapper::sync(nsecs_t when) {
|
|
uint32_t fields = mAccumulator.fields;
|
|
if (fields == 0) {
|
|
return; // no new state changes, so nothing to do
|
|
}
|
|
|
|
if (fields & Accumulator::FIELD_BTN_TOUCH) {
|
|
mDown = mAccumulator.btnTouch;
|
|
}
|
|
|
|
if (fields & Accumulator::FIELD_ABS_X) {
|
|
mX = mAccumulator.absX;
|
|
}
|
|
|
|
if (fields & Accumulator::FIELD_ABS_Y) {
|
|
mY = mAccumulator.absY;
|
|
}
|
|
|
|
if (fields & Accumulator::FIELD_ABS_PRESSURE) {
|
|
mPressure = mAccumulator.absPressure;
|
|
}
|
|
|
|
if (fields & Accumulator::FIELD_ABS_TOOL_WIDTH) {
|
|
mToolWidth = mAccumulator.absToolWidth;
|
|
}
|
|
|
|
if (fields & Accumulator::FIELD_BUTTONS) {
|
|
mButtonState = (mButtonState | mAccumulator.buttonDown) & ~mAccumulator.buttonUp;
|
|
}
|
|
|
|
mCurrentTouch.clear();
|
|
|
|
if (mDown) {
|
|
mCurrentTouch.pointerCount = 1;
|
|
mCurrentTouch.pointers[0].id = 0;
|
|
mCurrentTouch.pointers[0].x = mX;
|
|
mCurrentTouch.pointers[0].y = mY;
|
|
mCurrentTouch.pointers[0].pressure = mPressure;
|
|
mCurrentTouch.pointers[0].touchMajor = 0;
|
|
mCurrentTouch.pointers[0].touchMinor = 0;
|
|
mCurrentTouch.pointers[0].toolMajor = mToolWidth;
|
|
mCurrentTouch.pointers[0].toolMinor = mToolWidth;
|
|
mCurrentTouch.pointers[0].orientation = 0;
|
|
mCurrentTouch.pointers[0].distance = 0;
|
|
mCurrentTouch.pointers[0].isStylus = false; // TODO: Set stylus
|
|
mCurrentTouch.idToIndex[0] = 0;
|
|
mCurrentTouch.idBits.markBit(0);
|
|
mCurrentTouch.buttonState = mButtonState;
|
|
}
|
|
|
|
syncTouch(when, true);
|
|
|
|
mAccumulator.clear();
|
|
}
|
|
|
|
void SingleTouchInputMapper::configureRawAxes() {
|
|
TouchInputMapper::configureRawAxes();
|
|
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_X, & mRawAxes.x);
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_Y, & mRawAxes.y);
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_PRESSURE, & mRawAxes.pressure);
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_TOOL_WIDTH, & mRawAxes.toolMajor);
|
|
}
|
|
|
|
|
|
// --- MultiTouchInputMapper ---
|
|
|
|
MultiTouchInputMapper::MultiTouchInputMapper(InputDevice* device) :
|
|
TouchInputMapper(device), mSlotCount(0), mUsingSlotsProtocol(false) {
|
|
clearState();
|
|
}
|
|
|
|
MultiTouchInputMapper::~MultiTouchInputMapper() {
|
|
}
|
|
|
|
void MultiTouchInputMapper::clearState() {
|
|
mAccumulator.clearSlots(mSlotCount);
|
|
mAccumulator.clearButtons();
|
|
mButtonState = 0;
|
|
}
|
|
|
|
void MultiTouchInputMapper::reset() {
|
|
TouchInputMapper::reset();
|
|
|
|
clearState();
|
|
}
|
|
|
|
void MultiTouchInputMapper::process(const RawEvent* rawEvent) {
|
|
switch (rawEvent->type) {
|
|
case EV_KEY: {
|
|
if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) {
|
|
int32_t buttonState = getButtonStateForScanCode(rawEvent->scanCode);
|
|
if (buttonState) {
|
|
if (rawEvent->value) {
|
|
mAccumulator.buttonDown |= buttonState;
|
|
} else {
|
|
mAccumulator.buttonUp |= buttonState;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case EV_ABS: {
|
|
bool newSlot = false;
|
|
if (mUsingSlotsProtocol && rawEvent->scanCode == ABS_MT_SLOT) {
|
|
mAccumulator.currentSlot = rawEvent->value;
|
|
newSlot = true;
|
|
}
|
|
|
|
if (mAccumulator.currentSlot < 0 || size_t(mAccumulator.currentSlot) >= mSlotCount) {
|
|
#if DEBUG_POINTERS
|
|
if (newSlot) {
|
|
LOGW("MultiTouch device %s emitted invalid slot index %d but it "
|
|
"should be between 0 and %d; ignoring this slot.",
|
|
getDeviceName().string(), mAccumulator.currentSlot, mSlotCount);
|
|
}
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
Accumulator::Slot* slot = &mAccumulator.slots[mAccumulator.currentSlot];
|
|
|
|
switch (rawEvent->scanCode) {
|
|
case ABS_MT_POSITION_X:
|
|
slot->fields |= Accumulator::FIELD_ABS_MT_POSITION_X;
|
|
slot->absMTPositionX = rawEvent->value;
|
|
break;
|
|
case ABS_MT_POSITION_Y:
|
|
slot->fields |= Accumulator::FIELD_ABS_MT_POSITION_Y;
|
|
slot->absMTPositionY = rawEvent->value;
|
|
break;
|
|
case ABS_MT_TOUCH_MAJOR:
|
|
slot->fields |= Accumulator::FIELD_ABS_MT_TOUCH_MAJOR;
|
|
slot->absMTTouchMajor = rawEvent->value;
|
|
break;
|
|
case ABS_MT_TOUCH_MINOR:
|
|
slot->fields |= Accumulator::FIELD_ABS_MT_TOUCH_MINOR;
|
|
slot->absMTTouchMinor = rawEvent->value;
|
|
break;
|
|
case ABS_MT_WIDTH_MAJOR:
|
|
slot->fields |= Accumulator::FIELD_ABS_MT_WIDTH_MAJOR;
|
|
slot->absMTWidthMajor = rawEvent->value;
|
|
break;
|
|
case ABS_MT_WIDTH_MINOR:
|
|
slot->fields |= Accumulator::FIELD_ABS_MT_WIDTH_MINOR;
|
|
slot->absMTWidthMinor = rawEvent->value;
|
|
break;
|
|
case ABS_MT_ORIENTATION:
|
|
slot->fields |= Accumulator::FIELD_ABS_MT_ORIENTATION;
|
|
slot->absMTOrientation = rawEvent->value;
|
|
break;
|
|
case ABS_MT_TRACKING_ID:
|
|
if (mUsingSlotsProtocol && rawEvent->value < 0) {
|
|
slot->clear();
|
|
} else {
|
|
slot->fields |= Accumulator::FIELD_ABS_MT_TRACKING_ID;
|
|
slot->absMTTrackingId = rawEvent->value;
|
|
}
|
|
break;
|
|
case ABS_MT_PRESSURE:
|
|
slot->fields |= Accumulator::FIELD_ABS_MT_PRESSURE;
|
|
slot->absMTPressure = rawEvent->value;
|
|
break;
|
|
case ABS_MT_TOOL_TYPE:
|
|
slot->fields |= Accumulator::FIELD_ABS_MT_TOOL_TYPE;
|
|
slot->absMTToolType = rawEvent->value;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case EV_SYN:
|
|
switch (rawEvent->scanCode) {
|
|
case SYN_MT_REPORT: {
|
|
// MultiTouch Sync: The driver has returned all data for *one* of the pointers.
|
|
mAccumulator.currentSlot += 1;
|
|
break;
|
|
}
|
|
|
|
case SYN_REPORT:
|
|
sync(rawEvent->when);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void MultiTouchInputMapper::sync(nsecs_t when) {
|
|
static const uint32_t REQUIRED_FIELDS =
|
|
Accumulator::FIELD_ABS_MT_POSITION_X | Accumulator::FIELD_ABS_MT_POSITION_Y;
|
|
|
|
size_t inCount = mSlotCount;
|
|
size_t outCount = 0;
|
|
bool havePointerIds = true;
|
|
|
|
mCurrentTouch.clear();
|
|
|
|
for (size_t inIndex = 0; inIndex < inCount; inIndex++) {
|
|
const Accumulator::Slot& inSlot = mAccumulator.slots[inIndex];
|
|
uint32_t fields = inSlot.fields;
|
|
|
|
if ((fields & REQUIRED_FIELDS) != REQUIRED_FIELDS) {
|
|
// Some drivers send empty MT sync packets without X / Y to indicate a pointer up.
|
|
// This may also indicate an unused slot.
|
|
// Drop this finger.
|
|
continue;
|
|
}
|
|
|
|
if (outCount >= MAX_POINTERS) {
|
|
#if DEBUG_POINTERS
|
|
LOGD("MultiTouch device %s emitted more than maximum of %d pointers; "
|
|
"ignoring the rest.",
|
|
getDeviceName().string(), MAX_POINTERS);
|
|
#endif
|
|
break; // too many fingers!
|
|
}
|
|
|
|
PointerData& outPointer = mCurrentTouch.pointers[outCount];
|
|
outPointer.x = inSlot.absMTPositionX;
|
|
outPointer.y = inSlot.absMTPositionY;
|
|
|
|
if (fields & Accumulator::FIELD_ABS_MT_PRESSURE) {
|
|
outPointer.pressure = inSlot.absMTPressure;
|
|
} else {
|
|
// Default pressure to 0 if absent.
|
|
outPointer.pressure = 0;
|
|
}
|
|
|
|
if (fields & Accumulator::FIELD_ABS_MT_TOUCH_MAJOR) {
|
|
if (inSlot.absMTTouchMajor <= 0) {
|
|
// Some devices send sync packets with X / Y but with a 0 touch major to indicate
|
|
// a pointer going up. Drop this finger.
|
|
continue;
|
|
}
|
|
outPointer.touchMajor = inSlot.absMTTouchMajor;
|
|
} else {
|
|
// Default touch area to 0 if absent.
|
|
outPointer.touchMajor = 0;
|
|
}
|
|
|
|
if (fields & Accumulator::FIELD_ABS_MT_TOUCH_MINOR) {
|
|
outPointer.touchMinor = inSlot.absMTTouchMinor;
|
|
} else {
|
|
// Assume touch area is circular.
|
|
outPointer.touchMinor = outPointer.touchMajor;
|
|
}
|
|
|
|
if (fields & Accumulator::FIELD_ABS_MT_WIDTH_MAJOR) {
|
|
outPointer.toolMajor = inSlot.absMTWidthMajor;
|
|
} else {
|
|
// Default tool area to 0 if absent.
|
|
outPointer.toolMajor = 0;
|
|
}
|
|
|
|
if (fields & Accumulator::FIELD_ABS_MT_WIDTH_MINOR) {
|
|
outPointer.toolMinor = inSlot.absMTWidthMinor;
|
|
} else {
|
|
// Assume tool area is circular.
|
|
outPointer.toolMinor = outPointer.toolMajor;
|
|
}
|
|
|
|
if (fields & Accumulator::FIELD_ABS_MT_ORIENTATION) {
|
|
outPointer.orientation = inSlot.absMTOrientation;
|
|
} else {
|
|
// Default orientation to vertical if absent.
|
|
outPointer.orientation = 0;
|
|
}
|
|
|
|
if (fields & Accumulator::FIELD_ABS_MT_DISTANCE) {
|
|
outPointer.distance = inSlot.absMTDistance;
|
|
} else {
|
|
// Default distance is 0 (direct contact).
|
|
outPointer.distance = 0;
|
|
}
|
|
|
|
if (fields & Accumulator::FIELD_ABS_MT_TOOL_TYPE) {
|
|
outPointer.isStylus = (inSlot.absMTToolType == MT_TOOL_PEN);
|
|
} else {
|
|
// Assume this is not a stylus.
|
|
outPointer.isStylus = false;
|
|
}
|
|
|
|
// Assign pointer id using tracking id if available.
|
|
if (havePointerIds) {
|
|
int32_t id;
|
|
if (mUsingSlotsProtocol) {
|
|
id = inIndex;
|
|
} else if (fields & Accumulator::FIELD_ABS_MT_TRACKING_ID) {
|
|
id = inSlot.absMTTrackingId;
|
|
} else {
|
|
id = -1;
|
|
}
|
|
|
|
if (id >= 0 && id <= MAX_POINTER_ID) {
|
|
outPointer.id = id;
|
|
mCurrentTouch.idToIndex[id] = outCount;
|
|
mCurrentTouch.idBits.markBit(id);
|
|
} else {
|
|
if (id >= 0) {
|
|
#if DEBUG_POINTERS
|
|
LOGD("Pointers: Ignoring driver provided slot index or tracking id %d because "
|
|
"it is larger than the maximum supported pointer id %d",
|
|
id, MAX_POINTER_ID);
|
|
#endif
|
|
}
|
|
havePointerIds = false;
|
|
}
|
|
}
|
|
|
|
outCount += 1;
|
|
}
|
|
|
|
mCurrentTouch.pointerCount = outCount;
|
|
|
|
mButtonState = (mButtonState | mAccumulator.buttonDown) & ~mAccumulator.buttonUp;
|
|
mCurrentTouch.buttonState = mButtonState;
|
|
|
|
syncTouch(when, havePointerIds);
|
|
|
|
if (!mUsingSlotsProtocol) {
|
|
mAccumulator.clearSlots(mSlotCount);
|
|
}
|
|
mAccumulator.clearButtons();
|
|
}
|
|
|
|
void MultiTouchInputMapper::configureRawAxes() {
|
|
TouchInputMapper::configureRawAxes();
|
|
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_POSITION_X, &mRawAxes.x);
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_POSITION_Y, &mRawAxes.y);
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_TOUCH_MAJOR, &mRawAxes.touchMajor);
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_TOUCH_MINOR, &mRawAxes.touchMinor);
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_WIDTH_MAJOR, &mRawAxes.toolMajor);
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_WIDTH_MINOR, &mRawAxes.toolMinor);
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_ORIENTATION, &mRawAxes.orientation);
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_PRESSURE, &mRawAxes.pressure);
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_DISTANCE, &mRawAxes.distance);
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_TRACKING_ID, &mRawAxes.trackingId);
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_SLOT, &mRawAxes.slot);
|
|
|
|
if (mRawAxes.trackingId.valid
|
|
&& mRawAxes.slot.valid && mRawAxes.slot.minValue == 0 && mRawAxes.slot.maxValue > 0) {
|
|
mSlotCount = mRawAxes.slot.maxValue + 1;
|
|
if (mSlotCount > MAX_SLOTS) {
|
|
LOGW("MultiTouch Device %s reported %d slots but the framework "
|
|
"only supports a maximum of %d slots at this time.",
|
|
getDeviceName().string(), mSlotCount, MAX_SLOTS);
|
|
mSlotCount = MAX_SLOTS;
|
|
}
|
|
mUsingSlotsProtocol = true;
|
|
} else {
|
|
mSlotCount = MAX_POINTERS;
|
|
mUsingSlotsProtocol = false;
|
|
}
|
|
|
|
mAccumulator.allocateSlots(mSlotCount);
|
|
}
|
|
|
|
|
|
// --- JoystickInputMapper ---
|
|
|
|
JoystickInputMapper::JoystickInputMapper(InputDevice* device) :
|
|
InputMapper(device) {
|
|
}
|
|
|
|
JoystickInputMapper::~JoystickInputMapper() {
|
|
}
|
|
|
|
uint32_t JoystickInputMapper::getSources() {
|
|
return AINPUT_SOURCE_JOYSTICK;
|
|
}
|
|
|
|
void JoystickInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
|
|
InputMapper::populateDeviceInfo(info);
|
|
|
|
for (size_t i = 0; i < mAxes.size(); i++) {
|
|
const Axis& axis = mAxes.valueAt(i);
|
|
info->addMotionRange(axis.axisInfo.axis, AINPUT_SOURCE_JOYSTICK,
|
|
axis.min, axis.max, axis.flat, axis.fuzz);
|
|
if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
|
|
info->addMotionRange(axis.axisInfo.highAxis, AINPUT_SOURCE_JOYSTICK,
|
|
axis.min, axis.max, axis.flat, axis.fuzz);
|
|
}
|
|
}
|
|
}
|
|
|
|
void JoystickInputMapper::dump(String8& dump) {
|
|
dump.append(INDENT2 "Joystick Input Mapper:\n");
|
|
|
|
dump.append(INDENT3 "Axes:\n");
|
|
size_t numAxes = mAxes.size();
|
|
for (size_t i = 0; i < numAxes; i++) {
|
|
const Axis& axis = mAxes.valueAt(i);
|
|
const char* label = getAxisLabel(axis.axisInfo.axis);
|
|
if (label) {
|
|
dump.appendFormat(INDENT4 "%s", label);
|
|
} else {
|
|
dump.appendFormat(INDENT4 "%d", axis.axisInfo.axis);
|
|
}
|
|
if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
|
|
label = getAxisLabel(axis.axisInfo.highAxis);
|
|
if (label) {
|
|
dump.appendFormat(" / %s (split at %d)", label, axis.axisInfo.splitValue);
|
|
} else {
|
|
dump.appendFormat(" / %d (split at %d)", axis.axisInfo.highAxis,
|
|
axis.axisInfo.splitValue);
|
|
}
|
|
} else if (axis.axisInfo.mode == AxisInfo::MODE_INVERT) {
|
|
dump.append(" (invert)");
|
|
}
|
|
|
|
dump.appendFormat(": min=%0.5f, max=%0.5f, flat=%0.5f, fuzz=%0.5f\n",
|
|
axis.min, axis.max, axis.flat, axis.fuzz);
|
|
dump.appendFormat(INDENT4 " scale=%0.5f, offset=%0.5f, "
|
|
"highScale=%0.5f, highOffset=%0.5f\n",
|
|
axis.scale, axis.offset, axis.highScale, axis.highOffset);
|
|
dump.appendFormat(INDENT4 " rawAxis=%d, rawMin=%d, rawMax=%d, "
|
|
"rawFlat=%d, rawFuzz=%d, rawResolution=%d\n",
|
|
mAxes.keyAt(i), axis.rawAxisInfo.minValue, axis.rawAxisInfo.maxValue,
|
|
axis.rawAxisInfo.flat, axis.rawAxisInfo.fuzz, axis.rawAxisInfo.resolution);
|
|
}
|
|
}
|
|
|
|
void JoystickInputMapper::configure(const InputReaderConfiguration* config, uint32_t changes) {
|
|
InputMapper::configure(config, changes);
|
|
|
|
if (!changes) { // first time only
|
|
// Collect all axes.
|
|
for (int32_t abs = 0; abs <= ABS_MAX; abs++) {
|
|
RawAbsoluteAxisInfo rawAxisInfo;
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), abs, &rawAxisInfo);
|
|
if (rawAxisInfo.valid) {
|
|
// Map axis.
|
|
AxisInfo axisInfo;
|
|
bool explicitlyMapped = !getEventHub()->mapAxis(getDeviceId(), abs, &axisInfo);
|
|
if (!explicitlyMapped) {
|
|
// Axis is not explicitly mapped, will choose a generic axis later.
|
|
axisInfo.mode = AxisInfo::MODE_NORMAL;
|
|
axisInfo.axis = -1;
|
|
}
|
|
|
|
// Apply flat override.
|
|
int32_t rawFlat = axisInfo.flatOverride < 0
|
|
? rawAxisInfo.flat : axisInfo.flatOverride;
|
|
|
|
// Calculate scaling factors and limits.
|
|
Axis axis;
|
|
if (axisInfo.mode == AxisInfo::MODE_SPLIT) {
|
|
float scale = 1.0f / (axisInfo.splitValue - rawAxisInfo.minValue);
|
|
float highScale = 1.0f / (rawAxisInfo.maxValue - axisInfo.splitValue);
|
|
axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped,
|
|
scale, 0.0f, highScale, 0.0f,
|
|
0.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale);
|
|
} else if (isCenteredAxis(axisInfo.axis)) {
|
|
float scale = 2.0f / (rawAxisInfo.maxValue - rawAxisInfo.minValue);
|
|
float offset = avg(rawAxisInfo.minValue, rawAxisInfo.maxValue) * -scale;
|
|
axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped,
|
|
scale, offset, scale, offset,
|
|
-1.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale);
|
|
} else {
|
|
float scale = 1.0f / (rawAxisInfo.maxValue - rawAxisInfo.minValue);
|
|
axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped,
|
|
scale, 0.0f, scale, 0.0f,
|
|
0.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale);
|
|
}
|
|
|
|
// To eliminate noise while the joystick is at rest, filter out small variations
|
|
// in axis values up front.
|
|
axis.filter = axis.flat * 0.25f;
|
|
|
|
mAxes.add(abs, axis);
|
|
}
|
|
}
|
|
|
|
// If there are too many axes, start dropping them.
|
|
// Prefer to keep explicitly mapped axes.
|
|
if (mAxes.size() > PointerCoords::MAX_AXES) {
|
|
LOGI("Joystick '%s' has %d axes but the framework only supports a maximum of %d.",
|
|
getDeviceName().string(), mAxes.size(), PointerCoords::MAX_AXES);
|
|
pruneAxes(true);
|
|
pruneAxes(false);
|
|
}
|
|
|
|
// Assign generic axis ids to remaining axes.
|
|
int32_t nextGenericAxisId = AMOTION_EVENT_AXIS_GENERIC_1;
|
|
size_t numAxes = mAxes.size();
|
|
for (size_t i = 0; i < numAxes; i++) {
|
|
Axis& axis = mAxes.editValueAt(i);
|
|
if (axis.axisInfo.axis < 0) {
|
|
while (nextGenericAxisId <= AMOTION_EVENT_AXIS_GENERIC_16
|
|
&& haveAxis(nextGenericAxisId)) {
|
|
nextGenericAxisId += 1;
|
|
}
|
|
|
|
if (nextGenericAxisId <= AMOTION_EVENT_AXIS_GENERIC_16) {
|
|
axis.axisInfo.axis = nextGenericAxisId;
|
|
nextGenericAxisId += 1;
|
|
} else {
|
|
LOGI("Ignoring joystick '%s' axis %d because all of the generic axis ids "
|
|
"have already been assigned to other axes.",
|
|
getDeviceName().string(), mAxes.keyAt(i));
|
|
mAxes.removeItemsAt(i--);
|
|
numAxes -= 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool JoystickInputMapper::haveAxis(int32_t axisId) {
|
|
size_t numAxes = mAxes.size();
|
|
for (size_t i = 0; i < numAxes; i++) {
|
|
const Axis& axis = mAxes.valueAt(i);
|
|
if (axis.axisInfo.axis == axisId
|
|
|| (axis.axisInfo.mode == AxisInfo::MODE_SPLIT
|
|
&& axis.axisInfo.highAxis == axisId)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void JoystickInputMapper::pruneAxes(bool ignoreExplicitlyMappedAxes) {
|
|
size_t i = mAxes.size();
|
|
while (mAxes.size() > PointerCoords::MAX_AXES && i-- > 0) {
|
|
if (ignoreExplicitlyMappedAxes && mAxes.valueAt(i).explicitlyMapped) {
|
|
continue;
|
|
}
|
|
LOGI("Discarding joystick '%s' axis %d because there are too many axes.",
|
|
getDeviceName().string(), mAxes.keyAt(i));
|
|
mAxes.removeItemsAt(i);
|
|
}
|
|
}
|
|
|
|
bool JoystickInputMapper::isCenteredAxis(int32_t axis) {
|
|
switch (axis) {
|
|
case AMOTION_EVENT_AXIS_X:
|
|
case AMOTION_EVENT_AXIS_Y:
|
|
case AMOTION_EVENT_AXIS_Z:
|
|
case AMOTION_EVENT_AXIS_RX:
|
|
case AMOTION_EVENT_AXIS_RY:
|
|
case AMOTION_EVENT_AXIS_RZ:
|
|
case AMOTION_EVENT_AXIS_HAT_X:
|
|
case AMOTION_EVENT_AXIS_HAT_Y:
|
|
case AMOTION_EVENT_AXIS_ORIENTATION:
|
|
case AMOTION_EVENT_AXIS_RUDDER:
|
|
case AMOTION_EVENT_AXIS_WHEEL:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void JoystickInputMapper::reset() {
|
|
// Recenter all axes.
|
|
nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
|
|
|
|
size_t numAxes = mAxes.size();
|
|
for (size_t i = 0; i < numAxes; i++) {
|
|
Axis& axis = mAxes.editValueAt(i);
|
|
axis.resetValue();
|
|
}
|
|
|
|
sync(when, true /*force*/);
|
|
|
|
InputMapper::reset();
|
|
}
|
|
|
|
void JoystickInputMapper::process(const RawEvent* rawEvent) {
|
|
switch (rawEvent->type) {
|
|
case EV_ABS: {
|
|
ssize_t index = mAxes.indexOfKey(rawEvent->scanCode);
|
|
if (index >= 0) {
|
|
Axis& axis = mAxes.editValueAt(index);
|
|
float newValue, highNewValue;
|
|
switch (axis.axisInfo.mode) {
|
|
case AxisInfo::MODE_INVERT:
|
|
newValue = (axis.rawAxisInfo.maxValue - rawEvent->value)
|
|
* axis.scale + axis.offset;
|
|
highNewValue = 0.0f;
|
|
break;
|
|
case AxisInfo::MODE_SPLIT:
|
|
if (rawEvent->value < axis.axisInfo.splitValue) {
|
|
newValue = (axis.axisInfo.splitValue - rawEvent->value)
|
|
* axis.scale + axis.offset;
|
|
highNewValue = 0.0f;
|
|
} else if (rawEvent->value > axis.axisInfo.splitValue) {
|
|
newValue = 0.0f;
|
|
highNewValue = (rawEvent->value - axis.axisInfo.splitValue)
|
|
* axis.highScale + axis.highOffset;
|
|
} else {
|
|
newValue = 0.0f;
|
|
highNewValue = 0.0f;
|
|
}
|
|
break;
|
|
default:
|
|
newValue = rawEvent->value * axis.scale + axis.offset;
|
|
highNewValue = 0.0f;
|
|
break;
|
|
}
|
|
axis.newValue = newValue;
|
|
axis.highNewValue = highNewValue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case EV_SYN:
|
|
switch (rawEvent->scanCode) {
|
|
case SYN_REPORT:
|
|
sync(rawEvent->when, false /*force*/);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void JoystickInputMapper::sync(nsecs_t when, bool force) {
|
|
if (!filterAxes(force)) {
|
|
return;
|
|
}
|
|
|
|
int32_t metaState = mContext->getGlobalMetaState();
|
|
int32_t buttonState = 0;
|
|
|
|
PointerProperties pointerProperties;
|
|
pointerProperties.clear();
|
|
pointerProperties.id = 0;
|
|
pointerProperties.toolType = AMOTION_EVENT_TOOL_TYPE_UNKNOWN;
|
|
|
|
PointerCoords pointerCoords;
|
|
pointerCoords.clear();
|
|
|
|
size_t numAxes = mAxes.size();
|
|
for (size_t i = 0; i < numAxes; i++) {
|
|
const Axis& axis = mAxes.valueAt(i);
|
|
pointerCoords.setAxisValue(axis.axisInfo.axis, axis.currentValue);
|
|
if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
|
|
pointerCoords.setAxisValue(axis.axisInfo.highAxis, axis.highCurrentValue);
|
|
}
|
|
}
|
|
|
|
// Moving a joystick axis should not wake the devide because joysticks can
|
|
// be fairly noisy even when not in use. On the other hand, pushing a gamepad
|
|
// button will likely wake the device.
|
|
// TODO: Use the input device configuration to control this behavior more finely.
|
|
uint32_t policyFlags = 0;
|
|
|
|
getDispatcher()->notifyMotion(when, getDeviceId(), AINPUT_SOURCE_JOYSTICK, policyFlags,
|
|
AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE,
|
|
1, &pointerProperties, &pointerCoords, 0, 0, 0);
|
|
}
|
|
|
|
bool JoystickInputMapper::filterAxes(bool force) {
|
|
bool atLeastOneSignificantChange = force;
|
|
size_t numAxes = mAxes.size();
|
|
for (size_t i = 0; i < numAxes; i++) {
|
|
Axis& axis = mAxes.editValueAt(i);
|
|
if (force || hasValueChangedSignificantly(axis.filter,
|
|
axis.newValue, axis.currentValue, axis.min, axis.max)) {
|
|
axis.currentValue = axis.newValue;
|
|
atLeastOneSignificantChange = true;
|
|
}
|
|
if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
|
|
if (force || hasValueChangedSignificantly(axis.filter,
|
|
axis.highNewValue, axis.highCurrentValue, axis.min, axis.max)) {
|
|
axis.highCurrentValue = axis.highNewValue;
|
|
atLeastOneSignificantChange = true;
|
|
}
|
|
}
|
|
}
|
|
return atLeastOneSignificantChange;
|
|
}
|
|
|
|
bool JoystickInputMapper::hasValueChangedSignificantly(
|
|
float filter, float newValue, float currentValue, float min, float max) {
|
|
if (newValue != currentValue) {
|
|
// Filter out small changes in value unless the value is converging on the axis
|
|
// bounds or center point. This is intended to reduce the amount of information
|
|
// sent to applications by particularly noisy joysticks (such as PS3).
|
|
if (fabs(newValue - currentValue) > filter
|
|
|| hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, min)
|
|
|| hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, max)
|
|
|| hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, 0)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool JoystickInputMapper::hasMovedNearerToValueWithinFilteredRange(
|
|
float filter, float newValue, float currentValue, float thresholdValue) {
|
|
float newDistance = fabs(newValue - thresholdValue);
|
|
if (newDistance < filter) {
|
|
float oldDistance = fabs(currentValue - thresholdValue);
|
|
if (newDistance < oldDistance) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
} // namespace android
|