Shouldn't reset the current slot index to 0 after each SYN_REPORT. Change-Id: I370e4770f8ae0ce598369ecbaf64772c13e02d46
5930 lines
231 KiB
C++
5930 lines
231 KiB
C++
/*
|
|
* Copyright (C) 2010 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "InputReader"
|
|
|
|
//#define LOG_NDEBUG 0
|
|
|
|
// Log debug messages for each raw event received from the EventHub.
|
|
#define DEBUG_RAW_EVENTS 0
|
|
|
|
// Log debug messages about touch screen filtering hacks.
|
|
#define DEBUG_HACKS 0
|
|
|
|
// Log debug messages about virtual key processing.
|
|
#define DEBUG_VIRTUAL_KEYS 0
|
|
|
|
// Log debug messages about pointers.
|
|
#define DEBUG_POINTERS 0
|
|
|
|
// Log debug messages about pointer assignment calculations.
|
|
#define DEBUG_POINTER_ASSIGNMENT 0
|
|
|
|
// Log debug messages about gesture detection.
|
|
#define DEBUG_GESTURES 0
|
|
|
|
#include "InputReader.h"
|
|
|
|
#include <cutils/log.h>
|
|
#include <ui/Keyboard.h>
|
|
#include <ui/VirtualKeyMap.h>
|
|
|
|
#include <stddef.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <errno.h>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
|
|
#define INDENT " "
|
|
#define INDENT2 " "
|
|
#define INDENT3 " "
|
|
#define INDENT4 " "
|
|
|
|
namespace android {
|
|
|
|
// --- Constants ---
|
|
|
|
// Maximum number of slots supported when using the slot-based Multitouch Protocol B.
|
|
static const size_t MAX_SLOTS = 32;
|
|
|
|
// Quiet time between certain gesture transitions.
|
|
// Time to allow for all fingers or buttons to settle into a stable state before
|
|
// starting a new gesture.
|
|
static const nsecs_t QUIET_INTERVAL = 100 * 1000000; // 100 ms
|
|
|
|
// The minimum speed that a pointer must travel for us to consider switching the active
|
|
// touch pointer to it during a drag. This threshold is set to avoid switching due
|
|
// to noise from a finger resting on the touch pad (perhaps just pressing it down).
|
|
static const float DRAG_MIN_SWITCH_SPEED = 50.0f; // pixels per second
|
|
|
|
// Tap gesture delay time.
|
|
// The time between down and up must be less than this to be considered a tap.
|
|
static const nsecs_t TAP_INTERVAL = 150 * 1000000; // 150 ms
|
|
|
|
// Tap drag gesture delay time.
|
|
// The time between up and the next up must be greater than this to be considered a
|
|
// drag. Otherwise, the previous tap is finished and a new tap begins.
|
|
static const nsecs_t TAP_DRAG_INTERVAL = 150 * 1000000; // 150 ms
|
|
|
|
// The distance in pixels that the pointer is allowed to move from initial down
|
|
// to up and still be called a tap.
|
|
static const float TAP_SLOP = 10.0f; // 10 pixels
|
|
|
|
// Time after the first touch points go down to settle on an initial centroid.
|
|
// This is intended to be enough time to handle cases where the user puts down two
|
|
// fingers at almost but not quite exactly the same time.
|
|
static const nsecs_t MULTITOUCH_SETTLE_INTERVAL = 100 * 1000000; // 100ms
|
|
|
|
// The transition from PRESS to SWIPE or FREEFORM gesture mode is made when
|
|
// both of the pointers are moving at least this fast.
|
|
static const float MULTITOUCH_MIN_SPEED = 150.0f; // pixels per second
|
|
|
|
// The transition from PRESS to SWIPE gesture mode can only occur when the
|
|
// cosine of the angle between the two vectors is greater than or equal to than this value
|
|
// which indicates that the vectors are oriented in the same direction.
|
|
// When the vectors are oriented in the exactly same direction, the cosine is 1.0.
|
|
// (In exactly opposite directions, the cosine is -1.0.)
|
|
static const float SWIPE_TRANSITION_ANGLE_COSINE = 0.5f; // cosine of 45 degrees
|
|
|
|
// The transition from PRESS to SWIPE gesture mode can only occur when the
|
|
// fingers are no more than this far apart relative to the diagonal size of
|
|
// the touch pad. For example, a ratio of 0.5 means that the fingers must be
|
|
// no more than half the diagonal size of the touch pad apart.
|
|
static const float SWIPE_MAX_WIDTH_RATIO = 0.333f; // 1/3
|
|
|
|
// The gesture movement speed factor relative to the size of the display.
|
|
// Movement speed applies when the fingers are moving in the same direction.
|
|
// Without acceleration, a full swipe of the touch pad diagonal in movement mode
|
|
// will cover this portion of the display diagonal.
|
|
static const float GESTURE_MOVEMENT_SPEED_RATIO = 0.8f;
|
|
|
|
// The gesture zoom speed factor relative to the size of the display.
|
|
// Zoom speed applies when the fingers are mostly moving relative to each other
|
|
// to execute a scale gesture or similar.
|
|
// Without acceleration, a full swipe of the touch pad diagonal in zoom mode
|
|
// will cover this portion of the display diagonal.
|
|
static const float GESTURE_ZOOM_SPEED_RATIO = 0.3f;
|
|
|
|
|
|
// --- Static Functions ---
|
|
|
|
template<typename T>
|
|
inline static T abs(const T& value) {
|
|
return value < 0 ? - value : value;
|
|
}
|
|
|
|
template<typename T>
|
|
inline static T min(const T& a, const T& b) {
|
|
return a < b ? a : b;
|
|
}
|
|
|
|
template<typename T>
|
|
inline static void swap(T& a, T& b) {
|
|
T temp = a;
|
|
a = b;
|
|
b = temp;
|
|
}
|
|
|
|
inline static float avg(float x, float y) {
|
|
return (x + y) / 2;
|
|
}
|
|
|
|
inline static float distance(float x1, float y1, float x2, float y2) {
|
|
return hypotf(x1 - x2, y1 - y2);
|
|
}
|
|
|
|
inline static int32_t signExtendNybble(int32_t value) {
|
|
return value >= 8 ? value - 16 : value;
|
|
}
|
|
|
|
static inline const char* toString(bool value) {
|
|
return value ? "true" : "false";
|
|
}
|
|
|
|
static int32_t rotateValueUsingRotationMap(int32_t value, int32_t orientation,
|
|
const int32_t map[][4], size_t mapSize) {
|
|
if (orientation != DISPLAY_ORIENTATION_0) {
|
|
for (size_t i = 0; i < mapSize; i++) {
|
|
if (value == map[i][0]) {
|
|
return map[i][orientation];
|
|
}
|
|
}
|
|
}
|
|
return value;
|
|
}
|
|
|
|
static const int32_t keyCodeRotationMap[][4] = {
|
|
// key codes enumerated counter-clockwise with the original (unrotated) key first
|
|
// no rotation, 90 degree rotation, 180 degree rotation, 270 degree rotation
|
|
{ AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT },
|
|
{ AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN },
|
|
{ AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT },
|
|
{ AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP },
|
|
};
|
|
static const size_t keyCodeRotationMapSize =
|
|
sizeof(keyCodeRotationMap) / sizeof(keyCodeRotationMap[0]);
|
|
|
|
int32_t rotateKeyCode(int32_t keyCode, int32_t orientation) {
|
|
return rotateValueUsingRotationMap(keyCode, orientation,
|
|
keyCodeRotationMap, keyCodeRotationMapSize);
|
|
}
|
|
|
|
static const int32_t edgeFlagRotationMap[][4] = {
|
|
// edge flags enumerated counter-clockwise with the original (unrotated) edge flag first
|
|
// no rotation, 90 degree rotation, 180 degree rotation, 270 degree rotation
|
|
{ AMOTION_EVENT_EDGE_FLAG_BOTTOM, AMOTION_EVENT_EDGE_FLAG_RIGHT,
|
|
AMOTION_EVENT_EDGE_FLAG_TOP, AMOTION_EVENT_EDGE_FLAG_LEFT },
|
|
{ AMOTION_EVENT_EDGE_FLAG_RIGHT, AMOTION_EVENT_EDGE_FLAG_TOP,
|
|
AMOTION_EVENT_EDGE_FLAG_LEFT, AMOTION_EVENT_EDGE_FLAG_BOTTOM },
|
|
{ AMOTION_EVENT_EDGE_FLAG_TOP, AMOTION_EVENT_EDGE_FLAG_LEFT,
|
|
AMOTION_EVENT_EDGE_FLAG_BOTTOM, AMOTION_EVENT_EDGE_FLAG_RIGHT },
|
|
{ AMOTION_EVENT_EDGE_FLAG_LEFT, AMOTION_EVENT_EDGE_FLAG_BOTTOM,
|
|
AMOTION_EVENT_EDGE_FLAG_RIGHT, AMOTION_EVENT_EDGE_FLAG_TOP },
|
|
};
|
|
static const size_t edgeFlagRotationMapSize =
|
|
sizeof(edgeFlagRotationMap) / sizeof(edgeFlagRotationMap[0]);
|
|
|
|
static int32_t rotateEdgeFlag(int32_t edgeFlag, int32_t orientation) {
|
|
return rotateValueUsingRotationMap(edgeFlag, orientation,
|
|
edgeFlagRotationMap, edgeFlagRotationMapSize);
|
|
}
|
|
|
|
static inline bool sourcesMatchMask(uint32_t sources, uint32_t sourceMask) {
|
|
return (sources & sourceMask & ~ AINPUT_SOURCE_CLASS_MASK) != 0;
|
|
}
|
|
|
|
static uint32_t getButtonStateForScanCode(int32_t scanCode) {
|
|
// Currently all buttons are mapped to the primary button.
|
|
switch (scanCode) {
|
|
case BTN_LEFT:
|
|
return AMOTION_EVENT_BUTTON_PRIMARY;
|
|
case BTN_RIGHT:
|
|
return AMOTION_EVENT_BUTTON_SECONDARY;
|
|
case BTN_MIDDLE:
|
|
return AMOTION_EVENT_BUTTON_TERTIARY;
|
|
case BTN_SIDE:
|
|
return AMOTION_EVENT_BUTTON_BACK;
|
|
case BTN_EXTRA:
|
|
return AMOTION_EVENT_BUTTON_FORWARD;
|
|
case BTN_FORWARD:
|
|
return AMOTION_EVENT_BUTTON_FORWARD;
|
|
case BTN_BACK:
|
|
return AMOTION_EVENT_BUTTON_BACK;
|
|
case BTN_TASK:
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// Returns true if the pointer should be reported as being down given the specified
|
|
// button states. This determines whether the event is reported as a touch event.
|
|
static bool isPointerDown(int32_t buttonState) {
|
|
return buttonState &
|
|
(AMOTION_EVENT_BUTTON_PRIMARY | AMOTION_EVENT_BUTTON_SECONDARY
|
|
| AMOTION_EVENT_BUTTON_TERTIARY
|
|
| AMOTION_EVENT_BUTTON_ERASER);
|
|
}
|
|
|
|
static int32_t calculateEdgeFlagsUsingPointerBounds(
|
|
const sp<PointerControllerInterface>& pointerController, float x, float y) {
|
|
int32_t edgeFlags = 0;
|
|
float minX, minY, maxX, maxY;
|
|
if (pointerController->getBounds(&minX, &minY, &maxX, &maxY)) {
|
|
if (x <= minX) {
|
|
edgeFlags |= AMOTION_EVENT_EDGE_FLAG_LEFT;
|
|
} else if (x >= maxX) {
|
|
edgeFlags |= AMOTION_EVENT_EDGE_FLAG_RIGHT;
|
|
}
|
|
if (y <= minY) {
|
|
edgeFlags |= AMOTION_EVENT_EDGE_FLAG_TOP;
|
|
} else if (y >= maxY) {
|
|
edgeFlags |= AMOTION_EVENT_EDGE_FLAG_BOTTOM;
|
|
}
|
|
}
|
|
return edgeFlags;
|
|
}
|
|
|
|
static void clampPositionUsingPointerBounds(
|
|
const sp<PointerControllerInterface>& pointerController, float* x, float* y) {
|
|
float minX, minY, maxX, maxY;
|
|
if (pointerController->getBounds(&minX, &minY, &maxX, &maxY)) {
|
|
if (*x < minX) {
|
|
*x = minX;
|
|
} else if (*x > maxX) {
|
|
*x = maxX;
|
|
}
|
|
if (*y < minY) {
|
|
*y = minY;
|
|
} else if (*y > maxY) {
|
|
*y = maxY;
|
|
}
|
|
}
|
|
}
|
|
|
|
static float calculateCommonVector(float a, float b) {
|
|
if (a > 0 && b > 0) {
|
|
return a < b ? a : b;
|
|
} else if (a < 0 && b < 0) {
|
|
return a > b ? a : b;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void synthesizeButtonKey(InputReaderContext* context, int32_t action,
|
|
nsecs_t when, int32_t deviceId, uint32_t source,
|
|
uint32_t policyFlags, int32_t lastButtonState, int32_t currentButtonState,
|
|
int32_t buttonState, int32_t keyCode) {
|
|
if (
|
|
(action == AKEY_EVENT_ACTION_DOWN
|
|
&& !(lastButtonState & buttonState)
|
|
&& (currentButtonState & buttonState))
|
|
|| (action == AKEY_EVENT_ACTION_UP
|
|
&& (lastButtonState & buttonState)
|
|
&& !(currentButtonState & buttonState))) {
|
|
context->getDispatcher()->notifyKey(when, deviceId, source, policyFlags,
|
|
action, 0, keyCode, 0, context->getGlobalMetaState(), when);
|
|
}
|
|
}
|
|
|
|
static void synthesizeButtonKeys(InputReaderContext* context, int32_t action,
|
|
nsecs_t when, int32_t deviceId, uint32_t source,
|
|
uint32_t policyFlags, int32_t lastButtonState, int32_t currentButtonState) {
|
|
synthesizeButtonKey(context, action, when, deviceId, source, policyFlags,
|
|
lastButtonState, currentButtonState,
|
|
AMOTION_EVENT_BUTTON_BACK, AKEYCODE_BACK);
|
|
synthesizeButtonKey(context, action, when, deviceId, source, policyFlags,
|
|
lastButtonState, currentButtonState,
|
|
AMOTION_EVENT_BUTTON_FORWARD, AKEYCODE_FORWARD);
|
|
}
|
|
|
|
|
|
// --- InputReader ---
|
|
|
|
InputReader::InputReader(const sp<EventHubInterface>& eventHub,
|
|
const sp<InputReaderPolicyInterface>& policy,
|
|
const sp<InputDispatcherInterface>& dispatcher) :
|
|
mEventHub(eventHub), mPolicy(policy), mDispatcher(dispatcher),
|
|
mGlobalMetaState(0), mDisableVirtualKeysTimeout(LLONG_MIN), mNextTimeout(LLONG_MAX) {
|
|
configureExcludedDevices();
|
|
updateGlobalMetaState();
|
|
updateInputConfiguration();
|
|
}
|
|
|
|
InputReader::~InputReader() {
|
|
for (size_t i = 0; i < mDevices.size(); i++) {
|
|
delete mDevices.valueAt(i);
|
|
}
|
|
}
|
|
|
|
void InputReader::loopOnce() {
|
|
int32_t timeoutMillis = -1;
|
|
if (mNextTimeout != LLONG_MAX) {
|
|
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
|
|
timeoutMillis = toMillisecondTimeoutDelay(now, mNextTimeout);
|
|
}
|
|
|
|
size_t count = mEventHub->getEvents(timeoutMillis, mEventBuffer, EVENT_BUFFER_SIZE);
|
|
if (count) {
|
|
processEvents(mEventBuffer, count);
|
|
}
|
|
if (!count || timeoutMillis == 0) {
|
|
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
|
|
#if DEBUG_RAW_EVENTS
|
|
LOGD("Timeout expired, latency=%0.3fms", (now - mNextTimeout) * 0.000001f);
|
|
#endif
|
|
mNextTimeout = LLONG_MAX;
|
|
timeoutExpired(now);
|
|
}
|
|
}
|
|
|
|
void InputReader::processEvents(const RawEvent* rawEvents, size_t count) {
|
|
for (const RawEvent* rawEvent = rawEvents; count;) {
|
|
int32_t type = rawEvent->type;
|
|
size_t batchSize = 1;
|
|
if (type < EventHubInterface::FIRST_SYNTHETIC_EVENT) {
|
|
int32_t deviceId = rawEvent->deviceId;
|
|
while (batchSize < count) {
|
|
if (rawEvent[batchSize].type >= EventHubInterface::FIRST_SYNTHETIC_EVENT
|
|
|| rawEvent[batchSize].deviceId != deviceId) {
|
|
break;
|
|
}
|
|
batchSize += 1;
|
|
}
|
|
#if DEBUG_RAW_EVENTS
|
|
LOGD("BatchSize: %d Count: %d", batchSize, count);
|
|
#endif
|
|
processEventsForDevice(deviceId, rawEvent, batchSize);
|
|
} else {
|
|
switch (rawEvent->type) {
|
|
case EventHubInterface::DEVICE_ADDED:
|
|
addDevice(rawEvent->deviceId);
|
|
break;
|
|
case EventHubInterface::DEVICE_REMOVED:
|
|
removeDevice(rawEvent->deviceId);
|
|
break;
|
|
case EventHubInterface::FINISHED_DEVICE_SCAN:
|
|
handleConfigurationChanged(rawEvent->when);
|
|
break;
|
|
default:
|
|
LOG_ASSERT(false); // can't happen
|
|
break;
|
|
}
|
|
}
|
|
count -= batchSize;
|
|
rawEvent += batchSize;
|
|
}
|
|
}
|
|
|
|
void InputReader::addDevice(int32_t deviceId) {
|
|
String8 name = mEventHub->getDeviceName(deviceId);
|
|
uint32_t classes = mEventHub->getDeviceClasses(deviceId);
|
|
|
|
InputDevice* device = createDevice(deviceId, name, classes);
|
|
device->configure();
|
|
|
|
if (device->isIgnored()) {
|
|
LOGI("Device added: id=%d, name='%s' (ignored non-input device)", deviceId, name.string());
|
|
} else {
|
|
LOGI("Device added: id=%d, name='%s', sources=0x%08x", deviceId, name.string(),
|
|
device->getSources());
|
|
}
|
|
|
|
bool added = false;
|
|
{ // acquire device registry writer lock
|
|
RWLock::AutoWLock _wl(mDeviceRegistryLock);
|
|
|
|
ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
|
|
if (deviceIndex < 0) {
|
|
mDevices.add(deviceId, device);
|
|
added = true;
|
|
}
|
|
} // release device registry writer lock
|
|
|
|
if (! added) {
|
|
LOGW("Ignoring spurious device added event for deviceId %d.", deviceId);
|
|
delete device;
|
|
return;
|
|
}
|
|
}
|
|
|
|
void InputReader::removeDevice(int32_t deviceId) {
|
|
bool removed = false;
|
|
InputDevice* device = NULL;
|
|
{ // acquire device registry writer lock
|
|
RWLock::AutoWLock _wl(mDeviceRegistryLock);
|
|
|
|
ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
|
|
if (deviceIndex >= 0) {
|
|
device = mDevices.valueAt(deviceIndex);
|
|
mDevices.removeItemsAt(deviceIndex, 1);
|
|
removed = true;
|
|
}
|
|
} // release device registry writer lock
|
|
|
|
if (! removed) {
|
|
LOGW("Ignoring spurious device removed event for deviceId %d.", deviceId);
|
|
return;
|
|
}
|
|
|
|
if (device->isIgnored()) {
|
|
LOGI("Device removed: id=%d, name='%s' (ignored non-input device)",
|
|
device->getId(), device->getName().string());
|
|
} else {
|
|
LOGI("Device removed: id=%d, name='%s', sources=0x%08x",
|
|
device->getId(), device->getName().string(), device->getSources());
|
|
}
|
|
|
|
device->reset();
|
|
|
|
delete device;
|
|
}
|
|
|
|
InputDevice* InputReader::createDevice(int32_t deviceId, const String8& name, uint32_t classes) {
|
|
InputDevice* device = new InputDevice(this, deviceId, name);
|
|
|
|
// External devices.
|
|
if (classes & INPUT_DEVICE_CLASS_EXTERNAL) {
|
|
device->setExternal(true);
|
|
}
|
|
|
|
// Switch-like devices.
|
|
if (classes & INPUT_DEVICE_CLASS_SWITCH) {
|
|
device->addMapper(new SwitchInputMapper(device));
|
|
}
|
|
|
|
// Keyboard-like devices.
|
|
uint32_t keyboardSource = 0;
|
|
int32_t keyboardType = AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC;
|
|
if (classes & INPUT_DEVICE_CLASS_KEYBOARD) {
|
|
keyboardSource |= AINPUT_SOURCE_KEYBOARD;
|
|
}
|
|
if (classes & INPUT_DEVICE_CLASS_ALPHAKEY) {
|
|
keyboardType = AINPUT_KEYBOARD_TYPE_ALPHABETIC;
|
|
}
|
|
if (classes & INPUT_DEVICE_CLASS_DPAD) {
|
|
keyboardSource |= AINPUT_SOURCE_DPAD;
|
|
}
|
|
if (classes & INPUT_DEVICE_CLASS_GAMEPAD) {
|
|
keyboardSource |= AINPUT_SOURCE_GAMEPAD;
|
|
}
|
|
|
|
if (keyboardSource != 0) {
|
|
device->addMapper(new KeyboardInputMapper(device, keyboardSource, keyboardType));
|
|
}
|
|
|
|
// Cursor-like devices.
|
|
if (classes & INPUT_DEVICE_CLASS_CURSOR) {
|
|
device->addMapper(new CursorInputMapper(device));
|
|
}
|
|
|
|
// Touchscreens and touchpad devices.
|
|
if (classes & INPUT_DEVICE_CLASS_TOUCH_MT) {
|
|
device->addMapper(new MultiTouchInputMapper(device));
|
|
} else if (classes & INPUT_DEVICE_CLASS_TOUCH) {
|
|
device->addMapper(new SingleTouchInputMapper(device));
|
|
}
|
|
|
|
// Joystick-like devices.
|
|
if (classes & INPUT_DEVICE_CLASS_JOYSTICK) {
|
|
device->addMapper(new JoystickInputMapper(device));
|
|
}
|
|
|
|
return device;
|
|
}
|
|
|
|
void InputReader::processEventsForDevice(int32_t deviceId,
|
|
const RawEvent* rawEvents, size_t count) {
|
|
{ // acquire device registry reader lock
|
|
RWLock::AutoRLock _rl(mDeviceRegistryLock);
|
|
|
|
ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
|
|
if (deviceIndex < 0) {
|
|
LOGW("Discarding event for unknown deviceId %d.", deviceId);
|
|
return;
|
|
}
|
|
|
|
InputDevice* device = mDevices.valueAt(deviceIndex);
|
|
if (device->isIgnored()) {
|
|
//LOGD("Discarding event for ignored deviceId %d.", deviceId);
|
|
return;
|
|
}
|
|
|
|
device->process(rawEvents, count);
|
|
} // release device registry reader lock
|
|
}
|
|
|
|
void InputReader::timeoutExpired(nsecs_t when) {
|
|
{ // acquire device registry reader lock
|
|
RWLock::AutoRLock _rl(mDeviceRegistryLock);
|
|
|
|
for (size_t i = 0; i < mDevices.size(); i++) {
|
|
InputDevice* device = mDevices.valueAt(i);
|
|
if (!device->isIgnored()) {
|
|
device->timeoutExpired(when);
|
|
}
|
|
}
|
|
} // release device registry reader lock
|
|
}
|
|
|
|
void InputReader::handleConfigurationChanged(nsecs_t when) {
|
|
// Reset global meta state because it depends on the list of all configured devices.
|
|
updateGlobalMetaState();
|
|
|
|
// Update input configuration.
|
|
updateInputConfiguration();
|
|
|
|
// Enqueue configuration changed.
|
|
mDispatcher->notifyConfigurationChanged(when);
|
|
}
|
|
|
|
void InputReader::configureExcludedDevices() {
|
|
Vector<String8> excludedDeviceNames;
|
|
mPolicy->getExcludedDeviceNames(excludedDeviceNames);
|
|
|
|
for (size_t i = 0; i < excludedDeviceNames.size(); i++) {
|
|
mEventHub->addExcludedDevice(excludedDeviceNames[i]);
|
|
}
|
|
}
|
|
|
|
void InputReader::updateGlobalMetaState() {
|
|
{ // acquire state lock
|
|
AutoMutex _l(mStateLock);
|
|
|
|
mGlobalMetaState = 0;
|
|
|
|
{ // acquire device registry reader lock
|
|
RWLock::AutoRLock _rl(mDeviceRegistryLock);
|
|
|
|
for (size_t i = 0; i < mDevices.size(); i++) {
|
|
InputDevice* device = mDevices.valueAt(i);
|
|
mGlobalMetaState |= device->getMetaState();
|
|
}
|
|
} // release device registry reader lock
|
|
} // release state lock
|
|
}
|
|
|
|
int32_t InputReader::getGlobalMetaState() {
|
|
{ // acquire state lock
|
|
AutoMutex _l(mStateLock);
|
|
|
|
return mGlobalMetaState;
|
|
} // release state lock
|
|
}
|
|
|
|
void InputReader::updateInputConfiguration() {
|
|
{ // acquire state lock
|
|
AutoMutex _l(mStateLock);
|
|
|
|
int32_t touchScreenConfig = InputConfiguration::TOUCHSCREEN_NOTOUCH;
|
|
int32_t keyboardConfig = InputConfiguration::KEYBOARD_NOKEYS;
|
|
int32_t navigationConfig = InputConfiguration::NAVIGATION_NONAV;
|
|
{ // acquire device registry reader lock
|
|
RWLock::AutoRLock _rl(mDeviceRegistryLock);
|
|
|
|
InputDeviceInfo deviceInfo;
|
|
for (size_t i = 0; i < mDevices.size(); i++) {
|
|
InputDevice* device = mDevices.valueAt(i);
|
|
device->getDeviceInfo(& deviceInfo);
|
|
uint32_t sources = deviceInfo.getSources();
|
|
|
|
if ((sources & AINPUT_SOURCE_TOUCHSCREEN) == AINPUT_SOURCE_TOUCHSCREEN) {
|
|
touchScreenConfig = InputConfiguration::TOUCHSCREEN_FINGER;
|
|
}
|
|
if ((sources & AINPUT_SOURCE_TRACKBALL) == AINPUT_SOURCE_TRACKBALL) {
|
|
navigationConfig = InputConfiguration::NAVIGATION_TRACKBALL;
|
|
} else if ((sources & AINPUT_SOURCE_DPAD) == AINPUT_SOURCE_DPAD) {
|
|
navigationConfig = InputConfiguration::NAVIGATION_DPAD;
|
|
}
|
|
if (deviceInfo.getKeyboardType() == AINPUT_KEYBOARD_TYPE_ALPHABETIC) {
|
|
keyboardConfig = InputConfiguration::KEYBOARD_QWERTY;
|
|
}
|
|
}
|
|
} // release device registry reader lock
|
|
|
|
mInputConfiguration.touchScreen = touchScreenConfig;
|
|
mInputConfiguration.keyboard = keyboardConfig;
|
|
mInputConfiguration.navigation = navigationConfig;
|
|
} // release state lock
|
|
}
|
|
|
|
void InputReader::disableVirtualKeysUntil(nsecs_t time) {
|
|
mDisableVirtualKeysTimeout = time;
|
|
}
|
|
|
|
bool InputReader::shouldDropVirtualKey(nsecs_t now,
|
|
InputDevice* device, int32_t keyCode, int32_t scanCode) {
|
|
if (now < mDisableVirtualKeysTimeout) {
|
|
LOGI("Dropping virtual key from device %s because virtual keys are "
|
|
"temporarily disabled for the next %0.3fms. keyCode=%d, scanCode=%d",
|
|
device->getName().string(),
|
|
(mDisableVirtualKeysTimeout - now) * 0.000001,
|
|
keyCode, scanCode);
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void InputReader::fadePointer() {
|
|
{ // acquire device registry reader lock
|
|
RWLock::AutoRLock _rl(mDeviceRegistryLock);
|
|
|
|
for (size_t i = 0; i < mDevices.size(); i++) {
|
|
InputDevice* device = mDevices.valueAt(i);
|
|
device->fadePointer();
|
|
}
|
|
} // release device registry reader lock
|
|
}
|
|
|
|
void InputReader::requestTimeoutAtTime(nsecs_t when) {
|
|
if (when < mNextTimeout) {
|
|
mNextTimeout = when;
|
|
}
|
|
}
|
|
|
|
void InputReader::getInputConfiguration(InputConfiguration* outConfiguration) {
|
|
{ // acquire state lock
|
|
AutoMutex _l(mStateLock);
|
|
|
|
*outConfiguration = mInputConfiguration;
|
|
} // release state lock
|
|
}
|
|
|
|
status_t InputReader::getInputDeviceInfo(int32_t deviceId, InputDeviceInfo* outDeviceInfo) {
|
|
{ // acquire device registry reader lock
|
|
RWLock::AutoRLock _rl(mDeviceRegistryLock);
|
|
|
|
ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
|
|
if (deviceIndex < 0) {
|
|
return NAME_NOT_FOUND;
|
|
}
|
|
|
|
InputDevice* device = mDevices.valueAt(deviceIndex);
|
|
if (device->isIgnored()) {
|
|
return NAME_NOT_FOUND;
|
|
}
|
|
|
|
device->getDeviceInfo(outDeviceInfo);
|
|
return OK;
|
|
} // release device registy reader lock
|
|
}
|
|
|
|
void InputReader::getInputDeviceIds(Vector<int32_t>& outDeviceIds) {
|
|
outDeviceIds.clear();
|
|
|
|
{ // acquire device registry reader lock
|
|
RWLock::AutoRLock _rl(mDeviceRegistryLock);
|
|
|
|
size_t numDevices = mDevices.size();
|
|
for (size_t i = 0; i < numDevices; i++) {
|
|
InputDevice* device = mDevices.valueAt(i);
|
|
if (! device->isIgnored()) {
|
|
outDeviceIds.add(device->getId());
|
|
}
|
|
}
|
|
} // release device registy reader lock
|
|
}
|
|
|
|
int32_t InputReader::getKeyCodeState(int32_t deviceId, uint32_t sourceMask,
|
|
int32_t keyCode) {
|
|
return getState(deviceId, sourceMask, keyCode, & InputDevice::getKeyCodeState);
|
|
}
|
|
|
|
int32_t InputReader::getScanCodeState(int32_t deviceId, uint32_t sourceMask,
|
|
int32_t scanCode) {
|
|
return getState(deviceId, sourceMask, scanCode, & InputDevice::getScanCodeState);
|
|
}
|
|
|
|
int32_t InputReader::getSwitchState(int32_t deviceId, uint32_t sourceMask, int32_t switchCode) {
|
|
return getState(deviceId, sourceMask, switchCode, & InputDevice::getSwitchState);
|
|
}
|
|
|
|
int32_t InputReader::getState(int32_t deviceId, uint32_t sourceMask, int32_t code,
|
|
GetStateFunc getStateFunc) {
|
|
{ // acquire device registry reader lock
|
|
RWLock::AutoRLock _rl(mDeviceRegistryLock);
|
|
|
|
int32_t result = AKEY_STATE_UNKNOWN;
|
|
if (deviceId >= 0) {
|
|
ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
|
|
if (deviceIndex >= 0) {
|
|
InputDevice* device = mDevices.valueAt(deviceIndex);
|
|
if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
|
|
result = (device->*getStateFunc)(sourceMask, code);
|
|
}
|
|
}
|
|
} else {
|
|
size_t numDevices = mDevices.size();
|
|
for (size_t i = 0; i < numDevices; i++) {
|
|
InputDevice* device = mDevices.valueAt(i);
|
|
if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
|
|
result = (device->*getStateFunc)(sourceMask, code);
|
|
if (result >= AKEY_STATE_DOWN) {
|
|
return result;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
} // release device registy reader lock
|
|
}
|
|
|
|
bool InputReader::hasKeys(int32_t deviceId, uint32_t sourceMask,
|
|
size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) {
|
|
memset(outFlags, 0, numCodes);
|
|
return markSupportedKeyCodes(deviceId, sourceMask, numCodes, keyCodes, outFlags);
|
|
}
|
|
|
|
bool InputReader::markSupportedKeyCodes(int32_t deviceId, uint32_t sourceMask, size_t numCodes,
|
|
const int32_t* keyCodes, uint8_t* outFlags) {
|
|
{ // acquire device registry reader lock
|
|
RWLock::AutoRLock _rl(mDeviceRegistryLock);
|
|
bool result = false;
|
|
if (deviceId >= 0) {
|
|
ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
|
|
if (deviceIndex >= 0) {
|
|
InputDevice* device = mDevices.valueAt(deviceIndex);
|
|
if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
|
|
result = device->markSupportedKeyCodes(sourceMask,
|
|
numCodes, keyCodes, outFlags);
|
|
}
|
|
}
|
|
} else {
|
|
size_t numDevices = mDevices.size();
|
|
for (size_t i = 0; i < numDevices; i++) {
|
|
InputDevice* device = mDevices.valueAt(i);
|
|
if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
|
|
result |= device->markSupportedKeyCodes(sourceMask,
|
|
numCodes, keyCodes, outFlags);
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
} // release device registy reader lock
|
|
}
|
|
|
|
void InputReader::dump(String8& dump) {
|
|
mEventHub->dump(dump);
|
|
dump.append("\n");
|
|
|
|
dump.append("Input Reader State:\n");
|
|
|
|
{ // acquire device registry reader lock
|
|
RWLock::AutoRLock _rl(mDeviceRegistryLock);
|
|
|
|
for (size_t i = 0; i < mDevices.size(); i++) {
|
|
mDevices.valueAt(i)->dump(dump);
|
|
}
|
|
} // release device registy reader lock
|
|
}
|
|
|
|
|
|
// --- InputReaderThread ---
|
|
|
|
InputReaderThread::InputReaderThread(const sp<InputReaderInterface>& reader) :
|
|
Thread(/*canCallJava*/ true), mReader(reader) {
|
|
}
|
|
|
|
InputReaderThread::~InputReaderThread() {
|
|
}
|
|
|
|
bool InputReaderThread::threadLoop() {
|
|
mReader->loopOnce();
|
|
return true;
|
|
}
|
|
|
|
|
|
// --- InputDevice ---
|
|
|
|
InputDevice::InputDevice(InputReaderContext* context, int32_t id, const String8& name) :
|
|
mContext(context), mId(id), mName(name), mSources(0),
|
|
mIsExternal(false), mDropUntilNextSync(false) {
|
|
}
|
|
|
|
InputDevice::~InputDevice() {
|
|
size_t numMappers = mMappers.size();
|
|
for (size_t i = 0; i < numMappers; i++) {
|
|
delete mMappers[i];
|
|
}
|
|
mMappers.clear();
|
|
}
|
|
|
|
void InputDevice::dump(String8& dump) {
|
|
InputDeviceInfo deviceInfo;
|
|
getDeviceInfo(& deviceInfo);
|
|
|
|
dump.appendFormat(INDENT "Device %d: %s\n", deviceInfo.getId(),
|
|
deviceInfo.getName().string());
|
|
dump.appendFormat(INDENT2 "IsExternal: %s\n", toString(mIsExternal));
|
|
dump.appendFormat(INDENT2 "Sources: 0x%08x\n", deviceInfo.getSources());
|
|
dump.appendFormat(INDENT2 "KeyboardType: %d\n", deviceInfo.getKeyboardType());
|
|
|
|
const Vector<InputDeviceInfo::MotionRange>& ranges = deviceInfo.getMotionRanges();
|
|
if (!ranges.isEmpty()) {
|
|
dump.append(INDENT2 "Motion Ranges:\n");
|
|
for (size_t i = 0; i < ranges.size(); i++) {
|
|
const InputDeviceInfo::MotionRange& range = ranges.itemAt(i);
|
|
const char* label = getAxisLabel(range.axis);
|
|
char name[32];
|
|
if (label) {
|
|
strncpy(name, label, sizeof(name));
|
|
name[sizeof(name) - 1] = '\0';
|
|
} else {
|
|
snprintf(name, sizeof(name), "%d", range.axis);
|
|
}
|
|
dump.appendFormat(INDENT3 "%s: source=0x%08x, "
|
|
"min=%0.3f, max=%0.3f, flat=%0.3f, fuzz=%0.3f\n",
|
|
name, range.source, range.min, range.max, range.flat, range.fuzz);
|
|
}
|
|
}
|
|
|
|
size_t numMappers = mMappers.size();
|
|
for (size_t i = 0; i < numMappers; i++) {
|
|
InputMapper* mapper = mMappers[i];
|
|
mapper->dump(dump);
|
|
}
|
|
}
|
|
|
|
void InputDevice::addMapper(InputMapper* mapper) {
|
|
mMappers.add(mapper);
|
|
}
|
|
|
|
void InputDevice::configure() {
|
|
if (! isIgnored()) {
|
|
mContext->getEventHub()->getConfiguration(mId, &mConfiguration);
|
|
}
|
|
|
|
mSources = 0;
|
|
|
|
size_t numMappers = mMappers.size();
|
|
for (size_t i = 0; i < numMappers; i++) {
|
|
InputMapper* mapper = mMappers[i];
|
|
mapper->configure();
|
|
mSources |= mapper->getSources();
|
|
}
|
|
}
|
|
|
|
void InputDevice::reset() {
|
|
size_t numMappers = mMappers.size();
|
|
for (size_t i = 0; i < numMappers; i++) {
|
|
InputMapper* mapper = mMappers[i];
|
|
mapper->reset();
|
|
}
|
|
}
|
|
|
|
void InputDevice::process(const RawEvent* rawEvents, size_t count) {
|
|
// Process all of the events in order for each mapper.
|
|
// We cannot simply ask each mapper to process them in bulk because mappers may
|
|
// have side-effects that must be interleaved. For example, joystick movement events and
|
|
// gamepad button presses are handled by different mappers but they should be dispatched
|
|
// in the order received.
|
|
size_t numMappers = mMappers.size();
|
|
for (const RawEvent* rawEvent = rawEvents; count--; rawEvent++) {
|
|
#if DEBUG_RAW_EVENTS
|
|
LOGD("Input event: device=%d type=0x%04x scancode=0x%04x "
|
|
"keycode=0x%04x value=0x%04x flags=0x%08x",
|
|
rawEvent->deviceId, rawEvent->type, rawEvent->scanCode, rawEvent->keyCode,
|
|
rawEvent->value, rawEvent->flags);
|
|
#endif
|
|
|
|
if (mDropUntilNextSync) {
|
|
if (rawEvent->type == EV_SYN && rawEvent->scanCode == SYN_REPORT) {
|
|
mDropUntilNextSync = false;
|
|
#if DEBUG_RAW_EVENTS
|
|
LOGD("Recovered from input event buffer overrun.");
|
|
#endif
|
|
} else {
|
|
#if DEBUG_RAW_EVENTS
|
|
LOGD("Dropped input event while waiting for next input sync.");
|
|
#endif
|
|
}
|
|
} else if (rawEvent->type == EV_SYN && rawEvent->scanCode == SYN_DROPPED) {
|
|
LOGI("Detected input event buffer overrun for device %s.", mName.string());
|
|
mDropUntilNextSync = true;
|
|
reset();
|
|
} else {
|
|
for (size_t i = 0; i < numMappers; i++) {
|
|
InputMapper* mapper = mMappers[i];
|
|
mapper->process(rawEvent);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void InputDevice::timeoutExpired(nsecs_t when) {
|
|
size_t numMappers = mMappers.size();
|
|
for (size_t i = 0; i < numMappers; i++) {
|
|
InputMapper* mapper = mMappers[i];
|
|
mapper->timeoutExpired(when);
|
|
}
|
|
}
|
|
|
|
void InputDevice::getDeviceInfo(InputDeviceInfo* outDeviceInfo) {
|
|
outDeviceInfo->initialize(mId, mName);
|
|
|
|
size_t numMappers = mMappers.size();
|
|
for (size_t i = 0; i < numMappers; i++) {
|
|
InputMapper* mapper = mMappers[i];
|
|
mapper->populateDeviceInfo(outDeviceInfo);
|
|
}
|
|
}
|
|
|
|
int32_t InputDevice::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
|
|
return getState(sourceMask, keyCode, & InputMapper::getKeyCodeState);
|
|
}
|
|
|
|
int32_t InputDevice::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
|
|
return getState(sourceMask, scanCode, & InputMapper::getScanCodeState);
|
|
}
|
|
|
|
int32_t InputDevice::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
|
|
return getState(sourceMask, switchCode, & InputMapper::getSwitchState);
|
|
}
|
|
|
|
int32_t InputDevice::getState(uint32_t sourceMask, int32_t code, GetStateFunc getStateFunc) {
|
|
int32_t result = AKEY_STATE_UNKNOWN;
|
|
size_t numMappers = mMappers.size();
|
|
for (size_t i = 0; i < numMappers; i++) {
|
|
InputMapper* mapper = mMappers[i];
|
|
if (sourcesMatchMask(mapper->getSources(), sourceMask)) {
|
|
result = (mapper->*getStateFunc)(sourceMask, code);
|
|
if (result >= AKEY_STATE_DOWN) {
|
|
return result;
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool InputDevice::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
|
|
const int32_t* keyCodes, uint8_t* outFlags) {
|
|
bool result = false;
|
|
size_t numMappers = mMappers.size();
|
|
for (size_t i = 0; i < numMappers; i++) {
|
|
InputMapper* mapper = mMappers[i];
|
|
if (sourcesMatchMask(mapper->getSources(), sourceMask)) {
|
|
result |= mapper->markSupportedKeyCodes(sourceMask, numCodes, keyCodes, outFlags);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
int32_t InputDevice::getMetaState() {
|
|
int32_t result = 0;
|
|
size_t numMappers = mMappers.size();
|
|
for (size_t i = 0; i < numMappers; i++) {
|
|
InputMapper* mapper = mMappers[i];
|
|
result |= mapper->getMetaState();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void InputDevice::fadePointer() {
|
|
size_t numMappers = mMappers.size();
|
|
for (size_t i = 0; i < numMappers; i++) {
|
|
InputMapper* mapper = mMappers[i];
|
|
mapper->fadePointer();
|
|
}
|
|
}
|
|
|
|
|
|
// --- InputMapper ---
|
|
|
|
InputMapper::InputMapper(InputDevice* device) :
|
|
mDevice(device), mContext(device->getContext()) {
|
|
}
|
|
|
|
InputMapper::~InputMapper() {
|
|
}
|
|
|
|
void InputMapper::populateDeviceInfo(InputDeviceInfo* info) {
|
|
info->addSource(getSources());
|
|
}
|
|
|
|
void InputMapper::dump(String8& dump) {
|
|
}
|
|
|
|
void InputMapper::configure() {
|
|
}
|
|
|
|
void InputMapper::reset() {
|
|
}
|
|
|
|
void InputMapper::timeoutExpired(nsecs_t when) {
|
|
}
|
|
|
|
int32_t InputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
|
|
return AKEY_STATE_UNKNOWN;
|
|
}
|
|
|
|
int32_t InputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
|
|
return AKEY_STATE_UNKNOWN;
|
|
}
|
|
|
|
int32_t InputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
|
|
return AKEY_STATE_UNKNOWN;
|
|
}
|
|
|
|
bool InputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
|
|
const int32_t* keyCodes, uint8_t* outFlags) {
|
|
return false;
|
|
}
|
|
|
|
int32_t InputMapper::getMetaState() {
|
|
return 0;
|
|
}
|
|
|
|
void InputMapper::fadePointer() {
|
|
}
|
|
|
|
void InputMapper::dumpRawAbsoluteAxisInfo(String8& dump,
|
|
const RawAbsoluteAxisInfo& axis, const char* name) {
|
|
if (axis.valid) {
|
|
dump.appendFormat(INDENT4 "%s: min=%d, max=%d, flat=%d, fuzz=%d\n",
|
|
name, axis.minValue, axis.maxValue, axis.flat, axis.fuzz);
|
|
} else {
|
|
dump.appendFormat(INDENT4 "%s: unknown range\n", name);
|
|
}
|
|
}
|
|
|
|
|
|
// --- SwitchInputMapper ---
|
|
|
|
SwitchInputMapper::SwitchInputMapper(InputDevice* device) :
|
|
InputMapper(device) {
|
|
}
|
|
|
|
SwitchInputMapper::~SwitchInputMapper() {
|
|
}
|
|
|
|
uint32_t SwitchInputMapper::getSources() {
|
|
return AINPUT_SOURCE_SWITCH;
|
|
}
|
|
|
|
void SwitchInputMapper::process(const RawEvent* rawEvent) {
|
|
switch (rawEvent->type) {
|
|
case EV_SW:
|
|
processSwitch(rawEvent->when, rawEvent->scanCode, rawEvent->value);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void SwitchInputMapper::processSwitch(nsecs_t when, int32_t switchCode, int32_t switchValue) {
|
|
getDispatcher()->notifySwitch(when, switchCode, switchValue, 0);
|
|
}
|
|
|
|
int32_t SwitchInputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
|
|
return getEventHub()->getSwitchState(getDeviceId(), switchCode);
|
|
}
|
|
|
|
|
|
// --- KeyboardInputMapper ---
|
|
|
|
KeyboardInputMapper::KeyboardInputMapper(InputDevice* device,
|
|
uint32_t source, int32_t keyboardType) :
|
|
InputMapper(device), mSource(source),
|
|
mKeyboardType(keyboardType) {
|
|
initializeLocked();
|
|
}
|
|
|
|
KeyboardInputMapper::~KeyboardInputMapper() {
|
|
}
|
|
|
|
void KeyboardInputMapper::initializeLocked() {
|
|
mLocked.metaState = AMETA_NONE;
|
|
mLocked.downTime = 0;
|
|
}
|
|
|
|
uint32_t KeyboardInputMapper::getSources() {
|
|
return mSource;
|
|
}
|
|
|
|
void KeyboardInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
|
|
InputMapper::populateDeviceInfo(info);
|
|
|
|
info->setKeyboardType(mKeyboardType);
|
|
}
|
|
|
|
void KeyboardInputMapper::dump(String8& dump) {
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
dump.append(INDENT2 "Keyboard Input Mapper:\n");
|
|
dumpParameters(dump);
|
|
dump.appendFormat(INDENT3 "KeyboardType: %d\n", mKeyboardType);
|
|
dump.appendFormat(INDENT3 "KeyDowns: %d keys currently down\n", mLocked.keyDowns.size());
|
|
dump.appendFormat(INDENT3 "MetaState: 0x%0x\n", mLocked.metaState);
|
|
dump.appendFormat(INDENT3 "DownTime: %lld\n", mLocked.downTime);
|
|
} // release lock
|
|
}
|
|
|
|
|
|
void KeyboardInputMapper::configure() {
|
|
InputMapper::configure();
|
|
|
|
// Configure basic parameters.
|
|
configureParameters();
|
|
|
|
// Reset LEDs.
|
|
{
|
|
AutoMutex _l(mLock);
|
|
resetLedStateLocked();
|
|
}
|
|
}
|
|
|
|
void KeyboardInputMapper::configureParameters() {
|
|
mParameters.orientationAware = false;
|
|
getDevice()->getConfiguration().tryGetProperty(String8("keyboard.orientationAware"),
|
|
mParameters.orientationAware);
|
|
|
|
mParameters.associatedDisplayId = mParameters.orientationAware ? 0 : -1;
|
|
}
|
|
|
|
void KeyboardInputMapper::dumpParameters(String8& dump) {
|
|
dump.append(INDENT3 "Parameters:\n");
|
|
dump.appendFormat(INDENT4 "AssociatedDisplayId: %d\n",
|
|
mParameters.associatedDisplayId);
|
|
dump.appendFormat(INDENT4 "OrientationAware: %s\n",
|
|
toString(mParameters.orientationAware));
|
|
}
|
|
|
|
void KeyboardInputMapper::reset() {
|
|
for (;;) {
|
|
int32_t keyCode, scanCode;
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
// Synthesize key up event on reset if keys are currently down.
|
|
if (mLocked.keyDowns.isEmpty()) {
|
|
initializeLocked();
|
|
resetLedStateLocked();
|
|
break; // done
|
|
}
|
|
|
|
const KeyDown& keyDown = mLocked.keyDowns.top();
|
|
keyCode = keyDown.keyCode;
|
|
scanCode = keyDown.scanCode;
|
|
} // release lock
|
|
|
|
nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
|
|
processKey(when, false, keyCode, scanCode, 0);
|
|
}
|
|
|
|
InputMapper::reset();
|
|
getContext()->updateGlobalMetaState();
|
|
}
|
|
|
|
void KeyboardInputMapper::process(const RawEvent* rawEvent) {
|
|
switch (rawEvent->type) {
|
|
case EV_KEY: {
|
|
int32_t scanCode = rawEvent->scanCode;
|
|
if (isKeyboardOrGamepadKey(scanCode)) {
|
|
processKey(rawEvent->when, rawEvent->value != 0, rawEvent->keyCode, scanCode,
|
|
rawEvent->flags);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool KeyboardInputMapper::isKeyboardOrGamepadKey(int32_t scanCode) {
|
|
return scanCode < BTN_MOUSE
|
|
|| scanCode >= KEY_OK
|
|
|| (scanCode >= BTN_MISC && scanCode < BTN_MOUSE)
|
|
|| (scanCode >= BTN_JOYSTICK && scanCode < BTN_DIGI);
|
|
}
|
|
|
|
void KeyboardInputMapper::processKey(nsecs_t when, bool down, int32_t keyCode,
|
|
int32_t scanCode, uint32_t policyFlags) {
|
|
int32_t newMetaState;
|
|
nsecs_t downTime;
|
|
bool metaStateChanged = false;
|
|
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
if (down) {
|
|
// Rotate key codes according to orientation if needed.
|
|
// Note: getDisplayInfo is non-reentrant so we can continue holding the lock.
|
|
if (mParameters.orientationAware && mParameters.associatedDisplayId >= 0) {
|
|
int32_t orientation;
|
|
if (!getPolicy()->getDisplayInfo(mParameters.associatedDisplayId,
|
|
NULL, NULL, & orientation)) {
|
|
orientation = DISPLAY_ORIENTATION_0;
|
|
}
|
|
|
|
keyCode = rotateKeyCode(keyCode, orientation);
|
|
}
|
|
|
|
// Add key down.
|
|
ssize_t keyDownIndex = findKeyDownLocked(scanCode);
|
|
if (keyDownIndex >= 0) {
|
|
// key repeat, be sure to use same keycode as before in case of rotation
|
|
keyCode = mLocked.keyDowns.itemAt(keyDownIndex).keyCode;
|
|
} else {
|
|
// key down
|
|
if ((policyFlags & POLICY_FLAG_VIRTUAL)
|
|
&& mContext->shouldDropVirtualKey(when,
|
|
getDevice(), keyCode, scanCode)) {
|
|
return;
|
|
}
|
|
|
|
mLocked.keyDowns.push();
|
|
KeyDown& keyDown = mLocked.keyDowns.editTop();
|
|
keyDown.keyCode = keyCode;
|
|
keyDown.scanCode = scanCode;
|
|
}
|
|
|
|
mLocked.downTime = when;
|
|
} else {
|
|
// Remove key down.
|
|
ssize_t keyDownIndex = findKeyDownLocked(scanCode);
|
|
if (keyDownIndex >= 0) {
|
|
// key up, be sure to use same keycode as before in case of rotation
|
|
keyCode = mLocked.keyDowns.itemAt(keyDownIndex).keyCode;
|
|
mLocked.keyDowns.removeAt(size_t(keyDownIndex));
|
|
} else {
|
|
// key was not actually down
|
|
LOGI("Dropping key up from device %s because the key was not down. "
|
|
"keyCode=%d, scanCode=%d",
|
|
getDeviceName().string(), keyCode, scanCode);
|
|
return;
|
|
}
|
|
}
|
|
|
|
int32_t oldMetaState = mLocked.metaState;
|
|
newMetaState = updateMetaState(keyCode, down, oldMetaState);
|
|
if (oldMetaState != newMetaState) {
|
|
mLocked.metaState = newMetaState;
|
|
metaStateChanged = true;
|
|
updateLedStateLocked(false);
|
|
}
|
|
|
|
downTime = mLocked.downTime;
|
|
} // release lock
|
|
|
|
// Key down on external an keyboard should wake the device.
|
|
// We don't do this for internal keyboards to prevent them from waking up in your pocket.
|
|
// For internal keyboards, the key layout file should specify the policy flags for
|
|
// each wake key individually.
|
|
// TODO: Use the input device configuration to control this behavior more finely.
|
|
if (down && getDevice()->isExternal()
|
|
&& !(policyFlags & (POLICY_FLAG_WAKE | POLICY_FLAG_WAKE_DROPPED))) {
|
|
policyFlags |= POLICY_FLAG_WAKE_DROPPED;
|
|
}
|
|
|
|
if (metaStateChanged) {
|
|
getContext()->updateGlobalMetaState();
|
|
}
|
|
|
|
if (down && !isMetaKey(keyCode)) {
|
|
getContext()->fadePointer();
|
|
}
|
|
|
|
getDispatcher()->notifyKey(when, getDeviceId(), mSource, policyFlags,
|
|
down ? AKEY_EVENT_ACTION_DOWN : AKEY_EVENT_ACTION_UP,
|
|
AKEY_EVENT_FLAG_FROM_SYSTEM, keyCode, scanCode, newMetaState, downTime);
|
|
}
|
|
|
|
ssize_t KeyboardInputMapper::findKeyDownLocked(int32_t scanCode) {
|
|
size_t n = mLocked.keyDowns.size();
|
|
for (size_t i = 0; i < n; i++) {
|
|
if (mLocked.keyDowns[i].scanCode == scanCode) {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int32_t KeyboardInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
|
|
return getEventHub()->getKeyCodeState(getDeviceId(), keyCode);
|
|
}
|
|
|
|
int32_t KeyboardInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
|
|
return getEventHub()->getScanCodeState(getDeviceId(), scanCode);
|
|
}
|
|
|
|
bool KeyboardInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
|
|
const int32_t* keyCodes, uint8_t* outFlags) {
|
|
return getEventHub()->markSupportedKeyCodes(getDeviceId(), numCodes, keyCodes, outFlags);
|
|
}
|
|
|
|
int32_t KeyboardInputMapper::getMetaState() {
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
return mLocked.metaState;
|
|
} // release lock
|
|
}
|
|
|
|
void KeyboardInputMapper::resetLedStateLocked() {
|
|
initializeLedStateLocked(mLocked.capsLockLedState, LED_CAPSL);
|
|
initializeLedStateLocked(mLocked.numLockLedState, LED_NUML);
|
|
initializeLedStateLocked(mLocked.scrollLockLedState, LED_SCROLLL);
|
|
|
|
updateLedStateLocked(true);
|
|
}
|
|
|
|
void KeyboardInputMapper::initializeLedStateLocked(LockedState::LedState& ledState, int32_t led) {
|
|
ledState.avail = getEventHub()->hasLed(getDeviceId(), led);
|
|
ledState.on = false;
|
|
}
|
|
|
|
void KeyboardInputMapper::updateLedStateLocked(bool reset) {
|
|
updateLedStateForModifierLocked(mLocked.capsLockLedState, LED_CAPSL,
|
|
AMETA_CAPS_LOCK_ON, reset);
|
|
updateLedStateForModifierLocked(mLocked.numLockLedState, LED_NUML,
|
|
AMETA_NUM_LOCK_ON, reset);
|
|
updateLedStateForModifierLocked(mLocked.scrollLockLedState, LED_SCROLLL,
|
|
AMETA_SCROLL_LOCK_ON, reset);
|
|
}
|
|
|
|
void KeyboardInputMapper::updateLedStateForModifierLocked(LockedState::LedState& ledState,
|
|
int32_t led, int32_t modifier, bool reset) {
|
|
if (ledState.avail) {
|
|
bool desiredState = (mLocked.metaState & modifier) != 0;
|
|
if (reset || ledState.on != desiredState) {
|
|
getEventHub()->setLedState(getDeviceId(), led, desiredState);
|
|
ledState.on = desiredState;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// --- CursorInputMapper ---
|
|
|
|
CursorInputMapper::CursorInputMapper(InputDevice* device) :
|
|
InputMapper(device) {
|
|
initializeLocked();
|
|
}
|
|
|
|
CursorInputMapper::~CursorInputMapper() {
|
|
}
|
|
|
|
uint32_t CursorInputMapper::getSources() {
|
|
return mSource;
|
|
}
|
|
|
|
void CursorInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
|
|
InputMapper::populateDeviceInfo(info);
|
|
|
|
if (mParameters.mode == Parameters::MODE_POINTER) {
|
|
float minX, minY, maxX, maxY;
|
|
if (mPointerController->getBounds(&minX, &minY, &maxX, &maxY)) {
|
|
info->addMotionRange(AMOTION_EVENT_AXIS_X, mSource, minX, maxX, 0.0f, 0.0f);
|
|
info->addMotionRange(AMOTION_EVENT_AXIS_Y, mSource, minY, maxY, 0.0f, 0.0f);
|
|
}
|
|
} else {
|
|
info->addMotionRange(AMOTION_EVENT_AXIS_X, mSource, -1.0f, 1.0f, 0.0f, mXScale);
|
|
info->addMotionRange(AMOTION_EVENT_AXIS_Y, mSource, -1.0f, 1.0f, 0.0f, mYScale);
|
|
}
|
|
info->addMotionRange(AMOTION_EVENT_AXIS_PRESSURE, mSource, 0.0f, 1.0f, 0.0f, 0.0f);
|
|
|
|
if (mHaveVWheel) {
|
|
info->addMotionRange(AMOTION_EVENT_AXIS_VSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f);
|
|
}
|
|
if (mHaveHWheel) {
|
|
info->addMotionRange(AMOTION_EVENT_AXIS_HSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f);
|
|
}
|
|
}
|
|
|
|
void CursorInputMapper::dump(String8& dump) {
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
dump.append(INDENT2 "Cursor Input Mapper:\n");
|
|
dumpParameters(dump);
|
|
dump.appendFormat(INDENT3 "XScale: %0.3f\n", mXScale);
|
|
dump.appendFormat(INDENT3 "YScale: %0.3f\n", mYScale);
|
|
dump.appendFormat(INDENT3 "XPrecision: %0.3f\n", mXPrecision);
|
|
dump.appendFormat(INDENT3 "YPrecision: %0.3f\n", mYPrecision);
|
|
dump.appendFormat(INDENT3 "HaveVWheel: %s\n", toString(mHaveVWheel));
|
|
dump.appendFormat(INDENT3 "HaveHWheel: %s\n", toString(mHaveHWheel));
|
|
dump.appendFormat(INDENT3 "VWheelScale: %0.3f\n", mVWheelScale);
|
|
dump.appendFormat(INDENT3 "HWheelScale: %0.3f\n", mHWheelScale);
|
|
dump.appendFormat(INDENT3 "ButtonState: 0x%08x\n", mLocked.buttonState);
|
|
dump.appendFormat(INDENT3 "Down: %s\n", toString(isPointerDown(mLocked.buttonState)));
|
|
dump.appendFormat(INDENT3 "DownTime: %lld\n", mLocked.downTime);
|
|
} // release lock
|
|
}
|
|
|
|
void CursorInputMapper::configure() {
|
|
InputMapper::configure();
|
|
|
|
// Configure basic parameters.
|
|
configureParameters();
|
|
|
|
// Configure device mode.
|
|
switch (mParameters.mode) {
|
|
case Parameters::MODE_POINTER:
|
|
mSource = AINPUT_SOURCE_MOUSE;
|
|
mXPrecision = 1.0f;
|
|
mYPrecision = 1.0f;
|
|
mXScale = 1.0f;
|
|
mYScale = 1.0f;
|
|
mPointerController = getPolicy()->obtainPointerController(getDeviceId());
|
|
break;
|
|
case Parameters::MODE_NAVIGATION:
|
|
mSource = AINPUT_SOURCE_TRACKBALL;
|
|
mXPrecision = TRACKBALL_MOVEMENT_THRESHOLD;
|
|
mYPrecision = TRACKBALL_MOVEMENT_THRESHOLD;
|
|
mXScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD;
|
|
mYScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD;
|
|
break;
|
|
}
|
|
|
|
mVWheelScale = 1.0f;
|
|
mHWheelScale = 1.0f;
|
|
|
|
mHaveVWheel = getEventHub()->hasRelativeAxis(getDeviceId(), REL_WHEEL);
|
|
mHaveHWheel = getEventHub()->hasRelativeAxis(getDeviceId(), REL_HWHEEL);
|
|
}
|
|
|
|
void CursorInputMapper::configureParameters() {
|
|
mParameters.mode = Parameters::MODE_POINTER;
|
|
String8 cursorModeString;
|
|
if (getDevice()->getConfiguration().tryGetProperty(String8("cursor.mode"), cursorModeString)) {
|
|
if (cursorModeString == "navigation") {
|
|
mParameters.mode = Parameters::MODE_NAVIGATION;
|
|
} else if (cursorModeString != "pointer" && cursorModeString != "default") {
|
|
LOGW("Invalid value for cursor.mode: '%s'", cursorModeString.string());
|
|
}
|
|
}
|
|
|
|
mParameters.orientationAware = false;
|
|
getDevice()->getConfiguration().tryGetProperty(String8("cursor.orientationAware"),
|
|
mParameters.orientationAware);
|
|
|
|
mParameters.associatedDisplayId = mParameters.mode == Parameters::MODE_POINTER
|
|
|| mParameters.orientationAware ? 0 : -1;
|
|
}
|
|
|
|
void CursorInputMapper::dumpParameters(String8& dump) {
|
|
dump.append(INDENT3 "Parameters:\n");
|
|
dump.appendFormat(INDENT4 "AssociatedDisplayId: %d\n",
|
|
mParameters.associatedDisplayId);
|
|
|
|
switch (mParameters.mode) {
|
|
case Parameters::MODE_POINTER:
|
|
dump.append(INDENT4 "Mode: pointer\n");
|
|
break;
|
|
case Parameters::MODE_NAVIGATION:
|
|
dump.append(INDENT4 "Mode: navigation\n");
|
|
break;
|
|
default:
|
|
LOG_ASSERT(false);
|
|
}
|
|
|
|
dump.appendFormat(INDENT4 "OrientationAware: %s\n",
|
|
toString(mParameters.orientationAware));
|
|
}
|
|
|
|
void CursorInputMapper::initializeLocked() {
|
|
mAccumulator.clear();
|
|
|
|
mLocked.buttonState = 0;
|
|
mLocked.downTime = 0;
|
|
}
|
|
|
|
void CursorInputMapper::reset() {
|
|
for (;;) {
|
|
int32_t buttonState;
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
buttonState = mLocked.buttonState;
|
|
if (!buttonState) {
|
|
initializeLocked();
|
|
break; // done
|
|
}
|
|
} // release lock
|
|
|
|
// Synthesize button up event on reset.
|
|
nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
|
|
mAccumulator.clear();
|
|
mAccumulator.buttonDown = 0;
|
|
mAccumulator.buttonUp = buttonState;
|
|
mAccumulator.fields = Accumulator::FIELD_BUTTONS;
|
|
sync(when);
|
|
}
|
|
|
|
InputMapper::reset();
|
|
}
|
|
|
|
void CursorInputMapper::process(const RawEvent* rawEvent) {
|
|
switch (rawEvent->type) {
|
|
case EV_KEY: {
|
|
int32_t buttonState = getButtonStateForScanCode(rawEvent->scanCode);
|
|
if (buttonState) {
|
|
if (rawEvent->value) {
|
|
mAccumulator.buttonDown = buttonState;
|
|
mAccumulator.buttonUp = 0;
|
|
} else {
|
|
mAccumulator.buttonDown = 0;
|
|
mAccumulator.buttonUp = buttonState;
|
|
}
|
|
mAccumulator.fields |= Accumulator::FIELD_BUTTONS;
|
|
|
|
// Sync now since BTN_MOUSE is not necessarily followed by SYN_REPORT and
|
|
// we need to ensure that we report the up/down promptly.
|
|
sync(rawEvent->when);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case EV_REL:
|
|
switch (rawEvent->scanCode) {
|
|
case REL_X:
|
|
mAccumulator.fields |= Accumulator::FIELD_REL_X;
|
|
mAccumulator.relX = rawEvent->value;
|
|
break;
|
|
case REL_Y:
|
|
mAccumulator.fields |= Accumulator::FIELD_REL_Y;
|
|
mAccumulator.relY = rawEvent->value;
|
|
break;
|
|
case REL_WHEEL:
|
|
mAccumulator.fields |= Accumulator::FIELD_REL_WHEEL;
|
|
mAccumulator.relWheel = rawEvent->value;
|
|
break;
|
|
case REL_HWHEEL:
|
|
mAccumulator.fields |= Accumulator::FIELD_REL_HWHEEL;
|
|
mAccumulator.relHWheel = rawEvent->value;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case EV_SYN:
|
|
switch (rawEvent->scanCode) {
|
|
case SYN_REPORT:
|
|
sync(rawEvent->when);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void CursorInputMapper::sync(nsecs_t when) {
|
|
uint32_t fields = mAccumulator.fields;
|
|
if (fields == 0) {
|
|
return; // no new state changes, so nothing to do
|
|
}
|
|
|
|
int32_t motionEventAction;
|
|
int32_t motionEventEdgeFlags;
|
|
int32_t lastButtonState, currentButtonState;
|
|
PointerProperties pointerProperties;
|
|
PointerCoords pointerCoords;
|
|
nsecs_t downTime;
|
|
float vscroll, hscroll;
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
lastButtonState = mLocked.buttonState;
|
|
|
|
bool down, downChanged;
|
|
bool wasDown = isPointerDown(mLocked.buttonState);
|
|
bool buttonsChanged = fields & Accumulator::FIELD_BUTTONS;
|
|
if (buttonsChanged) {
|
|
mLocked.buttonState = (mLocked.buttonState | mAccumulator.buttonDown)
|
|
& ~mAccumulator.buttonUp;
|
|
|
|
down = isPointerDown(mLocked.buttonState);
|
|
|
|
if (!wasDown && down) {
|
|
mLocked.downTime = when;
|
|
downChanged = true;
|
|
} else if (wasDown && !down) {
|
|
downChanged = true;
|
|
} else {
|
|
downChanged = false;
|
|
}
|
|
} else {
|
|
down = wasDown;
|
|
downChanged = false;
|
|
}
|
|
|
|
currentButtonState = mLocked.buttonState;
|
|
|
|
downTime = mLocked.downTime;
|
|
float deltaX = fields & Accumulator::FIELD_REL_X ? mAccumulator.relX * mXScale : 0.0f;
|
|
float deltaY = fields & Accumulator::FIELD_REL_Y ? mAccumulator.relY * mYScale : 0.0f;
|
|
|
|
if (downChanged) {
|
|
motionEventAction = down ? AMOTION_EVENT_ACTION_DOWN : AMOTION_EVENT_ACTION_UP;
|
|
} else if (down || mPointerController == NULL) {
|
|
motionEventAction = AMOTION_EVENT_ACTION_MOVE;
|
|
} else {
|
|
motionEventAction = AMOTION_EVENT_ACTION_HOVER_MOVE;
|
|
}
|
|
|
|
if (mParameters.orientationAware && mParameters.associatedDisplayId >= 0
|
|
&& (deltaX != 0.0f || deltaY != 0.0f)) {
|
|
// Rotate motion based on display orientation if needed.
|
|
// Note: getDisplayInfo is non-reentrant so we can continue holding the lock.
|
|
int32_t orientation;
|
|
if (! getPolicy()->getDisplayInfo(mParameters.associatedDisplayId,
|
|
NULL, NULL, & orientation)) {
|
|
orientation = DISPLAY_ORIENTATION_0;
|
|
}
|
|
|
|
float temp;
|
|
switch (orientation) {
|
|
case DISPLAY_ORIENTATION_90:
|
|
temp = deltaX;
|
|
deltaX = deltaY;
|
|
deltaY = -temp;
|
|
break;
|
|
|
|
case DISPLAY_ORIENTATION_180:
|
|
deltaX = -deltaX;
|
|
deltaY = -deltaY;
|
|
break;
|
|
|
|
case DISPLAY_ORIENTATION_270:
|
|
temp = deltaX;
|
|
deltaX = -deltaY;
|
|
deltaY = temp;
|
|
break;
|
|
}
|
|
}
|
|
|
|
motionEventEdgeFlags = AMOTION_EVENT_EDGE_FLAG_NONE;
|
|
|
|
pointerProperties.clear();
|
|
pointerProperties.id = 0;
|
|
pointerProperties.toolType = AMOTION_EVENT_TOOL_TYPE_MOUSE;
|
|
|
|
pointerCoords.clear();
|
|
|
|
if (mHaveVWheel && (fields & Accumulator::FIELD_REL_WHEEL)) {
|
|
vscroll = mAccumulator.relWheel;
|
|
} else {
|
|
vscroll = 0;
|
|
}
|
|
if (mHaveHWheel && (fields & Accumulator::FIELD_REL_HWHEEL)) {
|
|
hscroll = mAccumulator.relHWheel;
|
|
} else {
|
|
hscroll = 0;
|
|
}
|
|
|
|
if (mPointerController != NULL) {
|
|
if (deltaX != 0 || deltaY != 0 || vscroll != 0 || hscroll != 0
|
|
|| buttonsChanged) {
|
|
mPointerController->setPresentation(
|
|
PointerControllerInterface::PRESENTATION_POINTER);
|
|
|
|
if (deltaX != 0 || deltaY != 0) {
|
|
mPointerController->move(deltaX, deltaY);
|
|
}
|
|
|
|
if (buttonsChanged) {
|
|
mPointerController->setButtonState(mLocked.buttonState);
|
|
}
|
|
|
|
mPointerController->unfade();
|
|
}
|
|
|
|
float x, y;
|
|
mPointerController->getPosition(&x, &y);
|
|
pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x);
|
|
pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y);
|
|
|
|
if (motionEventAction == AMOTION_EVENT_ACTION_DOWN) {
|
|
motionEventEdgeFlags = calculateEdgeFlagsUsingPointerBounds(
|
|
mPointerController, x, y);
|
|
}
|
|
} else {
|
|
pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, deltaX);
|
|
pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, deltaY);
|
|
}
|
|
|
|
pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, down ? 1.0f : 0.0f);
|
|
} // release lock
|
|
|
|
// Moving an external trackball or mouse should wake the device.
|
|
// We don't do this for internal cursor devices to prevent them from waking up
|
|
// the device in your pocket.
|
|
// TODO: Use the input device configuration to control this behavior more finely.
|
|
uint32_t policyFlags = 0;
|
|
if (getDevice()->isExternal()) {
|
|
policyFlags |= POLICY_FLAG_WAKE_DROPPED;
|
|
}
|
|
|
|
// Synthesize key down from buttons if needed.
|
|
synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_DOWN, when, getDeviceId(), mSource,
|
|
policyFlags, lastButtonState, currentButtonState);
|
|
|
|
// Send motion event.
|
|
int32_t metaState = mContext->getGlobalMetaState();
|
|
getDispatcher()->notifyMotion(when, getDeviceId(), mSource, policyFlags,
|
|
motionEventAction, 0, metaState, currentButtonState, motionEventEdgeFlags,
|
|
1, &pointerProperties, &pointerCoords, mXPrecision, mYPrecision, downTime);
|
|
|
|
// Send hover move after UP to tell the application that the mouse is hovering now.
|
|
if (motionEventAction == AMOTION_EVENT_ACTION_UP
|
|
&& mPointerController != NULL) {
|
|
getDispatcher()->notifyMotion(when, getDeviceId(), mSource, policyFlags,
|
|
AMOTION_EVENT_ACTION_HOVER_MOVE, 0,
|
|
metaState, currentButtonState, AMOTION_EVENT_EDGE_FLAG_NONE,
|
|
1, &pointerProperties, &pointerCoords, mXPrecision, mYPrecision, downTime);
|
|
}
|
|
|
|
// Send scroll events.
|
|
if (vscroll != 0 || hscroll != 0) {
|
|
pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_VSCROLL, vscroll);
|
|
pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_HSCROLL, hscroll);
|
|
|
|
getDispatcher()->notifyMotion(when, getDeviceId(), mSource, policyFlags,
|
|
AMOTION_EVENT_ACTION_SCROLL, 0, metaState, currentButtonState,
|
|
AMOTION_EVENT_EDGE_FLAG_NONE,
|
|
1, &pointerProperties, &pointerCoords, mXPrecision, mYPrecision, downTime);
|
|
}
|
|
|
|
// Synthesize key up from buttons if needed.
|
|
synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_UP, when, getDeviceId(), mSource,
|
|
policyFlags, lastButtonState, currentButtonState);
|
|
|
|
mAccumulator.clear();
|
|
}
|
|
|
|
int32_t CursorInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
|
|
if (scanCode >= BTN_MOUSE && scanCode < BTN_JOYSTICK) {
|
|
return getEventHub()->getScanCodeState(getDeviceId(), scanCode);
|
|
} else {
|
|
return AKEY_STATE_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
void CursorInputMapper::fadePointer() {
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
if (mPointerController != NULL) {
|
|
mPointerController->fade();
|
|
}
|
|
} // release lock
|
|
}
|
|
|
|
|
|
// --- TouchInputMapper ---
|
|
|
|
TouchInputMapper::TouchInputMapper(InputDevice* device) :
|
|
InputMapper(device) {
|
|
mLocked.surfaceOrientation = -1;
|
|
mLocked.surfaceWidth = -1;
|
|
mLocked.surfaceHeight = -1;
|
|
|
|
initializeLocked();
|
|
}
|
|
|
|
TouchInputMapper::~TouchInputMapper() {
|
|
}
|
|
|
|
uint32_t TouchInputMapper::getSources() {
|
|
return mTouchSource | mPointerSource;
|
|
}
|
|
|
|
void TouchInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
|
|
InputMapper::populateDeviceInfo(info);
|
|
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
// Ensure surface information is up to date so that orientation changes are
|
|
// noticed immediately.
|
|
if (!configureSurfaceLocked()) {
|
|
return;
|
|
}
|
|
|
|
info->addMotionRange(mLocked.orientedRanges.x);
|
|
info->addMotionRange(mLocked.orientedRanges.y);
|
|
|
|
if (mLocked.orientedRanges.havePressure) {
|
|
info->addMotionRange(mLocked.orientedRanges.pressure);
|
|
}
|
|
|
|
if (mLocked.orientedRanges.haveSize) {
|
|
info->addMotionRange(mLocked.orientedRanges.size);
|
|
}
|
|
|
|
if (mLocked.orientedRanges.haveTouchSize) {
|
|
info->addMotionRange(mLocked.orientedRanges.touchMajor);
|
|
info->addMotionRange(mLocked.orientedRanges.touchMinor);
|
|
}
|
|
|
|
if (mLocked.orientedRanges.haveToolSize) {
|
|
info->addMotionRange(mLocked.orientedRanges.toolMajor);
|
|
info->addMotionRange(mLocked.orientedRanges.toolMinor);
|
|
}
|
|
|
|
if (mLocked.orientedRanges.haveOrientation) {
|
|
info->addMotionRange(mLocked.orientedRanges.orientation);
|
|
}
|
|
|
|
if (mLocked.orientedRanges.haveDistance) {
|
|
info->addMotionRange(mLocked.orientedRanges.distance);
|
|
}
|
|
|
|
if (mPointerController != NULL) {
|
|
float minX, minY, maxX, maxY;
|
|
if (mPointerController->getBounds(&minX, &minY, &maxX, &maxY)) {
|
|
info->addMotionRange(AMOTION_EVENT_AXIS_X, mPointerSource,
|
|
minX, maxX, 0.0f, 0.0f);
|
|
info->addMotionRange(AMOTION_EVENT_AXIS_Y, mPointerSource,
|
|
minY, maxY, 0.0f, 0.0f);
|
|
}
|
|
info->addMotionRange(AMOTION_EVENT_AXIS_PRESSURE, mPointerSource,
|
|
0.0f, 1.0f, 0.0f, 0.0f);
|
|
}
|
|
} // release lock
|
|
}
|
|
|
|
void TouchInputMapper::dump(String8& dump) {
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
dump.append(INDENT2 "Touch Input Mapper:\n");
|
|
dumpParameters(dump);
|
|
dumpVirtualKeysLocked(dump);
|
|
dumpRawAxes(dump);
|
|
dumpCalibration(dump);
|
|
dumpSurfaceLocked(dump);
|
|
|
|
dump.appendFormat(INDENT3 "Translation and Scaling Factors:\n");
|
|
dump.appendFormat(INDENT4 "XScale: %0.3f\n", mLocked.xScale);
|
|
dump.appendFormat(INDENT4 "YScale: %0.3f\n", mLocked.yScale);
|
|
dump.appendFormat(INDENT4 "XPrecision: %0.3f\n", mLocked.xPrecision);
|
|
dump.appendFormat(INDENT4 "YPrecision: %0.3f\n", mLocked.yPrecision);
|
|
dump.appendFormat(INDENT4 "GeometricScale: %0.3f\n", mLocked.geometricScale);
|
|
dump.appendFormat(INDENT4 "ToolSizeLinearScale: %0.3f\n", mLocked.toolSizeLinearScale);
|
|
dump.appendFormat(INDENT4 "ToolSizeLinearBias: %0.3f\n", mLocked.toolSizeLinearBias);
|
|
dump.appendFormat(INDENT4 "ToolSizeAreaScale: %0.3f\n", mLocked.toolSizeAreaScale);
|
|
dump.appendFormat(INDENT4 "ToolSizeAreaBias: %0.3f\n", mLocked.toolSizeAreaBias);
|
|
dump.appendFormat(INDENT4 "PressureScale: %0.3f\n", mLocked.pressureScale);
|
|
dump.appendFormat(INDENT4 "SizeScale: %0.3f\n", mLocked.sizeScale);
|
|
dump.appendFormat(INDENT4 "OrientationScale: %0.3f\n", mLocked.orientationScale);
|
|
dump.appendFormat(INDENT4 "DistanceScale: %0.3f\n", mLocked.distanceScale);
|
|
|
|
dump.appendFormat(INDENT3 "Last Touch:\n");
|
|
dump.appendFormat(INDENT4 "Pointer Count: %d\n", mLastTouch.pointerCount);
|
|
dump.appendFormat(INDENT4 "Button State: 0x%08x\n", mLastTouch.buttonState);
|
|
|
|
if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) {
|
|
dump.appendFormat(INDENT3 "Pointer Gesture Detector:\n");
|
|
dump.appendFormat(INDENT4 "XMovementScale: %0.3f\n",
|
|
mLocked.pointerGestureXMovementScale);
|
|
dump.appendFormat(INDENT4 "YMovementScale: %0.3f\n",
|
|
mLocked.pointerGestureYMovementScale);
|
|
dump.appendFormat(INDENT4 "XZoomScale: %0.3f\n",
|
|
mLocked.pointerGestureXZoomScale);
|
|
dump.appendFormat(INDENT4 "YZoomScale: %0.3f\n",
|
|
mLocked.pointerGestureYZoomScale);
|
|
dump.appendFormat(INDENT4 "MaxSwipeWidth: %f\n",
|
|
mLocked.pointerGestureMaxSwipeWidth);
|
|
}
|
|
} // release lock
|
|
}
|
|
|
|
void TouchInputMapper::initializeLocked() {
|
|
mCurrentTouch.clear();
|
|
mLastTouch.clear();
|
|
mDownTime = 0;
|
|
|
|
for (uint32_t i = 0; i < MAX_POINTERS; i++) {
|
|
mAveragingTouchFilter.historyStart[i] = 0;
|
|
mAveragingTouchFilter.historyEnd[i] = 0;
|
|
}
|
|
|
|
mJumpyTouchFilter.jumpyPointsDropped = 0;
|
|
|
|
mLocked.currentVirtualKey.down = false;
|
|
|
|
mLocked.orientedRanges.havePressure = false;
|
|
mLocked.orientedRanges.haveSize = false;
|
|
mLocked.orientedRanges.haveTouchSize = false;
|
|
mLocked.orientedRanges.haveToolSize = false;
|
|
mLocked.orientedRanges.haveOrientation = false;
|
|
mLocked.orientedRanges.haveDistance = false;
|
|
|
|
mPointerGesture.reset();
|
|
}
|
|
|
|
void TouchInputMapper::configure() {
|
|
InputMapper::configure();
|
|
|
|
// Configure basic parameters.
|
|
configureParameters();
|
|
|
|
// Configure sources.
|
|
switch (mParameters.deviceType) {
|
|
case Parameters::DEVICE_TYPE_TOUCH_SCREEN:
|
|
mTouchSource = AINPUT_SOURCE_TOUCHSCREEN;
|
|
mPointerSource = 0;
|
|
break;
|
|
case Parameters::DEVICE_TYPE_TOUCH_PAD:
|
|
mTouchSource = AINPUT_SOURCE_TOUCHPAD;
|
|
mPointerSource = 0;
|
|
break;
|
|
case Parameters::DEVICE_TYPE_POINTER:
|
|
mTouchSource = AINPUT_SOURCE_TOUCHPAD;
|
|
mPointerSource = AINPUT_SOURCE_MOUSE;
|
|
break;
|
|
default:
|
|
LOG_ASSERT(false);
|
|
}
|
|
|
|
// Configure absolute axis information.
|
|
configureRawAxes();
|
|
|
|
// Prepare input device calibration.
|
|
parseCalibration();
|
|
resolveCalibration();
|
|
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
// Configure surface dimensions and orientation.
|
|
configureSurfaceLocked();
|
|
} // release lock
|
|
}
|
|
|
|
void TouchInputMapper::configureParameters() {
|
|
mParameters.useBadTouchFilter = getPolicy()->filterTouchEvents();
|
|
mParameters.useAveragingTouchFilter = getPolicy()->filterTouchEvents();
|
|
mParameters.useJumpyTouchFilter = getPolicy()->filterJumpyTouchEvents();
|
|
mParameters.virtualKeyQuietTime = getPolicy()->getVirtualKeyQuietTime();
|
|
|
|
// TODO: Make this configurable.
|
|
//mParameters.gestureMode = Parameters::GESTURE_MODE_POINTER;
|
|
mParameters.gestureMode = Parameters::GESTURE_MODE_SPOTS;
|
|
|
|
if (getEventHub()->hasRelativeAxis(getDeviceId(), REL_X)
|
|
|| getEventHub()->hasRelativeAxis(getDeviceId(), REL_Y)) {
|
|
// The device is a cursor device with a touch pad attached.
|
|
// By default don't use the touch pad to move the pointer.
|
|
mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_PAD;
|
|
} else if (getEventHub()->hasInputProperty(getDeviceId(), INPUT_PROP_POINTER)) {
|
|
// The device is a pointing device like a track pad.
|
|
mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER;
|
|
} else if (getEventHub()->hasInputProperty(getDeviceId(), INPUT_PROP_DIRECT)) {
|
|
// The device is a touch screen.
|
|
mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_SCREEN;
|
|
} else {
|
|
// The device is a touch pad of unknown purpose.
|
|
mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER;
|
|
}
|
|
|
|
String8 deviceTypeString;
|
|
if (getDevice()->getConfiguration().tryGetProperty(String8("touch.deviceType"),
|
|
deviceTypeString)) {
|
|
if (deviceTypeString == "touchScreen") {
|
|
mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_SCREEN;
|
|
} else if (deviceTypeString == "touchPad") {
|
|
mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_PAD;
|
|
} else if (deviceTypeString == "pointer") {
|
|
mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER;
|
|
} else {
|
|
LOGW("Invalid value for touch.deviceType: '%s'", deviceTypeString.string());
|
|
}
|
|
}
|
|
|
|
mParameters.orientationAware = mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN;
|
|
getDevice()->getConfiguration().tryGetProperty(String8("touch.orientationAware"),
|
|
mParameters.orientationAware);
|
|
|
|
mParameters.associatedDisplayId = mParameters.orientationAware
|
|
|| mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN
|
|
|| mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER
|
|
? 0 : -1;
|
|
}
|
|
|
|
void TouchInputMapper::dumpParameters(String8& dump) {
|
|
dump.append(INDENT3 "Parameters:\n");
|
|
|
|
switch (mParameters.deviceType) {
|
|
case Parameters::DEVICE_TYPE_TOUCH_SCREEN:
|
|
dump.append(INDENT4 "DeviceType: touchScreen\n");
|
|
break;
|
|
case Parameters::DEVICE_TYPE_TOUCH_PAD:
|
|
dump.append(INDENT4 "DeviceType: touchPad\n");
|
|
break;
|
|
case Parameters::DEVICE_TYPE_POINTER:
|
|
dump.append(INDENT4 "DeviceType: pointer\n");
|
|
break;
|
|
default:
|
|
LOG_ASSERT(false);
|
|
}
|
|
|
|
dump.appendFormat(INDENT4 "AssociatedDisplayId: %d\n",
|
|
mParameters.associatedDisplayId);
|
|
dump.appendFormat(INDENT4 "OrientationAware: %s\n",
|
|
toString(mParameters.orientationAware));
|
|
|
|
dump.appendFormat(INDENT4 "UseBadTouchFilter: %s\n",
|
|
toString(mParameters.useBadTouchFilter));
|
|
dump.appendFormat(INDENT4 "UseAveragingTouchFilter: %s\n",
|
|
toString(mParameters.useAveragingTouchFilter));
|
|
dump.appendFormat(INDENT4 "UseJumpyTouchFilter: %s\n",
|
|
toString(mParameters.useJumpyTouchFilter));
|
|
}
|
|
|
|
void TouchInputMapper::configureRawAxes() {
|
|
mRawAxes.x.clear();
|
|
mRawAxes.y.clear();
|
|
mRawAxes.pressure.clear();
|
|
mRawAxes.touchMajor.clear();
|
|
mRawAxes.touchMinor.clear();
|
|
mRawAxes.toolMajor.clear();
|
|
mRawAxes.toolMinor.clear();
|
|
mRawAxes.orientation.clear();
|
|
mRawAxes.distance.clear();
|
|
mRawAxes.trackingId.clear();
|
|
mRawAxes.slot.clear();
|
|
}
|
|
|
|
void TouchInputMapper::dumpRawAxes(String8& dump) {
|
|
dump.append(INDENT3 "Raw Axes:\n");
|
|
dumpRawAbsoluteAxisInfo(dump, mRawAxes.x, "X");
|
|
dumpRawAbsoluteAxisInfo(dump, mRawAxes.y, "Y");
|
|
dumpRawAbsoluteAxisInfo(dump, mRawAxes.pressure, "Pressure");
|
|
dumpRawAbsoluteAxisInfo(dump, mRawAxes.touchMajor, "TouchMajor");
|
|
dumpRawAbsoluteAxisInfo(dump, mRawAxes.touchMinor, "TouchMinor");
|
|
dumpRawAbsoluteAxisInfo(dump, mRawAxes.toolMajor, "ToolMajor");
|
|
dumpRawAbsoluteAxisInfo(dump, mRawAxes.toolMinor, "ToolMinor");
|
|
dumpRawAbsoluteAxisInfo(dump, mRawAxes.orientation, "Orientation");
|
|
dumpRawAbsoluteAxisInfo(dump, mRawAxes.distance, "Distance");
|
|
dumpRawAbsoluteAxisInfo(dump, mRawAxes.trackingId, "TrackingId");
|
|
dumpRawAbsoluteAxisInfo(dump, mRawAxes.slot, "Slot");
|
|
}
|
|
|
|
bool TouchInputMapper::configureSurfaceLocked() {
|
|
// Ensure we have valid X and Y axes.
|
|
if (!mRawAxes.x.valid || !mRawAxes.y.valid) {
|
|
LOGW(INDENT "Touch device '%s' did not report support for X or Y axis! "
|
|
"The device will be inoperable.", getDeviceName().string());
|
|
return false;
|
|
}
|
|
|
|
// Update orientation and dimensions if needed.
|
|
int32_t orientation = DISPLAY_ORIENTATION_0;
|
|
int32_t width = mRawAxes.x.maxValue - mRawAxes.x.minValue + 1;
|
|
int32_t height = mRawAxes.y.maxValue - mRawAxes.y.minValue + 1;
|
|
|
|
if (mParameters.associatedDisplayId >= 0) {
|
|
// Note: getDisplayInfo is non-reentrant so we can continue holding the lock.
|
|
if (! getPolicy()->getDisplayInfo(mParameters.associatedDisplayId,
|
|
&mLocked.associatedDisplayWidth, &mLocked.associatedDisplayHeight,
|
|
&mLocked.associatedDisplayOrientation)) {
|
|
return false;
|
|
}
|
|
|
|
// A touch screen inherits the dimensions of the display.
|
|
if (mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN) {
|
|
width = mLocked.associatedDisplayWidth;
|
|
height = mLocked.associatedDisplayHeight;
|
|
}
|
|
|
|
// The device inherits the orientation of the display if it is orientation aware.
|
|
if (mParameters.orientationAware) {
|
|
orientation = mLocked.associatedDisplayOrientation;
|
|
}
|
|
}
|
|
|
|
if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER
|
|
&& mPointerController == NULL) {
|
|
mPointerController = getPolicy()->obtainPointerController(getDeviceId());
|
|
}
|
|
|
|
bool orientationChanged = mLocked.surfaceOrientation != orientation;
|
|
if (orientationChanged) {
|
|
mLocked.surfaceOrientation = orientation;
|
|
}
|
|
|
|
bool sizeChanged = mLocked.surfaceWidth != width || mLocked.surfaceHeight != height;
|
|
if (sizeChanged) {
|
|
LOGI("Device reconfigured: id=%d, name='%s', surface size is now %dx%d",
|
|
getDeviceId(), getDeviceName().string(), width, height);
|
|
|
|
mLocked.surfaceWidth = width;
|
|
mLocked.surfaceHeight = height;
|
|
|
|
// Configure X and Y factors.
|
|
mLocked.xScale = float(width) / (mRawAxes.x.maxValue - mRawAxes.x.minValue + 1);
|
|
mLocked.yScale = float(height) / (mRawAxes.y.maxValue - mRawAxes.y.minValue + 1);
|
|
mLocked.xPrecision = 1.0f / mLocked.xScale;
|
|
mLocked.yPrecision = 1.0f / mLocked.yScale;
|
|
|
|
mLocked.orientedRanges.x.axis = AMOTION_EVENT_AXIS_X;
|
|
mLocked.orientedRanges.x.source = mTouchSource;
|
|
mLocked.orientedRanges.y.axis = AMOTION_EVENT_AXIS_Y;
|
|
mLocked.orientedRanges.y.source = mTouchSource;
|
|
|
|
configureVirtualKeysLocked();
|
|
|
|
// Scale factor for terms that are not oriented in a particular axis.
|
|
// If the pixels are square then xScale == yScale otherwise we fake it
|
|
// by choosing an average.
|
|
mLocked.geometricScale = avg(mLocked.xScale, mLocked.yScale);
|
|
|
|
// Size of diagonal axis.
|
|
float diagonalSize = hypotf(width, height);
|
|
|
|
// TouchMajor and TouchMinor factors.
|
|
if (mCalibration.touchSizeCalibration != Calibration::TOUCH_SIZE_CALIBRATION_NONE) {
|
|
mLocked.orientedRanges.haveTouchSize = true;
|
|
|
|
mLocked.orientedRanges.touchMajor.axis = AMOTION_EVENT_AXIS_TOUCH_MAJOR;
|
|
mLocked.orientedRanges.touchMajor.source = mTouchSource;
|
|
mLocked.orientedRanges.touchMajor.min = 0;
|
|
mLocked.orientedRanges.touchMajor.max = diagonalSize;
|
|
mLocked.orientedRanges.touchMajor.flat = 0;
|
|
mLocked.orientedRanges.touchMajor.fuzz = 0;
|
|
|
|
mLocked.orientedRanges.touchMinor = mLocked.orientedRanges.touchMajor;
|
|
mLocked.orientedRanges.touchMinor.axis = AMOTION_EVENT_AXIS_TOUCH_MINOR;
|
|
}
|
|
|
|
// ToolMajor and ToolMinor factors.
|
|
mLocked.toolSizeLinearScale = 0;
|
|
mLocked.toolSizeLinearBias = 0;
|
|
mLocked.toolSizeAreaScale = 0;
|
|
mLocked.toolSizeAreaBias = 0;
|
|
if (mCalibration.toolSizeCalibration != Calibration::TOOL_SIZE_CALIBRATION_NONE) {
|
|
if (mCalibration.toolSizeCalibration == Calibration::TOOL_SIZE_CALIBRATION_LINEAR) {
|
|
if (mCalibration.haveToolSizeLinearScale) {
|
|
mLocked.toolSizeLinearScale = mCalibration.toolSizeLinearScale;
|
|
} else if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) {
|
|
mLocked.toolSizeLinearScale = float(min(width, height))
|
|
/ mRawAxes.toolMajor.maxValue;
|
|
}
|
|
|
|
if (mCalibration.haveToolSizeLinearBias) {
|
|
mLocked.toolSizeLinearBias = mCalibration.toolSizeLinearBias;
|
|
}
|
|
} else if (mCalibration.toolSizeCalibration ==
|
|
Calibration::TOOL_SIZE_CALIBRATION_AREA) {
|
|
if (mCalibration.haveToolSizeLinearScale) {
|
|
mLocked.toolSizeLinearScale = mCalibration.toolSizeLinearScale;
|
|
} else {
|
|
mLocked.toolSizeLinearScale = min(width, height);
|
|
}
|
|
|
|
if (mCalibration.haveToolSizeLinearBias) {
|
|
mLocked.toolSizeLinearBias = mCalibration.toolSizeLinearBias;
|
|
}
|
|
|
|
if (mCalibration.haveToolSizeAreaScale) {
|
|
mLocked.toolSizeAreaScale = mCalibration.toolSizeAreaScale;
|
|
} else if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) {
|
|
mLocked.toolSizeAreaScale = 1.0f / mRawAxes.toolMajor.maxValue;
|
|
}
|
|
|
|
if (mCalibration.haveToolSizeAreaBias) {
|
|
mLocked.toolSizeAreaBias = mCalibration.toolSizeAreaBias;
|
|
}
|
|
}
|
|
|
|
mLocked.orientedRanges.haveToolSize = true;
|
|
|
|
mLocked.orientedRanges.toolMajor.axis = AMOTION_EVENT_AXIS_TOOL_MAJOR;
|
|
mLocked.orientedRanges.toolMajor.source = mTouchSource;
|
|
mLocked.orientedRanges.toolMajor.min = 0;
|
|
mLocked.orientedRanges.toolMajor.max = diagonalSize;
|
|
mLocked.orientedRanges.toolMajor.flat = 0;
|
|
mLocked.orientedRanges.toolMajor.fuzz = 0;
|
|
|
|
mLocked.orientedRanges.toolMinor = mLocked.orientedRanges.toolMajor;
|
|
mLocked.orientedRanges.toolMinor.axis = AMOTION_EVENT_AXIS_TOOL_MINOR;
|
|
}
|
|
|
|
// Pressure factors.
|
|
mLocked.pressureScale = 0;
|
|
if (mCalibration.pressureCalibration != Calibration::PRESSURE_CALIBRATION_NONE) {
|
|
RawAbsoluteAxisInfo rawPressureAxis;
|
|
switch (mCalibration.pressureSource) {
|
|
case Calibration::PRESSURE_SOURCE_PRESSURE:
|
|
rawPressureAxis = mRawAxes.pressure;
|
|
break;
|
|
case Calibration::PRESSURE_SOURCE_TOUCH:
|
|
rawPressureAxis = mRawAxes.touchMajor;
|
|
break;
|
|
default:
|
|
rawPressureAxis.clear();
|
|
}
|
|
|
|
if (mCalibration.pressureCalibration == Calibration::PRESSURE_CALIBRATION_PHYSICAL
|
|
|| mCalibration.pressureCalibration
|
|
== Calibration::PRESSURE_CALIBRATION_AMPLITUDE) {
|
|
if (mCalibration.havePressureScale) {
|
|
mLocked.pressureScale = mCalibration.pressureScale;
|
|
} else if (rawPressureAxis.valid && rawPressureAxis.maxValue != 0) {
|
|
mLocked.pressureScale = 1.0f / rawPressureAxis.maxValue;
|
|
}
|
|
}
|
|
|
|
mLocked.orientedRanges.havePressure = true;
|
|
|
|
mLocked.orientedRanges.pressure.axis = AMOTION_EVENT_AXIS_PRESSURE;
|
|
mLocked.orientedRanges.pressure.source = mTouchSource;
|
|
mLocked.orientedRanges.pressure.min = 0;
|
|
mLocked.orientedRanges.pressure.max = 1.0;
|
|
mLocked.orientedRanges.pressure.flat = 0;
|
|
mLocked.orientedRanges.pressure.fuzz = 0;
|
|
}
|
|
|
|
// Size factors.
|
|
mLocked.sizeScale = 0;
|
|
if (mCalibration.sizeCalibration != Calibration::SIZE_CALIBRATION_NONE) {
|
|
if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_NORMALIZED) {
|
|
if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) {
|
|
mLocked.sizeScale = 1.0f / mRawAxes.toolMajor.maxValue;
|
|
}
|
|
}
|
|
|
|
mLocked.orientedRanges.haveSize = true;
|
|
|
|
mLocked.orientedRanges.size.axis = AMOTION_EVENT_AXIS_SIZE;
|
|
mLocked.orientedRanges.size.source = mTouchSource;
|
|
mLocked.orientedRanges.size.min = 0;
|
|
mLocked.orientedRanges.size.max = 1.0;
|
|
mLocked.orientedRanges.size.flat = 0;
|
|
mLocked.orientedRanges.size.fuzz = 0;
|
|
}
|
|
|
|
// Orientation
|
|
mLocked.orientationScale = 0;
|
|
if (mCalibration.orientationCalibration != Calibration::ORIENTATION_CALIBRATION_NONE) {
|
|
if (mCalibration.orientationCalibration
|
|
== Calibration::ORIENTATION_CALIBRATION_INTERPOLATED) {
|
|
if (mRawAxes.orientation.valid && mRawAxes.orientation.maxValue != 0) {
|
|
mLocked.orientationScale = float(M_PI_2) / mRawAxes.orientation.maxValue;
|
|
}
|
|
}
|
|
|
|
mLocked.orientedRanges.haveOrientation = true;
|
|
|
|
mLocked.orientedRanges.orientation.axis = AMOTION_EVENT_AXIS_ORIENTATION;
|
|
mLocked.orientedRanges.orientation.source = mTouchSource;
|
|
mLocked.orientedRanges.orientation.min = - M_PI_2;
|
|
mLocked.orientedRanges.orientation.max = M_PI_2;
|
|
mLocked.orientedRanges.orientation.flat = 0;
|
|
mLocked.orientedRanges.orientation.fuzz = 0;
|
|
}
|
|
|
|
// Distance
|
|
mLocked.distanceScale = 0;
|
|
if (mCalibration.distanceCalibration != Calibration::DISTANCE_CALIBRATION_NONE) {
|
|
if (mCalibration.distanceCalibration
|
|
== Calibration::DISTANCE_CALIBRATION_SCALED) {
|
|
if (mCalibration.haveDistanceScale) {
|
|
mLocked.distanceScale = mCalibration.distanceScale;
|
|
} else {
|
|
mLocked.distanceScale = 1.0f;
|
|
}
|
|
}
|
|
|
|
mLocked.orientedRanges.haveDistance = true;
|
|
|
|
mLocked.orientedRanges.distance.axis = AMOTION_EVENT_AXIS_DISTANCE;
|
|
mLocked.orientedRanges.distance.source = mTouchSource;
|
|
mLocked.orientedRanges.distance.min =
|
|
mRawAxes.distance.minValue * mLocked.distanceScale;
|
|
mLocked.orientedRanges.distance.max =
|
|
mRawAxes.distance.minValue * mLocked.distanceScale;
|
|
mLocked.orientedRanges.distance.flat = 0;
|
|
mLocked.orientedRanges.distance.fuzz =
|
|
mRawAxes.distance.fuzz * mLocked.distanceScale;
|
|
}
|
|
}
|
|
|
|
if (orientationChanged || sizeChanged) {
|
|
// Compute oriented surface dimensions, precision, scales and ranges.
|
|
// Note that the maximum value reported is an inclusive maximum value so it is one
|
|
// unit less than the total width or height of surface.
|
|
switch (mLocked.surfaceOrientation) {
|
|
case DISPLAY_ORIENTATION_90:
|
|
case DISPLAY_ORIENTATION_270:
|
|
mLocked.orientedSurfaceWidth = mLocked.surfaceHeight;
|
|
mLocked.orientedSurfaceHeight = mLocked.surfaceWidth;
|
|
|
|
mLocked.orientedXPrecision = mLocked.yPrecision;
|
|
mLocked.orientedYPrecision = mLocked.xPrecision;
|
|
|
|
mLocked.orientedRanges.x.min = 0;
|
|
mLocked.orientedRanges.x.max = (mRawAxes.y.maxValue - mRawAxes.y.minValue)
|
|
* mLocked.yScale;
|
|
mLocked.orientedRanges.x.flat = 0;
|
|
mLocked.orientedRanges.x.fuzz = mLocked.yScale;
|
|
|
|
mLocked.orientedRanges.y.min = 0;
|
|
mLocked.orientedRanges.y.max = (mRawAxes.x.maxValue - mRawAxes.x.minValue)
|
|
* mLocked.xScale;
|
|
mLocked.orientedRanges.y.flat = 0;
|
|
mLocked.orientedRanges.y.fuzz = mLocked.xScale;
|
|
break;
|
|
|
|
default:
|
|
mLocked.orientedSurfaceWidth = mLocked.surfaceWidth;
|
|
mLocked.orientedSurfaceHeight = mLocked.surfaceHeight;
|
|
|
|
mLocked.orientedXPrecision = mLocked.xPrecision;
|
|
mLocked.orientedYPrecision = mLocked.yPrecision;
|
|
|
|
mLocked.orientedRanges.x.min = 0;
|
|
mLocked.orientedRanges.x.max = (mRawAxes.x.maxValue - mRawAxes.x.minValue)
|
|
* mLocked.xScale;
|
|
mLocked.orientedRanges.x.flat = 0;
|
|
mLocked.orientedRanges.x.fuzz = mLocked.xScale;
|
|
|
|
mLocked.orientedRanges.y.min = 0;
|
|
mLocked.orientedRanges.y.max = (mRawAxes.y.maxValue - mRawAxes.y.minValue)
|
|
* mLocked.yScale;
|
|
mLocked.orientedRanges.y.flat = 0;
|
|
mLocked.orientedRanges.y.fuzz = mLocked.yScale;
|
|
break;
|
|
}
|
|
|
|
// Compute pointer gesture detection parameters.
|
|
// TODO: These factors should not be hardcoded.
|
|
if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) {
|
|
int32_t rawWidth = mRawAxes.x.maxValue - mRawAxes.x.minValue + 1;
|
|
int32_t rawHeight = mRawAxes.y.maxValue - mRawAxes.y.minValue + 1;
|
|
float rawDiagonal = hypotf(rawWidth, rawHeight);
|
|
float displayDiagonal = hypotf(mLocked.associatedDisplayWidth,
|
|
mLocked.associatedDisplayHeight);
|
|
|
|
// Scale movements such that one whole swipe of the touch pad covers a
|
|
// given area relative to the diagonal size of the display.
|
|
// Assume that the touch pad has a square aspect ratio such that movements in
|
|
// X and Y of the same number of raw units cover the same physical distance.
|
|
const float scaleFactor = 0.8f;
|
|
|
|
mLocked.pointerGestureXMovementScale = GESTURE_MOVEMENT_SPEED_RATIO
|
|
* displayDiagonal / rawDiagonal;
|
|
mLocked.pointerGestureYMovementScale = mLocked.pointerGestureXMovementScale;
|
|
|
|
// Scale zooms to cover a smaller range of the display than movements do.
|
|
// This value determines the area around the pointer that is affected by freeform
|
|
// pointer gestures.
|
|
mLocked.pointerGestureXZoomScale = GESTURE_ZOOM_SPEED_RATIO
|
|
* displayDiagonal / rawDiagonal;
|
|
mLocked.pointerGestureYZoomScale = mLocked.pointerGestureXZoomScale;
|
|
|
|
// Max width between pointers to detect a swipe gesture is more than some fraction
|
|
// of the diagonal axis of the touch pad. Touches that are wider than this are
|
|
// translated into freeform gestures.
|
|
mLocked.pointerGestureMaxSwipeWidth = SWIPE_MAX_WIDTH_RATIO * rawDiagonal;
|
|
|
|
// Reset the current pointer gesture.
|
|
mPointerGesture.reset();
|
|
|
|
// Remove any current spots.
|
|
if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
|
|
mPointerController->clearSpots();
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void TouchInputMapper::dumpSurfaceLocked(String8& dump) {
|
|
dump.appendFormat(INDENT3 "SurfaceWidth: %dpx\n", mLocked.surfaceWidth);
|
|
dump.appendFormat(INDENT3 "SurfaceHeight: %dpx\n", mLocked.surfaceHeight);
|
|
dump.appendFormat(INDENT3 "SurfaceOrientation: %d\n", mLocked.surfaceOrientation);
|
|
}
|
|
|
|
void TouchInputMapper::configureVirtualKeysLocked() {
|
|
Vector<VirtualKeyDefinition> virtualKeyDefinitions;
|
|
getEventHub()->getVirtualKeyDefinitions(getDeviceId(), virtualKeyDefinitions);
|
|
|
|
mLocked.virtualKeys.clear();
|
|
|
|
if (virtualKeyDefinitions.size() == 0) {
|
|
return;
|
|
}
|
|
|
|
mLocked.virtualKeys.setCapacity(virtualKeyDefinitions.size());
|
|
|
|
int32_t touchScreenLeft = mRawAxes.x.minValue;
|
|
int32_t touchScreenTop = mRawAxes.y.minValue;
|
|
int32_t touchScreenWidth = mRawAxes.x.maxValue - mRawAxes.x.minValue + 1;
|
|
int32_t touchScreenHeight = mRawAxes.y.maxValue - mRawAxes.y.minValue + 1;
|
|
|
|
for (size_t i = 0; i < virtualKeyDefinitions.size(); i++) {
|
|
const VirtualKeyDefinition& virtualKeyDefinition =
|
|
virtualKeyDefinitions[i];
|
|
|
|
mLocked.virtualKeys.add();
|
|
VirtualKey& virtualKey = mLocked.virtualKeys.editTop();
|
|
|
|
virtualKey.scanCode = virtualKeyDefinition.scanCode;
|
|
int32_t keyCode;
|
|
uint32_t flags;
|
|
if (getEventHub()->mapKey(getDeviceId(), virtualKey.scanCode,
|
|
& keyCode, & flags)) {
|
|
LOGW(INDENT "VirtualKey %d: could not obtain key code, ignoring",
|
|
virtualKey.scanCode);
|
|
mLocked.virtualKeys.pop(); // drop the key
|
|
continue;
|
|
}
|
|
|
|
virtualKey.keyCode = keyCode;
|
|
virtualKey.flags = flags;
|
|
|
|
// convert the key definition's display coordinates into touch coordinates for a hit box
|
|
int32_t halfWidth = virtualKeyDefinition.width / 2;
|
|
int32_t halfHeight = virtualKeyDefinition.height / 2;
|
|
|
|
virtualKey.hitLeft = (virtualKeyDefinition.centerX - halfWidth)
|
|
* touchScreenWidth / mLocked.surfaceWidth + touchScreenLeft;
|
|
virtualKey.hitRight= (virtualKeyDefinition.centerX + halfWidth)
|
|
* touchScreenWidth / mLocked.surfaceWidth + touchScreenLeft;
|
|
virtualKey.hitTop = (virtualKeyDefinition.centerY - halfHeight)
|
|
* touchScreenHeight / mLocked.surfaceHeight + touchScreenTop;
|
|
virtualKey.hitBottom = (virtualKeyDefinition.centerY + halfHeight)
|
|
* touchScreenHeight / mLocked.surfaceHeight + touchScreenTop;
|
|
}
|
|
}
|
|
|
|
void TouchInputMapper::dumpVirtualKeysLocked(String8& dump) {
|
|
if (!mLocked.virtualKeys.isEmpty()) {
|
|
dump.append(INDENT3 "Virtual Keys:\n");
|
|
|
|
for (size_t i = 0; i < mLocked.virtualKeys.size(); i++) {
|
|
const VirtualKey& virtualKey = mLocked.virtualKeys.itemAt(i);
|
|
dump.appendFormat(INDENT4 "%d: scanCode=%d, keyCode=%d, "
|
|
"hitLeft=%d, hitRight=%d, hitTop=%d, hitBottom=%d\n",
|
|
i, virtualKey.scanCode, virtualKey.keyCode,
|
|
virtualKey.hitLeft, virtualKey.hitRight,
|
|
virtualKey.hitTop, virtualKey.hitBottom);
|
|
}
|
|
}
|
|
}
|
|
|
|
void TouchInputMapper::parseCalibration() {
|
|
const PropertyMap& in = getDevice()->getConfiguration();
|
|
Calibration& out = mCalibration;
|
|
|
|
// Touch Size
|
|
out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_DEFAULT;
|
|
String8 touchSizeCalibrationString;
|
|
if (in.tryGetProperty(String8("touch.touchSize.calibration"), touchSizeCalibrationString)) {
|
|
if (touchSizeCalibrationString == "none") {
|
|
out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_NONE;
|
|
} else if (touchSizeCalibrationString == "geometric") {
|
|
out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC;
|
|
} else if (touchSizeCalibrationString == "pressure") {
|
|
out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE;
|
|
} else if (touchSizeCalibrationString != "default") {
|
|
LOGW("Invalid value for touch.touchSize.calibration: '%s'",
|
|
touchSizeCalibrationString.string());
|
|
}
|
|
}
|
|
|
|
// Tool Size
|
|
out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_DEFAULT;
|
|
String8 toolSizeCalibrationString;
|
|
if (in.tryGetProperty(String8("touch.toolSize.calibration"), toolSizeCalibrationString)) {
|
|
if (toolSizeCalibrationString == "none") {
|
|
out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_NONE;
|
|
} else if (toolSizeCalibrationString == "geometric") {
|
|
out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC;
|
|
} else if (toolSizeCalibrationString == "linear") {
|
|
out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_LINEAR;
|
|
} else if (toolSizeCalibrationString == "area") {
|
|
out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_AREA;
|
|
} else if (toolSizeCalibrationString != "default") {
|
|
LOGW("Invalid value for touch.toolSize.calibration: '%s'",
|
|
toolSizeCalibrationString.string());
|
|
}
|
|
}
|
|
|
|
out.haveToolSizeLinearScale = in.tryGetProperty(String8("touch.toolSize.linearScale"),
|
|
out.toolSizeLinearScale);
|
|
out.haveToolSizeLinearBias = in.tryGetProperty(String8("touch.toolSize.linearBias"),
|
|
out.toolSizeLinearBias);
|
|
out.haveToolSizeAreaScale = in.tryGetProperty(String8("touch.toolSize.areaScale"),
|
|
out.toolSizeAreaScale);
|
|
out.haveToolSizeAreaBias = in.tryGetProperty(String8("touch.toolSize.areaBias"),
|
|
out.toolSizeAreaBias);
|
|
out.haveToolSizeIsSummed = in.tryGetProperty(String8("touch.toolSize.isSummed"),
|
|
out.toolSizeIsSummed);
|
|
|
|
// Pressure
|
|
out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_DEFAULT;
|
|
String8 pressureCalibrationString;
|
|
if (in.tryGetProperty(String8("touch.pressure.calibration"), pressureCalibrationString)) {
|
|
if (pressureCalibrationString == "none") {
|
|
out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE;
|
|
} else if (pressureCalibrationString == "physical") {
|
|
out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_PHYSICAL;
|
|
} else if (pressureCalibrationString == "amplitude") {
|
|
out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_AMPLITUDE;
|
|
} else if (pressureCalibrationString != "default") {
|
|
LOGW("Invalid value for touch.pressure.calibration: '%s'",
|
|
pressureCalibrationString.string());
|
|
}
|
|
}
|
|
|
|
out.pressureSource = Calibration::PRESSURE_SOURCE_DEFAULT;
|
|
String8 pressureSourceString;
|
|
if (in.tryGetProperty(String8("touch.pressure.source"), pressureSourceString)) {
|
|
if (pressureSourceString == "pressure") {
|
|
out.pressureSource = Calibration::PRESSURE_SOURCE_PRESSURE;
|
|
} else if (pressureSourceString == "touch") {
|
|
out.pressureSource = Calibration::PRESSURE_SOURCE_TOUCH;
|
|
} else if (pressureSourceString != "default") {
|
|
LOGW("Invalid value for touch.pressure.source: '%s'",
|
|
pressureSourceString.string());
|
|
}
|
|
}
|
|
|
|
out.havePressureScale = in.tryGetProperty(String8("touch.pressure.scale"),
|
|
out.pressureScale);
|
|
|
|
// Size
|
|
out.sizeCalibration = Calibration::SIZE_CALIBRATION_DEFAULT;
|
|
String8 sizeCalibrationString;
|
|
if (in.tryGetProperty(String8("touch.size.calibration"), sizeCalibrationString)) {
|
|
if (sizeCalibrationString == "none") {
|
|
out.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE;
|
|
} else if (sizeCalibrationString == "normalized") {
|
|
out.sizeCalibration = Calibration::SIZE_CALIBRATION_NORMALIZED;
|
|
} else if (sizeCalibrationString != "default") {
|
|
LOGW("Invalid value for touch.size.calibration: '%s'",
|
|
sizeCalibrationString.string());
|
|
}
|
|
}
|
|
|
|
// Orientation
|
|
out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_DEFAULT;
|
|
String8 orientationCalibrationString;
|
|
if (in.tryGetProperty(String8("touch.orientation.calibration"), orientationCalibrationString)) {
|
|
if (orientationCalibrationString == "none") {
|
|
out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE;
|
|
} else if (orientationCalibrationString == "interpolated") {
|
|
out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED;
|
|
} else if (orientationCalibrationString == "vector") {
|
|
out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_VECTOR;
|
|
} else if (orientationCalibrationString != "default") {
|
|
LOGW("Invalid value for touch.orientation.calibration: '%s'",
|
|
orientationCalibrationString.string());
|
|
}
|
|
}
|
|
|
|
// Distance
|
|
out.distanceCalibration = Calibration::DISTANCE_CALIBRATION_DEFAULT;
|
|
String8 distanceCalibrationString;
|
|
if (in.tryGetProperty(String8("touch.distance.calibration"), distanceCalibrationString)) {
|
|
if (distanceCalibrationString == "none") {
|
|
out.distanceCalibration = Calibration::DISTANCE_CALIBRATION_NONE;
|
|
} else if (distanceCalibrationString == "scaled") {
|
|
out.distanceCalibration = Calibration::DISTANCE_CALIBRATION_SCALED;
|
|
} else if (distanceCalibrationString != "default") {
|
|
LOGW("Invalid value for touch.distance.calibration: '%s'",
|
|
distanceCalibrationString.string());
|
|
}
|
|
}
|
|
|
|
out.haveDistanceScale = in.tryGetProperty(String8("touch.distance.scale"),
|
|
out.distanceScale);
|
|
}
|
|
|
|
void TouchInputMapper::resolveCalibration() {
|
|
// Pressure
|
|
switch (mCalibration.pressureSource) {
|
|
case Calibration::PRESSURE_SOURCE_DEFAULT:
|
|
if (mRawAxes.pressure.valid) {
|
|
mCalibration.pressureSource = Calibration::PRESSURE_SOURCE_PRESSURE;
|
|
} else if (mRawAxes.touchMajor.valid) {
|
|
mCalibration.pressureSource = Calibration::PRESSURE_SOURCE_TOUCH;
|
|
}
|
|
break;
|
|
|
|
case Calibration::PRESSURE_SOURCE_PRESSURE:
|
|
if (! mRawAxes.pressure.valid) {
|
|
LOGW("Calibration property touch.pressure.source is 'pressure' but "
|
|
"the pressure axis is not available.");
|
|
}
|
|
break;
|
|
|
|
case Calibration::PRESSURE_SOURCE_TOUCH:
|
|
if (! mRawAxes.touchMajor.valid) {
|
|
LOGW("Calibration property touch.pressure.source is 'touch' but "
|
|
"the touchMajor axis is not available.");
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
switch (mCalibration.pressureCalibration) {
|
|
case Calibration::PRESSURE_CALIBRATION_DEFAULT:
|
|
if (mCalibration.pressureSource != Calibration::PRESSURE_SOURCE_DEFAULT) {
|
|
mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_AMPLITUDE;
|
|
} else {
|
|
mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Tool Size
|
|
switch (mCalibration.toolSizeCalibration) {
|
|
case Calibration::TOOL_SIZE_CALIBRATION_DEFAULT:
|
|
if (mRawAxes.toolMajor.valid) {
|
|
mCalibration.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_LINEAR;
|
|
} else {
|
|
mCalibration.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_NONE;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Touch Size
|
|
switch (mCalibration.touchSizeCalibration) {
|
|
case Calibration::TOUCH_SIZE_CALIBRATION_DEFAULT:
|
|
if (mCalibration.pressureCalibration != Calibration::PRESSURE_CALIBRATION_NONE
|
|
&& mCalibration.toolSizeCalibration != Calibration::TOOL_SIZE_CALIBRATION_NONE) {
|
|
mCalibration.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE;
|
|
} else {
|
|
mCalibration.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_NONE;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Size
|
|
switch (mCalibration.sizeCalibration) {
|
|
case Calibration::SIZE_CALIBRATION_DEFAULT:
|
|
if (mRawAxes.toolMajor.valid) {
|
|
mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_NORMALIZED;
|
|
} else {
|
|
mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Orientation
|
|
switch (mCalibration.orientationCalibration) {
|
|
case Calibration::ORIENTATION_CALIBRATION_DEFAULT:
|
|
if (mRawAxes.orientation.valid) {
|
|
mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED;
|
|
} else {
|
|
mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Distance
|
|
switch (mCalibration.distanceCalibration) {
|
|
case Calibration::DISTANCE_CALIBRATION_DEFAULT:
|
|
if (mRawAxes.distance.valid) {
|
|
mCalibration.distanceCalibration = Calibration::DISTANCE_CALIBRATION_SCALED;
|
|
} else {
|
|
mCalibration.distanceCalibration = Calibration::DISTANCE_CALIBRATION_NONE;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void TouchInputMapper::dumpCalibration(String8& dump) {
|
|
dump.append(INDENT3 "Calibration:\n");
|
|
|
|
// Touch Size
|
|
switch (mCalibration.touchSizeCalibration) {
|
|
case Calibration::TOUCH_SIZE_CALIBRATION_NONE:
|
|
dump.append(INDENT4 "touch.touchSize.calibration: none\n");
|
|
break;
|
|
case Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC:
|
|
dump.append(INDENT4 "touch.touchSize.calibration: geometric\n");
|
|
break;
|
|
case Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE:
|
|
dump.append(INDENT4 "touch.touchSize.calibration: pressure\n");
|
|
break;
|
|
default:
|
|
LOG_ASSERT(false);
|
|
}
|
|
|
|
// Tool Size
|
|
switch (mCalibration.toolSizeCalibration) {
|
|
case Calibration::TOOL_SIZE_CALIBRATION_NONE:
|
|
dump.append(INDENT4 "touch.toolSize.calibration: none\n");
|
|
break;
|
|
case Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC:
|
|
dump.append(INDENT4 "touch.toolSize.calibration: geometric\n");
|
|
break;
|
|
case Calibration::TOOL_SIZE_CALIBRATION_LINEAR:
|
|
dump.append(INDENT4 "touch.toolSize.calibration: linear\n");
|
|
break;
|
|
case Calibration::TOOL_SIZE_CALIBRATION_AREA:
|
|
dump.append(INDENT4 "touch.toolSize.calibration: area\n");
|
|
break;
|
|
default:
|
|
LOG_ASSERT(false);
|
|
}
|
|
|
|
if (mCalibration.haveToolSizeLinearScale) {
|
|
dump.appendFormat(INDENT4 "touch.toolSize.linearScale: %0.3f\n",
|
|
mCalibration.toolSizeLinearScale);
|
|
}
|
|
|
|
if (mCalibration.haveToolSizeLinearBias) {
|
|
dump.appendFormat(INDENT4 "touch.toolSize.linearBias: %0.3f\n",
|
|
mCalibration.toolSizeLinearBias);
|
|
}
|
|
|
|
if (mCalibration.haveToolSizeAreaScale) {
|
|
dump.appendFormat(INDENT4 "touch.toolSize.areaScale: %0.3f\n",
|
|
mCalibration.toolSizeAreaScale);
|
|
}
|
|
|
|
if (mCalibration.haveToolSizeAreaBias) {
|
|
dump.appendFormat(INDENT4 "touch.toolSize.areaBias: %0.3f\n",
|
|
mCalibration.toolSizeAreaBias);
|
|
}
|
|
|
|
if (mCalibration.haveToolSizeIsSummed) {
|
|
dump.appendFormat(INDENT4 "touch.toolSize.isSummed: %s\n",
|
|
toString(mCalibration.toolSizeIsSummed));
|
|
}
|
|
|
|
// Pressure
|
|
switch (mCalibration.pressureCalibration) {
|
|
case Calibration::PRESSURE_CALIBRATION_NONE:
|
|
dump.append(INDENT4 "touch.pressure.calibration: none\n");
|
|
break;
|
|
case Calibration::PRESSURE_CALIBRATION_PHYSICAL:
|
|
dump.append(INDENT4 "touch.pressure.calibration: physical\n");
|
|
break;
|
|
case Calibration::PRESSURE_CALIBRATION_AMPLITUDE:
|
|
dump.append(INDENT4 "touch.pressure.calibration: amplitude\n");
|
|
break;
|
|
default:
|
|
LOG_ASSERT(false);
|
|
}
|
|
|
|
switch (mCalibration.pressureSource) {
|
|
case Calibration::PRESSURE_SOURCE_PRESSURE:
|
|
dump.append(INDENT4 "touch.pressure.source: pressure\n");
|
|
break;
|
|
case Calibration::PRESSURE_SOURCE_TOUCH:
|
|
dump.append(INDENT4 "touch.pressure.source: touch\n");
|
|
break;
|
|
case Calibration::PRESSURE_SOURCE_DEFAULT:
|
|
break;
|
|
default:
|
|
LOG_ASSERT(false);
|
|
}
|
|
|
|
if (mCalibration.havePressureScale) {
|
|
dump.appendFormat(INDENT4 "touch.pressure.scale: %0.3f\n",
|
|
mCalibration.pressureScale);
|
|
}
|
|
|
|
// Size
|
|
switch (mCalibration.sizeCalibration) {
|
|
case Calibration::SIZE_CALIBRATION_NONE:
|
|
dump.append(INDENT4 "touch.size.calibration: none\n");
|
|
break;
|
|
case Calibration::SIZE_CALIBRATION_NORMALIZED:
|
|
dump.append(INDENT4 "touch.size.calibration: normalized\n");
|
|
break;
|
|
default:
|
|
LOG_ASSERT(false);
|
|
}
|
|
|
|
// Orientation
|
|
switch (mCalibration.orientationCalibration) {
|
|
case Calibration::ORIENTATION_CALIBRATION_NONE:
|
|
dump.append(INDENT4 "touch.orientation.calibration: none\n");
|
|
break;
|
|
case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED:
|
|
dump.append(INDENT4 "touch.orientation.calibration: interpolated\n");
|
|
break;
|
|
case Calibration::ORIENTATION_CALIBRATION_VECTOR:
|
|
dump.append(INDENT4 "touch.orientation.calibration: vector\n");
|
|
break;
|
|
default:
|
|
LOG_ASSERT(false);
|
|
}
|
|
|
|
// Distance
|
|
switch (mCalibration.distanceCalibration) {
|
|
case Calibration::DISTANCE_CALIBRATION_NONE:
|
|
dump.append(INDENT4 "touch.distance.calibration: none\n");
|
|
break;
|
|
case Calibration::DISTANCE_CALIBRATION_SCALED:
|
|
dump.append(INDENT4 "touch.distance.calibration: scaled\n");
|
|
break;
|
|
default:
|
|
LOG_ASSERT(false);
|
|
}
|
|
|
|
if (mCalibration.haveDistanceScale) {
|
|
dump.appendFormat(INDENT4 "touch.distance.scale: %0.3f\n",
|
|
mCalibration.distanceScale);
|
|
}
|
|
}
|
|
|
|
void TouchInputMapper::reset() {
|
|
// Synthesize touch up event if touch is currently down.
|
|
// This will also take care of finishing virtual key processing if needed.
|
|
if (mLastTouch.pointerCount != 0) {
|
|
nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
|
|
mCurrentTouch.clear();
|
|
syncTouch(when, true);
|
|
}
|
|
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
initializeLocked();
|
|
|
|
if (mPointerController != NULL
|
|
&& mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
|
|
mPointerController->clearSpots();
|
|
}
|
|
} // release lock
|
|
|
|
InputMapper::reset();
|
|
}
|
|
|
|
void TouchInputMapper::syncTouch(nsecs_t when, bool havePointerIds) {
|
|
#if DEBUG_RAW_EVENTS
|
|
if (!havePointerIds) {
|
|
LOGD("syncTouch: pointerCount=%d, no pointer ids", mCurrentTouch.pointerCount);
|
|
} else {
|
|
LOGD("syncTouch: pointerCount=%d, up=0x%08x, down=0x%08x, move=0x%08x, "
|
|
"last=0x%08x, current=0x%08x", mCurrentTouch.pointerCount,
|
|
mLastTouch.idBits.value & ~mCurrentTouch.idBits.value,
|
|
mCurrentTouch.idBits.value & ~mLastTouch.idBits.value,
|
|
mLastTouch.idBits.value & mCurrentTouch.idBits.value,
|
|
mLastTouch.idBits.value, mCurrentTouch.idBits.value);
|
|
}
|
|
#endif
|
|
|
|
// Preprocess pointer data.
|
|
if (mParameters.useBadTouchFilter) {
|
|
if (applyBadTouchFilter()) {
|
|
havePointerIds = false;
|
|
}
|
|
}
|
|
|
|
if (mParameters.useJumpyTouchFilter) {
|
|
if (applyJumpyTouchFilter()) {
|
|
havePointerIds = false;
|
|
}
|
|
}
|
|
|
|
if (!havePointerIds) {
|
|
calculatePointerIds();
|
|
}
|
|
|
|
TouchData temp;
|
|
TouchData* savedTouch;
|
|
if (mParameters.useAveragingTouchFilter) {
|
|
temp.copyFrom(mCurrentTouch);
|
|
savedTouch = & temp;
|
|
|
|
applyAveragingTouchFilter();
|
|
} else {
|
|
savedTouch = & mCurrentTouch;
|
|
}
|
|
|
|
uint32_t policyFlags = 0;
|
|
if (mLastTouch.pointerCount == 0 && mCurrentTouch.pointerCount != 0) {
|
|
if (mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN) {
|
|
// If this is a touch screen, hide the pointer on an initial down.
|
|
getContext()->fadePointer();
|
|
}
|
|
|
|
// Initial downs on external touch devices should wake the device.
|
|
// We don't do this for internal touch screens to prevent them from waking
|
|
// up in your pocket.
|
|
// TODO: Use the input device configuration to control this behavior more finely.
|
|
if (getDevice()->isExternal()) {
|
|
policyFlags |= POLICY_FLAG_WAKE_DROPPED;
|
|
}
|
|
}
|
|
|
|
// Synthesize key down from buttons if needed.
|
|
synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_DOWN, when, getDeviceId(), mTouchSource,
|
|
policyFlags, mLastTouch.buttonState, mCurrentTouch.buttonState);
|
|
|
|
// Send motion events.
|
|
TouchResult touchResult;
|
|
if (mLastTouch.pointerCount == 0 && mCurrentTouch.pointerCount == 0
|
|
&& mLastTouch.buttonState == mCurrentTouch.buttonState) {
|
|
// Drop spurious syncs.
|
|
touchResult = DROP_STROKE;
|
|
} else {
|
|
// Process touches and virtual keys.
|
|
touchResult = consumeOffScreenTouches(when, policyFlags);
|
|
if (touchResult == DISPATCH_TOUCH) {
|
|
suppressSwipeOntoVirtualKeys(when);
|
|
if (mPointerController != NULL) {
|
|
dispatchPointerGestures(when, policyFlags, false /*isTimeout*/);
|
|
}
|
|
dispatchTouches(when, policyFlags);
|
|
}
|
|
}
|
|
|
|
// Synthesize key up from buttons if needed.
|
|
synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_UP, when, getDeviceId(), mTouchSource,
|
|
policyFlags, mLastTouch.buttonState, mCurrentTouch.buttonState);
|
|
|
|
// Copy current touch to last touch in preparation for the next cycle.
|
|
// Keep the button state so we can track edge-triggered button state changes.
|
|
if (touchResult == DROP_STROKE) {
|
|
mLastTouch.clear();
|
|
mLastTouch.buttonState = savedTouch->buttonState;
|
|
} else {
|
|
mLastTouch.copyFrom(*savedTouch);
|
|
}
|
|
}
|
|
|
|
void TouchInputMapper::timeoutExpired(nsecs_t when) {
|
|
if (mPointerController != NULL) {
|
|
dispatchPointerGestures(when, 0 /*policyFlags*/, true /*isTimeout*/);
|
|
}
|
|
}
|
|
|
|
TouchInputMapper::TouchResult TouchInputMapper::consumeOffScreenTouches(
|
|
nsecs_t when, uint32_t policyFlags) {
|
|
int32_t keyEventAction, keyEventFlags;
|
|
int32_t keyCode, scanCode, downTime;
|
|
TouchResult touchResult;
|
|
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
// Update surface size and orientation, including virtual key positions.
|
|
if (! configureSurfaceLocked()) {
|
|
return DROP_STROKE;
|
|
}
|
|
|
|
// Check for virtual key press.
|
|
if (mLocked.currentVirtualKey.down) {
|
|
if (mCurrentTouch.pointerCount == 0) {
|
|
// Pointer went up while virtual key was down.
|
|
mLocked.currentVirtualKey.down = false;
|
|
#if DEBUG_VIRTUAL_KEYS
|
|
LOGD("VirtualKeys: Generating key up: keyCode=%d, scanCode=%d",
|
|
mLocked.currentVirtualKey.keyCode, mLocked.currentVirtualKey.scanCode);
|
|
#endif
|
|
keyEventAction = AKEY_EVENT_ACTION_UP;
|
|
keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY;
|
|
touchResult = SKIP_TOUCH;
|
|
goto DispatchVirtualKey;
|
|
}
|
|
|
|
if (mCurrentTouch.pointerCount == 1) {
|
|
int32_t x = mCurrentTouch.pointers[0].x;
|
|
int32_t y = mCurrentTouch.pointers[0].y;
|
|
const VirtualKey* virtualKey = findVirtualKeyHitLocked(x, y);
|
|
if (virtualKey && virtualKey->keyCode == mLocked.currentVirtualKey.keyCode) {
|
|
// Pointer is still within the space of the virtual key.
|
|
return SKIP_TOUCH;
|
|
}
|
|
}
|
|
|
|
// Pointer left virtual key area or another pointer also went down.
|
|
// Send key cancellation and drop the stroke so subsequent motions will be
|
|
// considered fresh downs. This is useful when the user swipes away from the
|
|
// virtual key area into the main display surface.
|
|
mLocked.currentVirtualKey.down = false;
|
|
#if DEBUG_VIRTUAL_KEYS
|
|
LOGD("VirtualKeys: Canceling key: keyCode=%d, scanCode=%d",
|
|
mLocked.currentVirtualKey.keyCode, mLocked.currentVirtualKey.scanCode);
|
|
#endif
|
|
keyEventAction = AKEY_EVENT_ACTION_UP;
|
|
keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY
|
|
| AKEY_EVENT_FLAG_CANCELED;
|
|
|
|
// Check whether the pointer moved inside the display area where we should
|
|
// start a new stroke.
|
|
int32_t x = mCurrentTouch.pointers[0].x;
|
|
int32_t y = mCurrentTouch.pointers[0].y;
|
|
if (isPointInsideSurfaceLocked(x, y)) {
|
|
mLastTouch.clear();
|
|
touchResult = DISPATCH_TOUCH;
|
|
} else {
|
|
touchResult = DROP_STROKE;
|
|
}
|
|
} else {
|
|
if (mCurrentTouch.pointerCount >= 1 && mLastTouch.pointerCount == 0) {
|
|
// Pointer just went down. Handle off-screen touches, if needed.
|
|
int32_t x = mCurrentTouch.pointers[0].x;
|
|
int32_t y = mCurrentTouch.pointers[0].y;
|
|
if (! isPointInsideSurfaceLocked(x, y)) {
|
|
// If exactly one pointer went down, check for virtual key hit.
|
|
// Otherwise we will drop the entire stroke.
|
|
if (mCurrentTouch.pointerCount == 1) {
|
|
const VirtualKey* virtualKey = findVirtualKeyHitLocked(x, y);
|
|
if (virtualKey) {
|
|
if (mContext->shouldDropVirtualKey(when, getDevice(),
|
|
virtualKey->keyCode, virtualKey->scanCode)) {
|
|
return DROP_STROKE;
|
|
}
|
|
|
|
mLocked.currentVirtualKey.down = true;
|
|
mLocked.currentVirtualKey.downTime = when;
|
|
mLocked.currentVirtualKey.keyCode = virtualKey->keyCode;
|
|
mLocked.currentVirtualKey.scanCode = virtualKey->scanCode;
|
|
#if DEBUG_VIRTUAL_KEYS
|
|
LOGD("VirtualKeys: Generating key down: keyCode=%d, scanCode=%d",
|
|
mLocked.currentVirtualKey.keyCode,
|
|
mLocked.currentVirtualKey.scanCode);
|
|
#endif
|
|
keyEventAction = AKEY_EVENT_ACTION_DOWN;
|
|
keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM
|
|
| AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY;
|
|
touchResult = SKIP_TOUCH;
|
|
goto DispatchVirtualKey;
|
|
}
|
|
}
|
|
return DROP_STROKE;
|
|
}
|
|
}
|
|
return DISPATCH_TOUCH;
|
|
}
|
|
|
|
DispatchVirtualKey:
|
|
// Collect remaining state needed to dispatch virtual key.
|
|
keyCode = mLocked.currentVirtualKey.keyCode;
|
|
scanCode = mLocked.currentVirtualKey.scanCode;
|
|
downTime = mLocked.currentVirtualKey.downTime;
|
|
} // release lock
|
|
|
|
// Dispatch virtual key.
|
|
int32_t metaState = mContext->getGlobalMetaState();
|
|
policyFlags |= POLICY_FLAG_VIRTUAL;
|
|
getDispatcher()->notifyKey(when, getDeviceId(), AINPUT_SOURCE_KEYBOARD, policyFlags,
|
|
keyEventAction, keyEventFlags, keyCode, scanCode, metaState, downTime);
|
|
return touchResult;
|
|
}
|
|
|
|
void TouchInputMapper::suppressSwipeOntoVirtualKeys(nsecs_t when) {
|
|
// Disable all virtual key touches that happen within a short time interval of the
|
|
// most recent touch. The idea is to filter out stray virtual key presses when
|
|
// interacting with the touch screen.
|
|
//
|
|
// Problems we're trying to solve:
|
|
//
|
|
// 1. While scrolling a list or dragging the window shade, the user swipes down into a
|
|
// virtual key area that is implemented by a separate touch panel and accidentally
|
|
// triggers a virtual key.
|
|
//
|
|
// 2. While typing in the on screen keyboard, the user taps slightly outside the screen
|
|
// area and accidentally triggers a virtual key. This often happens when virtual keys
|
|
// are layed out below the screen near to where the on screen keyboard's space bar
|
|
// is displayed.
|
|
if (mParameters.virtualKeyQuietTime > 0 && mCurrentTouch.pointerCount != 0) {
|
|
mContext->disableVirtualKeysUntil(when + mParameters.virtualKeyQuietTime);
|
|
}
|
|
}
|
|
|
|
void TouchInputMapper::dispatchTouches(nsecs_t when, uint32_t policyFlags) {
|
|
uint32_t currentPointerCount = mCurrentTouch.pointerCount;
|
|
uint32_t lastPointerCount = mLastTouch.pointerCount;
|
|
if (currentPointerCount == 0 && lastPointerCount == 0) {
|
|
return; // nothing to do!
|
|
}
|
|
|
|
// Update current touch coordinates.
|
|
int32_t edgeFlags;
|
|
float xPrecision, yPrecision;
|
|
prepareTouches(&edgeFlags, &xPrecision, &yPrecision);
|
|
|
|
// Dispatch motions.
|
|
BitSet32 currentIdBits = mCurrentTouch.idBits;
|
|
BitSet32 lastIdBits = mLastTouch.idBits;
|
|
int32_t metaState = getContext()->getGlobalMetaState();
|
|
int32_t buttonState = mCurrentTouch.buttonState;
|
|
|
|
if (currentIdBits == lastIdBits) {
|
|
// No pointer id changes so this is a move event.
|
|
// The dispatcher takes care of batching moves so we don't have to deal with that here.
|
|
dispatchMotion(when, policyFlags, mTouchSource,
|
|
AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState,
|
|
AMOTION_EVENT_EDGE_FLAG_NONE,
|
|
mCurrentTouchProperties, mCurrentTouchCoords,
|
|
mCurrentTouch.idToIndex, currentIdBits, -1,
|
|
xPrecision, yPrecision, mDownTime);
|
|
} else {
|
|
// There may be pointers going up and pointers going down and pointers moving
|
|
// all at the same time.
|
|
BitSet32 upIdBits(lastIdBits.value & ~currentIdBits.value);
|
|
BitSet32 downIdBits(currentIdBits.value & ~lastIdBits.value);
|
|
BitSet32 moveIdBits(lastIdBits.value & currentIdBits.value);
|
|
BitSet32 dispatchedIdBits(lastIdBits.value);
|
|
|
|
// Update last coordinates of pointers that have moved so that we observe the new
|
|
// pointer positions at the same time as other pointers that have just gone up.
|
|
bool moveNeeded = updateMovedPointers(
|
|
mCurrentTouchProperties, mCurrentTouchCoords, mCurrentTouch.idToIndex,
|
|
mLastTouchProperties, mLastTouchCoords, mLastTouch.idToIndex,
|
|
moveIdBits);
|
|
if (buttonState != mLastTouch.buttonState) {
|
|
moveNeeded = true;
|
|
}
|
|
|
|
// Dispatch pointer up events.
|
|
while (!upIdBits.isEmpty()) {
|
|
uint32_t upId = upIdBits.firstMarkedBit();
|
|
upIdBits.clearBit(upId);
|
|
|
|
dispatchMotion(when, policyFlags, mTouchSource,
|
|
AMOTION_EVENT_ACTION_POINTER_UP, 0, metaState, buttonState, 0,
|
|
mLastTouchProperties, mLastTouchCoords,
|
|
mLastTouch.idToIndex, dispatchedIdBits, upId,
|
|
xPrecision, yPrecision, mDownTime);
|
|
dispatchedIdBits.clearBit(upId);
|
|
}
|
|
|
|
// Dispatch move events if any of the remaining pointers moved from their old locations.
|
|
// Although applications receive new locations as part of individual pointer up
|
|
// events, they do not generally handle them except when presented in a move event.
|
|
if (moveNeeded) {
|
|
LOG_ASSERT(moveIdBits.value == dispatchedIdBits.value);
|
|
dispatchMotion(when, policyFlags, mTouchSource,
|
|
AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState, 0,
|
|
mCurrentTouchProperties, mCurrentTouchCoords,
|
|
mCurrentTouch.idToIndex, dispatchedIdBits, -1,
|
|
xPrecision, yPrecision, mDownTime);
|
|
}
|
|
|
|
// Dispatch pointer down events using the new pointer locations.
|
|
while (!downIdBits.isEmpty()) {
|
|
uint32_t downId = downIdBits.firstMarkedBit();
|
|
downIdBits.clearBit(downId);
|
|
dispatchedIdBits.markBit(downId);
|
|
|
|
if (dispatchedIdBits.count() == 1) {
|
|
// First pointer is going down. Set down time.
|
|
mDownTime = when;
|
|
} else {
|
|
// Only send edge flags with first pointer down.
|
|
edgeFlags = AMOTION_EVENT_EDGE_FLAG_NONE;
|
|
}
|
|
|
|
dispatchMotion(when, policyFlags, mTouchSource,
|
|
AMOTION_EVENT_ACTION_POINTER_DOWN, 0, metaState, buttonState, edgeFlags,
|
|
mCurrentTouchProperties, mCurrentTouchCoords,
|
|
mCurrentTouch.idToIndex, dispatchedIdBits, downId,
|
|
xPrecision, yPrecision, mDownTime);
|
|
}
|
|
}
|
|
|
|
// Update state for next time.
|
|
for (uint32_t i = 0; i < currentPointerCount; i++) {
|
|
mLastTouchProperties[i].copyFrom(mCurrentTouchProperties[i]);
|
|
mLastTouchCoords[i].copyFrom(mCurrentTouchCoords[i]);
|
|
}
|
|
}
|
|
|
|
void TouchInputMapper::prepareTouches(int32_t* outEdgeFlags,
|
|
float* outXPrecision, float* outYPrecision) {
|
|
uint32_t currentPointerCount = mCurrentTouch.pointerCount;
|
|
uint32_t lastPointerCount = mLastTouch.pointerCount;
|
|
|
|
AutoMutex _l(mLock);
|
|
|
|
// Walk through the the active pointers and map touch screen coordinates (TouchData) into
|
|
// display or surface coordinates (PointerCoords) and adjust for display orientation.
|
|
for (uint32_t i = 0; i < currentPointerCount; i++) {
|
|
const PointerData& in = mCurrentTouch.pointers[i];
|
|
|
|
// ToolMajor and ToolMinor
|
|
float toolMajor, toolMinor;
|
|
switch (mCalibration.toolSizeCalibration) {
|
|
case Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC:
|
|
toolMajor = in.toolMajor * mLocked.geometricScale;
|
|
if (mRawAxes.toolMinor.valid) {
|
|
toolMinor = in.toolMinor * mLocked.geometricScale;
|
|
} else {
|
|
toolMinor = toolMajor;
|
|
}
|
|
break;
|
|
case Calibration::TOOL_SIZE_CALIBRATION_LINEAR:
|
|
toolMajor = in.toolMajor != 0
|
|
? in.toolMajor * mLocked.toolSizeLinearScale + mLocked.toolSizeLinearBias
|
|
: 0;
|
|
if (mRawAxes.toolMinor.valid) {
|
|
toolMinor = in.toolMinor != 0
|
|
? in.toolMinor * mLocked.toolSizeLinearScale
|
|
+ mLocked.toolSizeLinearBias
|
|
: 0;
|
|
} else {
|
|
toolMinor = toolMajor;
|
|
}
|
|
break;
|
|
case Calibration::TOOL_SIZE_CALIBRATION_AREA:
|
|
if (in.toolMajor != 0) {
|
|
float diameter = sqrtf(in.toolMajor
|
|
* mLocked.toolSizeAreaScale + mLocked.toolSizeAreaBias);
|
|
toolMajor = diameter * mLocked.toolSizeLinearScale + mLocked.toolSizeLinearBias;
|
|
} else {
|
|
toolMajor = 0;
|
|
}
|
|
toolMinor = toolMajor;
|
|
break;
|
|
default:
|
|
toolMajor = 0;
|
|
toolMinor = 0;
|
|
break;
|
|
}
|
|
|
|
if (mCalibration.haveToolSizeIsSummed && mCalibration.toolSizeIsSummed) {
|
|
toolMajor /= currentPointerCount;
|
|
toolMinor /= currentPointerCount;
|
|
}
|
|
|
|
// Pressure
|
|
float rawPressure;
|
|
switch (mCalibration.pressureSource) {
|
|
case Calibration::PRESSURE_SOURCE_PRESSURE:
|
|
rawPressure = in.pressure;
|
|
break;
|
|
case Calibration::PRESSURE_SOURCE_TOUCH:
|
|
rawPressure = in.touchMajor;
|
|
break;
|
|
default:
|
|
rawPressure = 0;
|
|
}
|
|
|
|
float pressure;
|
|
switch (mCalibration.pressureCalibration) {
|
|
case Calibration::PRESSURE_CALIBRATION_PHYSICAL:
|
|
case Calibration::PRESSURE_CALIBRATION_AMPLITUDE:
|
|
pressure = rawPressure * mLocked.pressureScale;
|
|
break;
|
|
default:
|
|
pressure = 1;
|
|
break;
|
|
}
|
|
|
|
// TouchMajor and TouchMinor
|
|
float touchMajor, touchMinor;
|
|
switch (mCalibration.touchSizeCalibration) {
|
|
case Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC:
|
|
touchMajor = in.touchMajor * mLocked.geometricScale;
|
|
if (mRawAxes.touchMinor.valid) {
|
|
touchMinor = in.touchMinor * mLocked.geometricScale;
|
|
} else {
|
|
touchMinor = touchMajor;
|
|
}
|
|
break;
|
|
case Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE:
|
|
touchMajor = toolMajor * pressure;
|
|
touchMinor = toolMinor * pressure;
|
|
break;
|
|
default:
|
|
touchMajor = 0;
|
|
touchMinor = 0;
|
|
break;
|
|
}
|
|
|
|
if (touchMajor > toolMajor) {
|
|
touchMajor = toolMajor;
|
|
}
|
|
if (touchMinor > toolMinor) {
|
|
touchMinor = toolMinor;
|
|
}
|
|
|
|
// Size
|
|
float size;
|
|
switch (mCalibration.sizeCalibration) {
|
|
case Calibration::SIZE_CALIBRATION_NORMALIZED: {
|
|
float rawSize = mRawAxes.toolMinor.valid
|
|
? avg(in.toolMajor, in.toolMinor)
|
|
: in.toolMajor;
|
|
size = rawSize * mLocked.sizeScale;
|
|
break;
|
|
}
|
|
default:
|
|
size = 0;
|
|
break;
|
|
}
|
|
|
|
// Orientation
|
|
float orientation;
|
|
switch (mCalibration.orientationCalibration) {
|
|
case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED:
|
|
orientation = in.orientation * mLocked.orientationScale;
|
|
break;
|
|
case Calibration::ORIENTATION_CALIBRATION_VECTOR: {
|
|
int32_t c1 = signExtendNybble((in.orientation & 0xf0) >> 4);
|
|
int32_t c2 = signExtendNybble(in.orientation & 0x0f);
|
|
if (c1 != 0 || c2 != 0) {
|
|
orientation = atan2f(c1, c2) * 0.5f;
|
|
float scale = 1.0f + hypotf(c1, c2) / 16.0f;
|
|
touchMajor *= scale;
|
|
touchMinor /= scale;
|
|
toolMajor *= scale;
|
|
toolMinor /= scale;
|
|
} else {
|
|
orientation = 0;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
orientation = 0;
|
|
}
|
|
|
|
// Distance
|
|
float distance;
|
|
switch (mCalibration.distanceCalibration) {
|
|
case Calibration::DISTANCE_CALIBRATION_SCALED:
|
|
distance = in.distance * mLocked.distanceScale;
|
|
break;
|
|
default:
|
|
distance = 0;
|
|
}
|
|
|
|
// X and Y
|
|
// Adjust coords for surface orientation.
|
|
float x, y;
|
|
switch (mLocked.surfaceOrientation) {
|
|
case DISPLAY_ORIENTATION_90:
|
|
x = float(in.y - mRawAxes.y.minValue) * mLocked.yScale;
|
|
y = float(mRawAxes.x.maxValue - in.x) * mLocked.xScale;
|
|
orientation -= M_PI_2;
|
|
if (orientation < - M_PI_2) {
|
|
orientation += M_PI;
|
|
}
|
|
break;
|
|
case DISPLAY_ORIENTATION_180:
|
|
x = float(mRawAxes.x.maxValue - in.x) * mLocked.xScale;
|
|
y = float(mRawAxes.y.maxValue - in.y) * mLocked.yScale;
|
|
break;
|
|
case DISPLAY_ORIENTATION_270:
|
|
x = float(mRawAxes.y.maxValue - in.y) * mLocked.yScale;
|
|
y = float(in.x - mRawAxes.x.minValue) * mLocked.xScale;
|
|
orientation += M_PI_2;
|
|
if (orientation > M_PI_2) {
|
|
orientation -= M_PI;
|
|
}
|
|
break;
|
|
default:
|
|
x = float(in.x - mRawAxes.x.minValue) * mLocked.xScale;
|
|
y = float(in.y - mRawAxes.y.minValue) * mLocked.yScale;
|
|
break;
|
|
}
|
|
|
|
// Write output coords.
|
|
PointerCoords& out = mCurrentTouchCoords[i];
|
|
out.clear();
|
|
out.setAxisValue(AMOTION_EVENT_AXIS_X, x);
|
|
out.setAxisValue(AMOTION_EVENT_AXIS_Y, y);
|
|
out.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, pressure);
|
|
out.setAxisValue(AMOTION_EVENT_AXIS_SIZE, size);
|
|
out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, touchMajor);
|
|
out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, touchMinor);
|
|
out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, toolMajor);
|
|
out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, toolMinor);
|
|
out.setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, orientation);
|
|
if (distance != 0) {
|
|
out.setAxisValue(AMOTION_EVENT_AXIS_DISTANCE, distance);
|
|
}
|
|
|
|
// Write output properties.
|
|
PointerProperties& properties = mCurrentTouchProperties[i];
|
|
properties.clear();
|
|
properties.id = mCurrentTouch.pointers[i].id;
|
|
properties.toolType = getTouchToolType(mCurrentTouch.pointers[i].isStylus);
|
|
}
|
|
|
|
// Check edge flags by looking only at the first pointer since the flags are
|
|
// global to the event.
|
|
*outEdgeFlags = AMOTION_EVENT_EDGE_FLAG_NONE;
|
|
if (lastPointerCount == 0 && currentPointerCount > 0) {
|
|
const PointerData& in = mCurrentTouch.pointers[0];
|
|
|
|
if (in.x <= mRawAxes.x.minValue) {
|
|
*outEdgeFlags |= rotateEdgeFlag(AMOTION_EVENT_EDGE_FLAG_LEFT,
|
|
mLocked.surfaceOrientation);
|
|
} else if (in.x >= mRawAxes.x.maxValue) {
|
|
*outEdgeFlags |= rotateEdgeFlag(AMOTION_EVENT_EDGE_FLAG_RIGHT,
|
|
mLocked.surfaceOrientation);
|
|
}
|
|
if (in.y <= mRawAxes.y.minValue) {
|
|
*outEdgeFlags |= rotateEdgeFlag(AMOTION_EVENT_EDGE_FLAG_TOP,
|
|
mLocked.surfaceOrientation);
|
|
} else if (in.y >= mRawAxes.y.maxValue) {
|
|
*outEdgeFlags |= rotateEdgeFlag(AMOTION_EVENT_EDGE_FLAG_BOTTOM,
|
|
mLocked.surfaceOrientation);
|
|
}
|
|
}
|
|
|
|
*outXPrecision = mLocked.orientedXPrecision;
|
|
*outYPrecision = mLocked.orientedYPrecision;
|
|
}
|
|
|
|
void TouchInputMapper::dispatchPointerGestures(nsecs_t when, uint32_t policyFlags,
|
|
bool isTimeout) {
|
|
// Switch pointer presentation.
|
|
mPointerController->setPresentation(
|
|
mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS
|
|
? PointerControllerInterface::PRESENTATION_SPOT
|
|
: PointerControllerInterface::PRESENTATION_POINTER);
|
|
|
|
// Update current gesture coordinates.
|
|
bool cancelPreviousGesture, finishPreviousGesture;
|
|
bool sendEvents = preparePointerGestures(when,
|
|
&cancelPreviousGesture, &finishPreviousGesture, isTimeout);
|
|
if (!sendEvents) {
|
|
return;
|
|
}
|
|
|
|
// Show the pointer if needed.
|
|
if (mPointerGesture.currentGestureMode != PointerGesture::NEUTRAL
|
|
&& mPointerGesture.currentGestureMode != PointerGesture::QUIET) {
|
|
mPointerController->unfade();
|
|
}
|
|
|
|
// Send events!
|
|
int32_t metaState = getContext()->getGlobalMetaState();
|
|
int32_t buttonState = mCurrentTouch.buttonState;
|
|
|
|
// Update last coordinates of pointers that have moved so that we observe the new
|
|
// pointer positions at the same time as other pointers that have just gone up.
|
|
bool down = mPointerGesture.currentGestureMode == PointerGesture::TAP
|
|
|| mPointerGesture.currentGestureMode == PointerGesture::TAP_DRAG
|
|
|| mPointerGesture.currentGestureMode == PointerGesture::BUTTON_CLICK_OR_DRAG
|
|
|| mPointerGesture.currentGestureMode == PointerGesture::PRESS
|
|
|| mPointerGesture.currentGestureMode == PointerGesture::SWIPE
|
|
|| mPointerGesture.currentGestureMode == PointerGesture::FREEFORM;
|
|
bool moveNeeded = false;
|
|
if (down && !cancelPreviousGesture && !finishPreviousGesture
|
|
&& !mPointerGesture.lastGestureIdBits.isEmpty()
|
|
&& !mPointerGesture.currentGestureIdBits.isEmpty()) {
|
|
BitSet32 movedGestureIdBits(mPointerGesture.currentGestureIdBits.value
|
|
& mPointerGesture.lastGestureIdBits.value);
|
|
moveNeeded = updateMovedPointers(mPointerGesture.currentGestureProperties,
|
|
mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex,
|
|
mPointerGesture.lastGestureProperties,
|
|
mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex,
|
|
movedGestureIdBits);
|
|
if (buttonState != mLastTouch.buttonState) {
|
|
moveNeeded = true;
|
|
}
|
|
}
|
|
|
|
// Send motion events for all pointers that went up or were canceled.
|
|
BitSet32 dispatchedGestureIdBits(mPointerGesture.lastGestureIdBits);
|
|
if (!dispatchedGestureIdBits.isEmpty()) {
|
|
if (cancelPreviousGesture) {
|
|
dispatchMotion(when, policyFlags, mPointerSource,
|
|
AMOTION_EVENT_ACTION_CANCEL, 0, metaState, buttonState,
|
|
AMOTION_EVENT_EDGE_FLAG_NONE,
|
|
mPointerGesture.lastGestureProperties,
|
|
mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex,
|
|
dispatchedGestureIdBits, -1,
|
|
0, 0, mPointerGesture.downTime);
|
|
|
|
dispatchedGestureIdBits.clear();
|
|
} else {
|
|
BitSet32 upGestureIdBits;
|
|
if (finishPreviousGesture) {
|
|
upGestureIdBits = dispatchedGestureIdBits;
|
|
} else {
|
|
upGestureIdBits.value = dispatchedGestureIdBits.value
|
|
& ~mPointerGesture.currentGestureIdBits.value;
|
|
}
|
|
while (!upGestureIdBits.isEmpty()) {
|
|
uint32_t id = upGestureIdBits.firstMarkedBit();
|
|
upGestureIdBits.clearBit(id);
|
|
|
|
dispatchMotion(when, policyFlags, mPointerSource,
|
|
AMOTION_EVENT_ACTION_POINTER_UP, 0,
|
|
metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE,
|
|
mPointerGesture.lastGestureProperties,
|
|
mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex,
|
|
dispatchedGestureIdBits, id,
|
|
0, 0, mPointerGesture.downTime);
|
|
|
|
dispatchedGestureIdBits.clearBit(id);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Send motion events for all pointers that moved.
|
|
if (moveNeeded) {
|
|
dispatchMotion(when, policyFlags, mPointerSource,
|
|
AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE,
|
|
mPointerGesture.currentGestureProperties,
|
|
mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex,
|
|
dispatchedGestureIdBits, -1,
|
|
0, 0, mPointerGesture.downTime);
|
|
}
|
|
|
|
// Send motion events for all pointers that went down.
|
|
if (down) {
|
|
BitSet32 downGestureIdBits(mPointerGesture.currentGestureIdBits.value
|
|
& ~dispatchedGestureIdBits.value);
|
|
while (!downGestureIdBits.isEmpty()) {
|
|
uint32_t id = downGestureIdBits.firstMarkedBit();
|
|
downGestureIdBits.clearBit(id);
|
|
dispatchedGestureIdBits.markBit(id);
|
|
|
|
int32_t edgeFlags = AMOTION_EVENT_EDGE_FLAG_NONE;
|
|
if (dispatchedGestureIdBits.count() == 1) {
|
|
// First pointer is going down. Calculate edge flags and set down time.
|
|
uint32_t index = mPointerGesture.currentGestureIdToIndex[id];
|
|
const PointerCoords& downCoords = mPointerGesture.currentGestureCoords[index];
|
|
edgeFlags = calculateEdgeFlagsUsingPointerBounds(mPointerController,
|
|
downCoords.getAxisValue(AMOTION_EVENT_AXIS_X),
|
|
downCoords.getAxisValue(AMOTION_EVENT_AXIS_Y));
|
|
mPointerGesture.downTime = when;
|
|
}
|
|
|
|
dispatchMotion(when, policyFlags, mPointerSource,
|
|
AMOTION_EVENT_ACTION_POINTER_DOWN, 0, metaState, buttonState, edgeFlags,
|
|
mPointerGesture.currentGestureProperties,
|
|
mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex,
|
|
dispatchedGestureIdBits, id,
|
|
0, 0, mPointerGesture.downTime);
|
|
}
|
|
}
|
|
|
|
// Send motion events for hover.
|
|
if (mPointerGesture.currentGestureMode == PointerGesture::HOVER) {
|
|
dispatchMotion(when, policyFlags, mPointerSource,
|
|
AMOTION_EVENT_ACTION_HOVER_MOVE, 0,
|
|
metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE,
|
|
mPointerGesture.currentGestureProperties,
|
|
mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex,
|
|
mPointerGesture.currentGestureIdBits, -1,
|
|
0, 0, mPointerGesture.downTime);
|
|
}
|
|
|
|
// Update state.
|
|
mPointerGesture.lastGestureMode = mPointerGesture.currentGestureMode;
|
|
if (!down) {
|
|
mPointerGesture.lastGestureIdBits.clear();
|
|
} else {
|
|
mPointerGesture.lastGestureIdBits = mPointerGesture.currentGestureIdBits;
|
|
for (BitSet32 idBits(mPointerGesture.currentGestureIdBits); !idBits.isEmpty(); ) {
|
|
uint32_t id = idBits.firstMarkedBit();
|
|
idBits.clearBit(id);
|
|
uint32_t index = mPointerGesture.currentGestureIdToIndex[id];
|
|
mPointerGesture.lastGestureProperties[index].copyFrom(
|
|
mPointerGesture.currentGestureProperties[index]);
|
|
mPointerGesture.lastGestureCoords[index].copyFrom(
|
|
mPointerGesture.currentGestureCoords[index]);
|
|
mPointerGesture.lastGestureIdToIndex[id] = index;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool TouchInputMapper::preparePointerGestures(nsecs_t when,
|
|
bool* outCancelPreviousGesture, bool* outFinishPreviousGesture, bool isTimeout) {
|
|
*outCancelPreviousGesture = false;
|
|
*outFinishPreviousGesture = false;
|
|
|
|
AutoMutex _l(mLock);
|
|
|
|
// Handle TAP timeout.
|
|
if (isTimeout) {
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: Processing timeout");
|
|
#endif
|
|
|
|
if (mPointerGesture.lastGestureMode == PointerGesture::TAP) {
|
|
if (when <= mPointerGesture.tapUpTime + TAP_DRAG_INTERVAL) {
|
|
// The tap/drag timeout has not yet expired.
|
|
getContext()->requestTimeoutAtTime(mPointerGesture.tapUpTime + TAP_DRAG_INTERVAL);
|
|
} else {
|
|
// The tap is finished.
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: TAP finished");
|
|
#endif
|
|
*outFinishPreviousGesture = true;
|
|
|
|
mPointerGesture.activeGestureId = -1;
|
|
mPointerGesture.currentGestureMode = PointerGesture::NEUTRAL;
|
|
mPointerGesture.currentGestureIdBits.clear();
|
|
|
|
if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
|
|
mPointerGesture.spotGesture = PointerControllerInterface::SPOT_GESTURE_NEUTRAL;
|
|
mPointerGesture.spotIdBits.clear();
|
|
moveSpotsLocked();
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// We did not handle this timeout.
|
|
return false;
|
|
}
|
|
|
|
// Update the velocity tracker.
|
|
{
|
|
VelocityTracker::Position positions[MAX_POINTERS];
|
|
uint32_t count = 0;
|
|
for (BitSet32 idBits(mCurrentTouch.idBits); !idBits.isEmpty(); count++) {
|
|
uint32_t id = idBits.firstMarkedBit();
|
|
idBits.clearBit(id);
|
|
uint32_t index = mCurrentTouch.idToIndex[id];
|
|
positions[count].x = mCurrentTouch.pointers[index].x
|
|
* mLocked.pointerGestureXMovementScale;
|
|
positions[count].y = mCurrentTouch.pointers[index].y
|
|
* mLocked.pointerGestureYMovementScale;
|
|
}
|
|
mPointerGesture.velocityTracker.addMovement(when, mCurrentTouch.idBits, positions);
|
|
}
|
|
|
|
// Pick a new active touch id if needed.
|
|
// Choose an arbitrary pointer that just went down, if there is one.
|
|
// Otherwise choose an arbitrary remaining pointer.
|
|
// This guarantees we always have an active touch id when there is at least one pointer.
|
|
// We keep the same active touch id for as long as possible.
|
|
bool activeTouchChanged = false;
|
|
int32_t lastActiveTouchId = mPointerGesture.activeTouchId;
|
|
int32_t activeTouchId = lastActiveTouchId;
|
|
if (activeTouchId < 0) {
|
|
if (!mCurrentTouch.idBits.isEmpty()) {
|
|
activeTouchChanged = true;
|
|
activeTouchId = mPointerGesture.activeTouchId = mCurrentTouch.idBits.firstMarkedBit();
|
|
mPointerGesture.firstTouchTime = when;
|
|
}
|
|
} else if (!mCurrentTouch.idBits.hasBit(activeTouchId)) {
|
|
activeTouchChanged = true;
|
|
if (!mCurrentTouch.idBits.isEmpty()) {
|
|
activeTouchId = mPointerGesture.activeTouchId = mCurrentTouch.idBits.firstMarkedBit();
|
|
} else {
|
|
activeTouchId = mPointerGesture.activeTouchId = -1;
|
|
}
|
|
}
|
|
|
|
// Determine whether we are in quiet time.
|
|
bool isQuietTime = false;
|
|
if (activeTouchId < 0) {
|
|
mPointerGesture.resetQuietTime();
|
|
} else {
|
|
isQuietTime = when < mPointerGesture.quietTime + QUIET_INTERVAL;
|
|
if (!isQuietTime) {
|
|
if ((mPointerGesture.lastGestureMode == PointerGesture::PRESS
|
|
|| mPointerGesture.lastGestureMode == PointerGesture::SWIPE
|
|
|| mPointerGesture.lastGestureMode == PointerGesture::FREEFORM)
|
|
&& mCurrentTouch.pointerCount < 2) {
|
|
// Enter quiet time when exiting swipe or freeform state.
|
|
// This is to prevent accidentally entering the hover state and flinging the
|
|
// pointer when finishing a swipe and there is still one pointer left onscreen.
|
|
isQuietTime = true;
|
|
} else if (mPointerGesture.lastGestureMode == PointerGesture::BUTTON_CLICK_OR_DRAG
|
|
&& mCurrentTouch.pointerCount >= 2
|
|
&& !isPointerDown(mCurrentTouch.buttonState)) {
|
|
// Enter quiet time when releasing the button and there are still two or more
|
|
// fingers down. This may indicate that one finger was used to press the button
|
|
// but it has not gone up yet.
|
|
isQuietTime = true;
|
|
}
|
|
if (isQuietTime) {
|
|
mPointerGesture.quietTime = when;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Switch states based on button and pointer state.
|
|
if (isQuietTime) {
|
|
// Case 1: Quiet time. (QUIET)
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: QUIET for next %0.3fms",
|
|
(mPointerGesture.quietTime + QUIET_INTERVAL - when) * 0.000001f);
|
|
#endif
|
|
*outFinishPreviousGesture = true;
|
|
|
|
mPointerGesture.activeGestureId = -1;
|
|
mPointerGesture.currentGestureMode = PointerGesture::QUIET;
|
|
mPointerGesture.currentGestureIdBits.clear();
|
|
|
|
if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
|
|
mPointerGesture.spotGesture = PointerControllerInterface::SPOT_GESTURE_NEUTRAL;
|
|
mPointerGesture.spotIdBits.clear();
|
|
moveSpotsLocked();
|
|
}
|
|
} else if (isPointerDown(mCurrentTouch.buttonState)) {
|
|
// Case 2: Button is pressed. (BUTTON_CLICK_OR_DRAG)
|
|
// The pointer follows the active touch point.
|
|
// Emit DOWN, MOVE, UP events at the pointer location.
|
|
//
|
|
// Only the active touch matters; other fingers are ignored. This policy helps
|
|
// to handle the case where the user places a second finger on the touch pad
|
|
// to apply the necessary force to depress an integrated button below the surface.
|
|
// We don't want the second finger to be delivered to applications.
|
|
//
|
|
// For this to work well, we need to make sure to track the pointer that is really
|
|
// active. If the user first puts one finger down to click then adds another
|
|
// finger to drag then the active pointer should switch to the finger that is
|
|
// being dragged.
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: BUTTON_CLICK_OR_DRAG activeTouchId=%d, "
|
|
"currentTouchPointerCount=%d", activeTouchId, mCurrentTouch.pointerCount);
|
|
#endif
|
|
// Reset state when just starting.
|
|
if (mPointerGesture.lastGestureMode != PointerGesture::BUTTON_CLICK_OR_DRAG) {
|
|
*outFinishPreviousGesture = true;
|
|
mPointerGesture.activeGestureId = 0;
|
|
}
|
|
|
|
// Switch pointers if needed.
|
|
// Find the fastest pointer and follow it.
|
|
if (activeTouchId >= 0) {
|
|
if (mCurrentTouch.pointerCount > 1) {
|
|
int32_t bestId = -1;
|
|
float bestSpeed = DRAG_MIN_SWITCH_SPEED;
|
|
for (uint32_t i = 0; i < mCurrentTouch.pointerCount; i++) {
|
|
uint32_t id = mCurrentTouch.pointers[i].id;
|
|
float vx, vy;
|
|
if (mPointerGesture.velocityTracker.getVelocity(id, &vx, &vy)) {
|
|
float speed = hypotf(vx, vy);
|
|
if (speed > bestSpeed) {
|
|
bestId = id;
|
|
bestSpeed = speed;
|
|
}
|
|
}
|
|
}
|
|
if (bestId >= 0 && bestId != activeTouchId) {
|
|
mPointerGesture.activeTouchId = activeTouchId = bestId;
|
|
activeTouchChanged = true;
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: BUTTON_CLICK_OR_DRAG switched pointers, "
|
|
"bestId=%d, bestSpeed=%0.3f", bestId, bestSpeed);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (mLastTouch.idBits.hasBit(activeTouchId)) {
|
|
const PointerData& currentPointer =
|
|
mCurrentTouch.pointers[mCurrentTouch.idToIndex[activeTouchId]];
|
|
const PointerData& lastPointer =
|
|
mLastTouch.pointers[mLastTouch.idToIndex[activeTouchId]];
|
|
float deltaX = (currentPointer.x - lastPointer.x)
|
|
* mLocked.pointerGestureXMovementScale;
|
|
float deltaY = (currentPointer.y - lastPointer.y)
|
|
* mLocked.pointerGestureYMovementScale;
|
|
|
|
// Move the pointer using a relative motion.
|
|
// When using spots, the click will occur at the position of the anchor
|
|
// spot and all other spots will move there.
|
|
mPointerController->move(deltaX, deltaY);
|
|
}
|
|
}
|
|
|
|
float x, y;
|
|
mPointerController->getPosition(&x, &y);
|
|
|
|
mPointerGesture.currentGestureMode = PointerGesture::BUTTON_CLICK_OR_DRAG;
|
|
mPointerGesture.currentGestureIdBits.clear();
|
|
mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId);
|
|
mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0;
|
|
mPointerGesture.currentGestureProperties[0].clear();
|
|
mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId;
|
|
mPointerGesture.currentGestureProperties[0].toolType =
|
|
AMOTION_EVENT_TOOL_TYPE_INDIRECT_FINGER;
|
|
mPointerGesture.currentGestureCoords[0].clear();
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x);
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y);
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
|
|
|
|
if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
|
|
if (activeTouchId >= 0) {
|
|
// Collapse all spots into one point at the pointer location.
|
|
mPointerGesture.spotGesture = PointerControllerInterface::SPOT_GESTURE_BUTTON_DRAG;
|
|
mPointerGesture.spotIdBits.clear();
|
|
for (uint32_t i = 0; i < mCurrentTouch.pointerCount; i++) {
|
|
uint32_t id = mCurrentTouch.pointers[i].id;
|
|
mPointerGesture.spotIdBits.markBit(id);
|
|
mPointerGesture.spotIdToIndex[id] = i;
|
|
mPointerGesture.spotCoords[i] = mPointerGesture.currentGestureCoords[0];
|
|
}
|
|
} else {
|
|
// No fingers. Generate a spot at the pointer location so the
|
|
// anchor appears to be pressed.
|
|
mPointerGesture.spotGesture = PointerControllerInterface::SPOT_GESTURE_BUTTON_CLICK;
|
|
mPointerGesture.spotIdBits.clear();
|
|
mPointerGesture.spotIdBits.markBit(0);
|
|
mPointerGesture.spotIdToIndex[0] = 0;
|
|
mPointerGesture.spotCoords[0] = mPointerGesture.currentGestureCoords[0];
|
|
}
|
|
moveSpotsLocked();
|
|
}
|
|
} else if (mCurrentTouch.pointerCount == 0) {
|
|
// Case 3. No fingers down and button is not pressed. (NEUTRAL)
|
|
*outFinishPreviousGesture = true;
|
|
|
|
// Watch for taps coming out of HOVER or TAP_DRAG mode.
|
|
bool tapped = false;
|
|
if ((mPointerGesture.lastGestureMode == PointerGesture::HOVER
|
|
|| mPointerGesture.lastGestureMode == PointerGesture::TAP_DRAG)
|
|
&& mLastTouch.pointerCount == 1) {
|
|
if (when <= mPointerGesture.tapDownTime + TAP_INTERVAL) {
|
|
float x, y;
|
|
mPointerController->getPosition(&x, &y);
|
|
if (fabs(x - mPointerGesture.tapX) <= TAP_SLOP
|
|
&& fabs(y - mPointerGesture.tapY) <= TAP_SLOP) {
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: TAP");
|
|
#endif
|
|
|
|
mPointerGesture.tapUpTime = when;
|
|
getContext()->requestTimeoutAtTime(when + TAP_DRAG_INTERVAL);
|
|
|
|
mPointerGesture.activeGestureId = 0;
|
|
mPointerGesture.currentGestureMode = PointerGesture::TAP;
|
|
mPointerGesture.currentGestureIdBits.clear();
|
|
mPointerGesture.currentGestureIdBits.markBit(
|
|
mPointerGesture.activeGestureId);
|
|
mPointerGesture.currentGestureIdToIndex[
|
|
mPointerGesture.activeGestureId] = 0;
|
|
mPointerGesture.currentGestureProperties[0].clear();
|
|
mPointerGesture.currentGestureProperties[0].id =
|
|
mPointerGesture.activeGestureId;
|
|
mPointerGesture.currentGestureProperties[0].toolType =
|
|
AMOTION_EVENT_TOOL_TYPE_INDIRECT_FINGER;
|
|
mPointerGesture.currentGestureCoords[0].clear();
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(
|
|
AMOTION_EVENT_AXIS_X, mPointerGesture.tapX);
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(
|
|
AMOTION_EVENT_AXIS_Y, mPointerGesture.tapY);
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(
|
|
AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
|
|
|
|
if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
|
|
mPointerGesture.spotGesture = PointerControllerInterface::SPOT_GESTURE_TAP;
|
|
mPointerGesture.spotIdBits.clear();
|
|
mPointerGesture.spotIdBits.markBit(lastActiveTouchId);
|
|
mPointerGesture.spotIdToIndex[lastActiveTouchId] = 0;
|
|
mPointerGesture.spotCoords[0] = mPointerGesture.currentGestureCoords[0];
|
|
moveSpotsLocked();
|
|
}
|
|
|
|
tapped = true;
|
|
} else {
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: Not a TAP, deltaX=%f, deltaY=%f",
|
|
x - mPointerGesture.tapX,
|
|
y - mPointerGesture.tapY);
|
|
#endif
|
|
}
|
|
} else {
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: Not a TAP, %0.3fms since down",
|
|
(when - mPointerGesture.tapDownTime) * 0.000001f);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (!tapped) {
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: NEUTRAL");
|
|
#endif
|
|
mPointerGesture.activeGestureId = -1;
|
|
mPointerGesture.currentGestureMode = PointerGesture::NEUTRAL;
|
|
mPointerGesture.currentGestureIdBits.clear();
|
|
|
|
if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
|
|
mPointerGesture.spotGesture = PointerControllerInterface::SPOT_GESTURE_NEUTRAL;
|
|
mPointerGesture.spotIdBits.clear();
|
|
moveSpotsLocked();
|
|
}
|
|
}
|
|
} else if (mCurrentTouch.pointerCount == 1) {
|
|
// Case 4. Exactly one finger down, button is not pressed. (HOVER or TAP_DRAG)
|
|
// The pointer follows the active touch point.
|
|
// When in HOVER, emit HOVER_MOVE events at the pointer location.
|
|
// When in TAP_DRAG, emit MOVE events at the pointer location.
|
|
LOG_ASSERT(activeTouchId >= 0);
|
|
|
|
mPointerGesture.currentGestureMode = PointerGesture::HOVER;
|
|
if (mPointerGesture.lastGestureMode == PointerGesture::TAP) {
|
|
if (when <= mPointerGesture.tapUpTime + TAP_DRAG_INTERVAL) {
|
|
float x, y;
|
|
mPointerController->getPosition(&x, &y);
|
|
if (fabs(x - mPointerGesture.tapX) <= TAP_SLOP
|
|
&& fabs(y - mPointerGesture.tapY) <= TAP_SLOP) {
|
|
mPointerGesture.currentGestureMode = PointerGesture::TAP_DRAG;
|
|
} else {
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: Not a TAP_DRAG, deltaX=%f, deltaY=%f",
|
|
x - mPointerGesture.tapX,
|
|
y - mPointerGesture.tapY);
|
|
#endif
|
|
}
|
|
} else {
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: Not a TAP_DRAG, %0.3fms time since up",
|
|
(when - mPointerGesture.tapUpTime) * 0.000001f);
|
|
#endif
|
|
}
|
|
} else if (mPointerGesture.lastGestureMode == PointerGesture::TAP_DRAG) {
|
|
mPointerGesture.currentGestureMode = PointerGesture::TAP_DRAG;
|
|
}
|
|
|
|
if (mLastTouch.idBits.hasBit(activeTouchId)) {
|
|
const PointerData& currentPointer =
|
|
mCurrentTouch.pointers[mCurrentTouch.idToIndex[activeTouchId]];
|
|
const PointerData& lastPointer =
|
|
mLastTouch.pointers[mLastTouch.idToIndex[activeTouchId]];
|
|
float deltaX = (currentPointer.x - lastPointer.x)
|
|
* mLocked.pointerGestureXMovementScale;
|
|
float deltaY = (currentPointer.y - lastPointer.y)
|
|
* mLocked.pointerGestureYMovementScale;
|
|
|
|
// Move the pointer using a relative motion.
|
|
// When using spots, the hover or drag will occur at the position of the anchor spot.
|
|
mPointerController->move(deltaX, deltaY);
|
|
}
|
|
|
|
bool down;
|
|
if (mPointerGesture.currentGestureMode == PointerGesture::TAP_DRAG) {
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: TAP_DRAG");
|
|
#endif
|
|
down = true;
|
|
} else {
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: HOVER");
|
|
#endif
|
|
*outFinishPreviousGesture = true;
|
|
mPointerGesture.activeGestureId = 0;
|
|
down = false;
|
|
}
|
|
|
|
float x, y;
|
|
mPointerController->getPosition(&x, &y);
|
|
|
|
mPointerGesture.currentGestureIdBits.clear();
|
|
mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId);
|
|
mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0;
|
|
mPointerGesture.currentGestureProperties[0].clear();
|
|
mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId;
|
|
mPointerGesture.currentGestureProperties[0].toolType =
|
|
AMOTION_EVENT_TOOL_TYPE_INDIRECT_FINGER;
|
|
mPointerGesture.currentGestureCoords[0].clear();
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x);
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y);
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE,
|
|
down ? 1.0f : 0.0f);
|
|
|
|
if (mLastTouch.pointerCount == 0 && mCurrentTouch.pointerCount != 0) {
|
|
mPointerGesture.resetTap();
|
|
mPointerGesture.tapDownTime = when;
|
|
mPointerGesture.tapX = x;
|
|
mPointerGesture.tapY = y;
|
|
}
|
|
|
|
if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
|
|
mPointerGesture.spotGesture = down ? PointerControllerInterface::SPOT_GESTURE_DRAG
|
|
: PointerControllerInterface::SPOT_GESTURE_HOVER;
|
|
mPointerGesture.spotIdBits.clear();
|
|
mPointerGesture.spotIdBits.markBit(activeTouchId);
|
|
mPointerGesture.spotIdToIndex[activeTouchId] = 0;
|
|
mPointerGesture.spotCoords[0] = mPointerGesture.currentGestureCoords[0];
|
|
moveSpotsLocked();
|
|
}
|
|
} else {
|
|
// Case 5. At least two fingers down, button is not pressed. (PRESS, SWIPE or FREEFORM)
|
|
// We need to provide feedback for each finger that goes down so we cannot wait
|
|
// for the fingers to move before deciding what to do.
|
|
//
|
|
// The ambiguous case is deciding what to do when there are two fingers down but they
|
|
// have not moved enough to determine whether they are part of a drag or part of a
|
|
// freeform gesture, or just a press or long-press at the pointer location.
|
|
//
|
|
// When there are two fingers we start with the PRESS hypothesis and we generate a
|
|
// down at the pointer location.
|
|
//
|
|
// When the two fingers move enough or when additional fingers are added, we make
|
|
// a decision to transition into SWIPE or FREEFORM mode accordingly.
|
|
LOG_ASSERT(activeTouchId >= 0);
|
|
|
|
bool needReference = false;
|
|
bool settled = when >= mPointerGesture.firstTouchTime + MULTITOUCH_SETTLE_INTERVAL;
|
|
if (mPointerGesture.lastGestureMode != PointerGesture::PRESS
|
|
&& mPointerGesture.lastGestureMode != PointerGesture::SWIPE
|
|
&& mPointerGesture.lastGestureMode != PointerGesture::FREEFORM) {
|
|
*outFinishPreviousGesture = true;
|
|
mPointerGesture.currentGestureMode = PointerGesture::PRESS;
|
|
mPointerGesture.activeGestureId = 0;
|
|
|
|
if (settled && mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS
|
|
&& mLastTouch.idBits.hasBit(mPointerGesture.activeTouchId)) {
|
|
// The spot is already visible and has settled, use it as the reference point
|
|
// for the gesture. Other spots will be positioned relative to this one.
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: Using active spot as reference for MULTITOUCH, "
|
|
"settle time expired %0.3fms ago",
|
|
(when - mPointerGesture.firstTouchTime - MULTITOUCH_SETTLE_INTERVAL)
|
|
* 0.000001f);
|
|
#endif
|
|
const PointerData& d = mLastTouch.pointers[mLastTouch.idToIndex[
|
|
mPointerGesture.activeTouchId]];
|
|
mPointerGesture.referenceTouchX = d.x;
|
|
mPointerGesture.referenceTouchY = d.y;
|
|
const PointerCoords& c = mPointerGesture.spotCoords[mPointerGesture.spotIdToIndex[
|
|
mPointerGesture.activeTouchId]];
|
|
mPointerGesture.referenceGestureX = c.getAxisValue(AMOTION_EVENT_AXIS_X);
|
|
mPointerGesture.referenceGestureY = c.getAxisValue(AMOTION_EVENT_AXIS_Y);
|
|
} else {
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: Using centroid as reference for MULTITOUCH, "
|
|
"settle time remaining %0.3fms",
|
|
(mPointerGesture.firstTouchTime + MULTITOUCH_SETTLE_INTERVAL - when)
|
|
* 0.000001f);
|
|
#endif
|
|
needReference = true;
|
|
}
|
|
} else if (!settled && mCurrentTouch.pointerCount > mLastTouch.pointerCount) {
|
|
// Additional pointers have gone down but not yet settled.
|
|
// Reset the gesture.
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: Resetting gesture since additional pointers went down for MULTITOUCH, "
|
|
"settle time remaining %0.3fms",
|
|
(mPointerGesture.firstTouchTime + MULTITOUCH_SETTLE_INTERVAL - when)
|
|
* 0.000001f);
|
|
#endif
|
|
*outCancelPreviousGesture = true;
|
|
mPointerGesture.currentGestureMode = PointerGesture::PRESS;
|
|
mPointerGesture.activeGestureId = 0;
|
|
} else {
|
|
// Continue previous gesture.
|
|
mPointerGesture.currentGestureMode = mPointerGesture.lastGestureMode;
|
|
}
|
|
|
|
if (needReference) {
|
|
// Use the centroid and pointer location as the reference points for the gesture.
|
|
mCurrentTouch.getCentroid(&mPointerGesture.referenceTouchX,
|
|
&mPointerGesture.referenceTouchY);
|
|
mPointerController->getPosition(&mPointerGesture.referenceGestureX,
|
|
&mPointerGesture.referenceGestureY);
|
|
}
|
|
|
|
if (mPointerGesture.currentGestureMode == PointerGesture::PRESS) {
|
|
float d;
|
|
if (mCurrentTouch.pointerCount > 2) {
|
|
// There are more than two pointers, switch to FREEFORM.
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: PRESS transitioned to FREEFORM, number of pointers %d > 2",
|
|
mCurrentTouch.pointerCount);
|
|
#endif
|
|
*outCancelPreviousGesture = true;
|
|
mPointerGesture.currentGestureMode = PointerGesture::FREEFORM;
|
|
} else if (((d = distance(
|
|
mCurrentTouch.pointers[0].x, mCurrentTouch.pointers[0].y,
|
|
mCurrentTouch.pointers[1].x, mCurrentTouch.pointers[1].y))
|
|
> mLocked.pointerGestureMaxSwipeWidth)) {
|
|
// There are two pointers but they are too far apart, switch to FREEFORM.
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: PRESS transitioned to FREEFORM, distance %0.3f > %0.3f",
|
|
d, mLocked.pointerGestureMaxSwipeWidth);
|
|
#endif
|
|
*outCancelPreviousGesture = true;
|
|
mPointerGesture.currentGestureMode = PointerGesture::FREEFORM;
|
|
} else {
|
|
// There are two pointers. Wait for both pointers to start moving
|
|
// before deciding whether this is a SWIPE or FREEFORM gesture.
|
|
uint32_t id1 = mCurrentTouch.pointers[0].id;
|
|
uint32_t id2 = mCurrentTouch.pointers[1].id;
|
|
|
|
float vx1, vy1, vx2, vy2;
|
|
mPointerGesture.velocityTracker.getVelocity(id1, &vx1, &vy1);
|
|
mPointerGesture.velocityTracker.getVelocity(id2, &vx2, &vy2);
|
|
|
|
float speed1 = hypotf(vx1, vy1);
|
|
float speed2 = hypotf(vx2, vy2);
|
|
if (speed1 >= MULTITOUCH_MIN_SPEED && speed2 >= MULTITOUCH_MIN_SPEED) {
|
|
// Calculate the dot product of the velocity vectors.
|
|
// When the vectors are oriented in approximately the same direction,
|
|
// the angle betweeen them is near zero and the cosine of the angle
|
|
// approches 1.0. Recall that dot(v1, v2) = cos(angle) * mag(v1) * mag(v2).
|
|
float dot = vx1 * vx2 + vy1 * vy2;
|
|
float cosine = dot / (speed1 * speed2); // denominator always > 0
|
|
if (cosine >= SWIPE_TRANSITION_ANGLE_COSINE) {
|
|
// Pointers are moving in the same direction. Switch to SWIPE.
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: PRESS transitioned to SWIPE, "
|
|
"speed1 %0.3f >= %0.3f, speed2 %0.3f >= %0.3f, "
|
|
"cosine %0.3f >= %0.3f",
|
|
speed1, MULTITOUCH_MIN_SPEED, speed2, MULTITOUCH_MIN_SPEED,
|
|
cosine, SWIPE_TRANSITION_ANGLE_COSINE);
|
|
#endif
|
|
mPointerGesture.currentGestureMode = PointerGesture::SWIPE;
|
|
} else {
|
|
// Pointers are moving in different directions. Switch to FREEFORM.
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: PRESS transitioned to FREEFORM, "
|
|
"speed1 %0.3f >= %0.3f, speed2 %0.3f >= %0.3f, "
|
|
"cosine %0.3f < %0.3f",
|
|
speed1, MULTITOUCH_MIN_SPEED, speed2, MULTITOUCH_MIN_SPEED,
|
|
cosine, SWIPE_TRANSITION_ANGLE_COSINE);
|
|
#endif
|
|
*outCancelPreviousGesture = true;
|
|
mPointerGesture.currentGestureMode = PointerGesture::FREEFORM;
|
|
}
|
|
}
|
|
}
|
|
} else if (mPointerGesture.currentGestureMode == PointerGesture::SWIPE) {
|
|
// Switch from SWIPE to FREEFORM if additional pointers go down.
|
|
// Cancel previous gesture.
|
|
if (mCurrentTouch.pointerCount > 2) {
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: SWIPE transitioned to FREEFORM, number of pointers %d > 2",
|
|
mCurrentTouch.pointerCount);
|
|
#endif
|
|
*outCancelPreviousGesture = true;
|
|
mPointerGesture.currentGestureMode = PointerGesture::FREEFORM;
|
|
}
|
|
}
|
|
|
|
// Move the reference points based on the overall group motion of the fingers.
|
|
// The objective is to calculate a vector delta that is common to the movement
|
|
// of all fingers.
|
|
BitSet32 commonIdBits(mLastTouch.idBits.value & mCurrentTouch.idBits.value);
|
|
if (!commonIdBits.isEmpty()) {
|
|
float commonDeltaX = 0, commonDeltaY = 0;
|
|
for (BitSet32 idBits(commonIdBits); !idBits.isEmpty(); ) {
|
|
bool first = (idBits == commonIdBits);
|
|
uint32_t id = idBits.firstMarkedBit();
|
|
idBits.clearBit(id);
|
|
|
|
const PointerData& cpd = mCurrentTouch.pointers[mCurrentTouch.idToIndex[id]];
|
|
const PointerData& lpd = mLastTouch.pointers[mLastTouch.idToIndex[id]];
|
|
float deltaX = cpd.x - lpd.x;
|
|
float deltaY = cpd.y - lpd.y;
|
|
|
|
if (first) {
|
|
commonDeltaX = deltaX;
|
|
commonDeltaY = deltaY;
|
|
} else {
|
|
commonDeltaX = calculateCommonVector(commonDeltaX, deltaX);
|
|
commonDeltaY = calculateCommonVector(commonDeltaY, deltaY);
|
|
}
|
|
}
|
|
|
|
mPointerGesture.referenceTouchX += commonDeltaX;
|
|
mPointerGesture.referenceTouchY += commonDeltaY;
|
|
mPointerGesture.referenceGestureX +=
|
|
commonDeltaX * mLocked.pointerGestureXMovementScale;
|
|
mPointerGesture.referenceGestureY +=
|
|
commonDeltaY * mLocked.pointerGestureYMovementScale;
|
|
clampPositionUsingPointerBounds(mPointerController,
|
|
&mPointerGesture.referenceGestureX,
|
|
&mPointerGesture.referenceGestureY);
|
|
}
|
|
|
|
// Report gestures.
|
|
if (mPointerGesture.currentGestureMode == PointerGesture::PRESS) {
|
|
// PRESS mode.
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: PRESS activeTouchId=%d,"
|
|
"activeGestureId=%d, currentTouchPointerCount=%d",
|
|
activeTouchId, mPointerGesture.activeGestureId, mCurrentTouch.pointerCount);
|
|
#endif
|
|
LOG_ASSERT(mPointerGesture.activeGestureId >= 0);
|
|
|
|
mPointerGesture.currentGestureIdBits.clear();
|
|
mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId);
|
|
mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0;
|
|
mPointerGesture.currentGestureProperties[0].clear();
|
|
mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId;
|
|
mPointerGesture.currentGestureProperties[0].toolType =
|
|
AMOTION_EVENT_TOOL_TYPE_INDIRECT_FINGER;
|
|
mPointerGesture.currentGestureCoords[0].clear();
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X,
|
|
mPointerGesture.referenceGestureX);
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y,
|
|
mPointerGesture.referenceGestureY);
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
|
|
|
|
if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
|
|
mPointerGesture.spotGesture = PointerControllerInterface::SPOT_GESTURE_PRESS;
|
|
}
|
|
} else if (mPointerGesture.currentGestureMode == PointerGesture::SWIPE) {
|
|
// SWIPE mode.
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: SWIPE activeTouchId=%d,"
|
|
"activeGestureId=%d, currentTouchPointerCount=%d",
|
|
activeTouchId, mPointerGesture.activeGestureId, mCurrentTouch.pointerCount);
|
|
#endif
|
|
LOG_ASSERT(mPointerGesture.activeGestureId >= 0);
|
|
|
|
mPointerGesture.currentGestureIdBits.clear();
|
|
mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId);
|
|
mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0;
|
|
mPointerGesture.currentGestureProperties[0].clear();
|
|
mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId;
|
|
mPointerGesture.currentGestureProperties[0].toolType =
|
|
AMOTION_EVENT_TOOL_TYPE_INDIRECT_FINGER;
|
|
mPointerGesture.currentGestureCoords[0].clear();
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X,
|
|
mPointerGesture.referenceGestureX);
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y,
|
|
mPointerGesture.referenceGestureY);
|
|
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
|
|
|
|
if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
|
|
mPointerGesture.spotGesture = PointerControllerInterface::SPOT_GESTURE_SWIPE;
|
|
}
|
|
} else if (mPointerGesture.currentGestureMode == PointerGesture::FREEFORM) {
|
|
// FREEFORM mode.
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: FREEFORM activeTouchId=%d,"
|
|
"activeGestureId=%d, currentTouchPointerCount=%d",
|
|
activeTouchId, mPointerGesture.activeGestureId, mCurrentTouch.pointerCount);
|
|
#endif
|
|
LOG_ASSERT(mPointerGesture.activeGestureId >= 0);
|
|
|
|
mPointerGesture.currentGestureIdBits.clear();
|
|
|
|
BitSet32 mappedTouchIdBits;
|
|
BitSet32 usedGestureIdBits;
|
|
if (mPointerGesture.lastGestureMode != PointerGesture::FREEFORM) {
|
|
// Initially, assign the active gesture id to the active touch point
|
|
// if there is one. No other touch id bits are mapped yet.
|
|
if (!*outCancelPreviousGesture) {
|
|
mappedTouchIdBits.markBit(activeTouchId);
|
|
usedGestureIdBits.markBit(mPointerGesture.activeGestureId);
|
|
mPointerGesture.freeformTouchToGestureIdMap[activeTouchId] =
|
|
mPointerGesture.activeGestureId;
|
|
} else {
|
|
mPointerGesture.activeGestureId = -1;
|
|
}
|
|
} else {
|
|
// Otherwise, assume we mapped all touches from the previous frame.
|
|
// Reuse all mappings that are still applicable.
|
|
mappedTouchIdBits.value = mLastTouch.idBits.value & mCurrentTouch.idBits.value;
|
|
usedGestureIdBits = mPointerGesture.lastGestureIdBits;
|
|
|
|
// Check whether we need to choose a new active gesture id because the
|
|
// current went went up.
|
|
for (BitSet32 upTouchIdBits(mLastTouch.idBits.value & ~mCurrentTouch.idBits.value);
|
|
!upTouchIdBits.isEmpty(); ) {
|
|
uint32_t upTouchId = upTouchIdBits.firstMarkedBit();
|
|
upTouchIdBits.clearBit(upTouchId);
|
|
uint32_t upGestureId = mPointerGesture.freeformTouchToGestureIdMap[upTouchId];
|
|
if (upGestureId == uint32_t(mPointerGesture.activeGestureId)) {
|
|
mPointerGesture.activeGestureId = -1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: FREEFORM follow up "
|
|
"mappedTouchIdBits=0x%08x, usedGestureIdBits=0x%08x, "
|
|
"activeGestureId=%d",
|
|
mappedTouchIdBits.value, usedGestureIdBits.value,
|
|
mPointerGesture.activeGestureId);
|
|
#endif
|
|
|
|
for (uint32_t i = 0; i < mCurrentTouch.pointerCount; i++) {
|
|
uint32_t touchId = mCurrentTouch.pointers[i].id;
|
|
uint32_t gestureId;
|
|
if (!mappedTouchIdBits.hasBit(touchId)) {
|
|
gestureId = usedGestureIdBits.firstUnmarkedBit();
|
|
usedGestureIdBits.markBit(gestureId);
|
|
mPointerGesture.freeformTouchToGestureIdMap[touchId] = gestureId;
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: FREEFORM "
|
|
"new mapping for touch id %d -> gesture id %d",
|
|
touchId, gestureId);
|
|
#endif
|
|
} else {
|
|
gestureId = mPointerGesture.freeformTouchToGestureIdMap[touchId];
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: FREEFORM "
|
|
"existing mapping for touch id %d -> gesture id %d",
|
|
touchId, gestureId);
|
|
#endif
|
|
}
|
|
mPointerGesture.currentGestureIdBits.markBit(gestureId);
|
|
mPointerGesture.currentGestureIdToIndex[gestureId] = i;
|
|
|
|
float x = (mCurrentTouch.pointers[i].x - mPointerGesture.referenceTouchX)
|
|
* mLocked.pointerGestureXZoomScale + mPointerGesture.referenceGestureX;
|
|
float y = (mCurrentTouch.pointers[i].y - mPointerGesture.referenceTouchY)
|
|
* mLocked.pointerGestureYZoomScale + mPointerGesture.referenceGestureY;
|
|
|
|
mPointerGesture.currentGestureProperties[i].clear();
|
|
mPointerGesture.currentGestureProperties[i].id = gestureId;
|
|
mPointerGesture.currentGestureProperties[i].toolType =
|
|
AMOTION_EVENT_TOOL_TYPE_INDIRECT_FINGER;
|
|
mPointerGesture.currentGestureCoords[i].clear();
|
|
mPointerGesture.currentGestureCoords[i].setAxisValue(
|
|
AMOTION_EVENT_AXIS_X, x);
|
|
mPointerGesture.currentGestureCoords[i].setAxisValue(
|
|
AMOTION_EVENT_AXIS_Y, y);
|
|
mPointerGesture.currentGestureCoords[i].setAxisValue(
|
|
AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
|
|
}
|
|
|
|
if (mPointerGesture.activeGestureId < 0) {
|
|
mPointerGesture.activeGestureId =
|
|
mPointerGesture.currentGestureIdBits.firstMarkedBit();
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: FREEFORM new "
|
|
"activeGestureId=%d", mPointerGesture.activeGestureId);
|
|
#endif
|
|
}
|
|
|
|
if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
|
|
mPointerGesture.spotGesture = PointerControllerInterface::SPOT_GESTURE_FREEFORM;
|
|
}
|
|
}
|
|
|
|
// Update spot locations for PRESS, SWIPE and FREEFORM.
|
|
// We use the same calculation as we do to calculate the gesture pointers
|
|
// for FREEFORM so that the spots smoothly track gestures.
|
|
if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
|
|
mPointerGesture.spotIdBits.clear();
|
|
for (uint32_t i = 0; i < mCurrentTouch.pointerCount; i++) {
|
|
uint32_t id = mCurrentTouch.pointers[i].id;
|
|
mPointerGesture.spotIdBits.markBit(id);
|
|
mPointerGesture.spotIdToIndex[id] = i;
|
|
|
|
float x = (mCurrentTouch.pointers[i].x - mPointerGesture.referenceTouchX)
|
|
* mLocked.pointerGestureXZoomScale + mPointerGesture.referenceGestureX;
|
|
float y = (mCurrentTouch.pointers[i].y - mPointerGesture.referenceTouchY)
|
|
* mLocked.pointerGestureYZoomScale + mPointerGesture.referenceGestureY;
|
|
|
|
mPointerGesture.spotCoords[i].clear();
|
|
mPointerGesture.spotCoords[i].setAxisValue(AMOTION_EVENT_AXIS_X, x);
|
|
mPointerGesture.spotCoords[i].setAxisValue(AMOTION_EVENT_AXIS_Y, y);
|
|
mPointerGesture.spotCoords[i].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
|
|
}
|
|
moveSpotsLocked();
|
|
}
|
|
}
|
|
|
|
mPointerController->setButtonState(mCurrentTouch.buttonState);
|
|
|
|
#if DEBUG_GESTURES
|
|
LOGD("Gestures: finishPreviousGesture=%s, cancelPreviousGesture=%s, "
|
|
"currentGestureMode=%d, currentGestureIdBits=0x%08x, "
|
|
"lastGestureMode=%d, lastGestureIdBits=0x%08x",
|
|
toString(*outFinishPreviousGesture), toString(*outCancelPreviousGesture),
|
|
mPointerGesture.currentGestureMode, mPointerGesture.currentGestureIdBits.value,
|
|
mPointerGesture.lastGestureMode, mPointerGesture.lastGestureIdBits.value);
|
|
for (BitSet32 idBits = mPointerGesture.currentGestureIdBits; !idBits.isEmpty(); ) {
|
|
uint32_t id = idBits.firstMarkedBit();
|
|
idBits.clearBit(id);
|
|
uint32_t index = mPointerGesture.currentGestureIdToIndex[id];
|
|
const PointerProperties& properties = mPointerGesture.currentGestureProperties[index];
|
|
const PointerCoords& coords = mPointerGesture.currentGestureCoords[index];
|
|
LOGD(" currentGesture[%d]: index=%d, toolType=%d, "
|
|
"x=%0.3f, y=%0.3f, pressure=%0.3f",
|
|
id, index, properties.toolType,
|
|
coords.getAxisValue(AMOTION_EVENT_AXIS_X),
|
|
coords.getAxisValue(AMOTION_EVENT_AXIS_Y),
|
|
coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE));
|
|
}
|
|
for (BitSet32 idBits = mPointerGesture.lastGestureIdBits; !idBits.isEmpty(); ) {
|
|
uint32_t id = idBits.firstMarkedBit();
|
|
idBits.clearBit(id);
|
|
uint32_t index = mPointerGesture.lastGestureIdToIndex[id];
|
|
const PointerProperties& properties = mPointerGesture.lastGestureProperties[index];
|
|
const PointerCoords& coords = mPointerGesture.lastGestureCoords[index];
|
|
LOGD(" lastGesture[%d]: index=%d, toolType=%d, "
|
|
"x=%0.3f, y=%0.3f, pressure=%0.3f",
|
|
id, index, properties.toolType,
|
|
coords.getAxisValue(AMOTION_EVENT_AXIS_X),
|
|
coords.getAxisValue(AMOTION_EVENT_AXIS_Y),
|
|
coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE));
|
|
}
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
void TouchInputMapper::moveSpotsLocked() {
|
|
mPointerController->setSpots(mPointerGesture.spotGesture,
|
|
mPointerGesture.spotCoords, mPointerGesture.spotIdToIndex, mPointerGesture.spotIdBits);
|
|
}
|
|
|
|
void TouchInputMapper::dispatchMotion(nsecs_t when, uint32_t policyFlags, uint32_t source,
|
|
int32_t action, int32_t flags, int32_t metaState, int32_t buttonState, int32_t edgeFlags,
|
|
const PointerProperties* properties, const PointerCoords* coords,
|
|
const uint32_t* idToIndex, BitSet32 idBits,
|
|
int32_t changedId, float xPrecision, float yPrecision, nsecs_t downTime) {
|
|
PointerCoords pointerCoords[MAX_POINTERS];
|
|
PointerProperties pointerProperties[MAX_POINTERS];
|
|
uint32_t pointerCount = 0;
|
|
while (!idBits.isEmpty()) {
|
|
uint32_t id = idBits.firstMarkedBit();
|
|
idBits.clearBit(id);
|
|
uint32_t index = idToIndex[id];
|
|
pointerProperties[pointerCount].copyFrom(properties[index]);
|
|
pointerCoords[pointerCount].copyFrom(coords[index]);
|
|
|
|
if (changedId >= 0 && id == uint32_t(changedId)) {
|
|
action |= pointerCount << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
|
|
}
|
|
|
|
pointerCount += 1;
|
|
}
|
|
|
|
LOG_ASSERT(pointerCount != 0);
|
|
|
|
if (changedId >= 0 && pointerCount == 1) {
|
|
// Replace initial down and final up action.
|
|
// We can compare the action without masking off the changed pointer index
|
|
// because we know the index is 0.
|
|
if (action == AMOTION_EVENT_ACTION_POINTER_DOWN) {
|
|
action = AMOTION_EVENT_ACTION_DOWN;
|
|
} else if (action == AMOTION_EVENT_ACTION_POINTER_UP) {
|
|
action = AMOTION_EVENT_ACTION_UP;
|
|
} else {
|
|
// Can't happen.
|
|
LOG_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
getDispatcher()->notifyMotion(when, getDeviceId(), source, policyFlags,
|
|
action, flags, metaState, buttonState, edgeFlags,
|
|
pointerCount, pointerProperties, pointerCoords, xPrecision, yPrecision, downTime);
|
|
}
|
|
|
|
bool TouchInputMapper::updateMovedPointers(const PointerProperties* inProperties,
|
|
const PointerCoords* inCoords, const uint32_t* inIdToIndex,
|
|
PointerProperties* outProperties, PointerCoords* outCoords, const uint32_t* outIdToIndex,
|
|
BitSet32 idBits) const {
|
|
bool changed = false;
|
|
while (!idBits.isEmpty()) {
|
|
uint32_t id = idBits.firstMarkedBit();
|
|
idBits.clearBit(id);
|
|
|
|
uint32_t inIndex = inIdToIndex[id];
|
|
uint32_t outIndex = outIdToIndex[id];
|
|
|
|
const PointerProperties& curInProperties = inProperties[inIndex];
|
|
const PointerCoords& curInCoords = inCoords[inIndex];
|
|
PointerProperties& curOutProperties = outProperties[outIndex];
|
|
PointerCoords& curOutCoords = outCoords[outIndex];
|
|
|
|
if (curInProperties != curOutProperties) {
|
|
curOutProperties.copyFrom(curInProperties);
|
|
changed = true;
|
|
}
|
|
|
|
if (curInCoords != curOutCoords) {
|
|
curOutCoords.copyFrom(curInCoords);
|
|
changed = true;
|
|
}
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
void TouchInputMapper::fadePointer() {
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
if (mPointerController != NULL) {
|
|
mPointerController->fade();
|
|
}
|
|
} // release lock
|
|
}
|
|
|
|
int32_t TouchInputMapper::getTouchToolType(bool isStylus) const {
|
|
if (mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN) {
|
|
return isStylus ? AMOTION_EVENT_TOOL_TYPE_STYLUS : AMOTION_EVENT_TOOL_TYPE_FINGER;
|
|
} else {
|
|
return isStylus ? AMOTION_EVENT_TOOL_TYPE_INDIRECT_STYLUS
|
|
: AMOTION_EVENT_TOOL_TYPE_INDIRECT_FINGER;
|
|
}
|
|
}
|
|
|
|
bool TouchInputMapper::isPointInsideSurfaceLocked(int32_t x, int32_t y) {
|
|
return x >= mRawAxes.x.minValue && x <= mRawAxes.x.maxValue
|
|
&& y >= mRawAxes.y.minValue && y <= mRawAxes.y.maxValue;
|
|
}
|
|
|
|
const TouchInputMapper::VirtualKey* TouchInputMapper::findVirtualKeyHitLocked(
|
|
int32_t x, int32_t y) {
|
|
size_t numVirtualKeys = mLocked.virtualKeys.size();
|
|
for (size_t i = 0; i < numVirtualKeys; i++) {
|
|
const VirtualKey& virtualKey = mLocked.virtualKeys[i];
|
|
|
|
#if DEBUG_VIRTUAL_KEYS
|
|
LOGD("VirtualKeys: Hit test (%d, %d): keyCode=%d, scanCode=%d, "
|
|
"left=%d, top=%d, right=%d, bottom=%d",
|
|
x, y,
|
|
virtualKey.keyCode, virtualKey.scanCode,
|
|
virtualKey.hitLeft, virtualKey.hitTop,
|
|
virtualKey.hitRight, virtualKey.hitBottom);
|
|
#endif
|
|
|
|
if (virtualKey.isHit(x, y)) {
|
|
return & virtualKey;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void TouchInputMapper::calculatePointerIds() {
|
|
uint32_t currentPointerCount = mCurrentTouch.pointerCount;
|
|
uint32_t lastPointerCount = mLastTouch.pointerCount;
|
|
|
|
if (currentPointerCount == 0) {
|
|
// No pointers to assign.
|
|
mCurrentTouch.idBits.clear();
|
|
} else if (lastPointerCount == 0) {
|
|
// All pointers are new.
|
|
mCurrentTouch.idBits.clear();
|
|
for (uint32_t i = 0; i < currentPointerCount; i++) {
|
|
mCurrentTouch.pointers[i].id = i;
|
|
mCurrentTouch.idToIndex[i] = i;
|
|
mCurrentTouch.idBits.markBit(i);
|
|
}
|
|
} else if (currentPointerCount == 1 && lastPointerCount == 1) {
|
|
// Only one pointer and no change in count so it must have the same id as before.
|
|
uint32_t id = mLastTouch.pointers[0].id;
|
|
mCurrentTouch.pointers[0].id = id;
|
|
mCurrentTouch.idToIndex[id] = 0;
|
|
mCurrentTouch.idBits.value = BitSet32::valueForBit(id);
|
|
} else {
|
|
// General case.
|
|
// We build a heap of squared euclidean distances between current and last pointers
|
|
// associated with the current and last pointer indices. Then, we find the best
|
|
// match (by distance) for each current pointer.
|
|
PointerDistanceHeapElement heap[MAX_POINTERS * MAX_POINTERS];
|
|
|
|
uint32_t heapSize = 0;
|
|
for (uint32_t currentPointerIndex = 0; currentPointerIndex < currentPointerCount;
|
|
currentPointerIndex++) {
|
|
for (uint32_t lastPointerIndex = 0; lastPointerIndex < lastPointerCount;
|
|
lastPointerIndex++) {
|
|
int64_t deltaX = mCurrentTouch.pointers[currentPointerIndex].x
|
|
- mLastTouch.pointers[lastPointerIndex].x;
|
|
int64_t deltaY = mCurrentTouch.pointers[currentPointerIndex].y
|
|
- mLastTouch.pointers[lastPointerIndex].y;
|
|
|
|
uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY);
|
|
|
|
// Insert new element into the heap (sift up).
|
|
heap[heapSize].currentPointerIndex = currentPointerIndex;
|
|
heap[heapSize].lastPointerIndex = lastPointerIndex;
|
|
heap[heapSize].distance = distance;
|
|
heapSize += 1;
|
|
}
|
|
}
|
|
|
|
// Heapify
|
|
for (uint32_t startIndex = heapSize / 2; startIndex != 0; ) {
|
|
startIndex -= 1;
|
|
for (uint32_t parentIndex = startIndex; ;) {
|
|
uint32_t childIndex = parentIndex * 2 + 1;
|
|
if (childIndex >= heapSize) {
|
|
break;
|
|
}
|
|
|
|
if (childIndex + 1 < heapSize
|
|
&& heap[childIndex + 1].distance < heap[childIndex].distance) {
|
|
childIndex += 1;
|
|
}
|
|
|
|
if (heap[parentIndex].distance <= heap[childIndex].distance) {
|
|
break;
|
|
}
|
|
|
|
swap(heap[parentIndex], heap[childIndex]);
|
|
parentIndex = childIndex;
|
|
}
|
|
}
|
|
|
|
#if DEBUG_POINTER_ASSIGNMENT
|
|
LOGD("calculatePointerIds - initial distance min-heap: size=%d", heapSize);
|
|
for (size_t i = 0; i < heapSize; i++) {
|
|
LOGD(" heap[%d]: cur=%d, last=%d, distance=%lld",
|
|
i, heap[i].currentPointerIndex, heap[i].lastPointerIndex,
|
|
heap[i].distance);
|
|
}
|
|
#endif
|
|
|
|
// Pull matches out by increasing order of distance.
|
|
// To avoid reassigning pointers that have already been matched, the loop keeps track
|
|
// of which last and current pointers have been matched using the matchedXXXBits variables.
|
|
// It also tracks the used pointer id bits.
|
|
BitSet32 matchedLastBits(0);
|
|
BitSet32 matchedCurrentBits(0);
|
|
BitSet32 usedIdBits(0);
|
|
bool first = true;
|
|
for (uint32_t i = min(currentPointerCount, lastPointerCount); i > 0; i--) {
|
|
for (;;) {
|
|
if (first) {
|
|
// The first time through the loop, we just consume the root element of
|
|
// the heap (the one with smallest distance).
|
|
first = false;
|
|
} else {
|
|
// Previous iterations consumed the root element of the heap.
|
|
// Pop root element off of the heap (sift down).
|
|
heapSize -= 1;
|
|
LOG_ASSERT(heapSize > 0);
|
|
|
|
// Sift down.
|
|
heap[0] = heap[heapSize];
|
|
for (uint32_t parentIndex = 0; ;) {
|
|
uint32_t childIndex = parentIndex * 2 + 1;
|
|
if (childIndex >= heapSize) {
|
|
break;
|
|
}
|
|
|
|
if (childIndex + 1 < heapSize
|
|
&& heap[childIndex + 1].distance < heap[childIndex].distance) {
|
|
childIndex += 1;
|
|
}
|
|
|
|
if (heap[parentIndex].distance <= heap[childIndex].distance) {
|
|
break;
|
|
}
|
|
|
|
swap(heap[parentIndex], heap[childIndex]);
|
|
parentIndex = childIndex;
|
|
}
|
|
|
|
#if DEBUG_POINTER_ASSIGNMENT
|
|
LOGD("calculatePointerIds - reduced distance min-heap: size=%d", heapSize);
|
|
for (size_t i = 0; i < heapSize; i++) {
|
|
LOGD(" heap[%d]: cur=%d, last=%d, distance=%lld",
|
|
i, heap[i].currentPointerIndex, heap[i].lastPointerIndex,
|
|
heap[i].distance);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
uint32_t currentPointerIndex = heap[0].currentPointerIndex;
|
|
if (matchedCurrentBits.hasBit(currentPointerIndex)) continue; // already matched
|
|
|
|
uint32_t lastPointerIndex = heap[0].lastPointerIndex;
|
|
if (matchedLastBits.hasBit(lastPointerIndex)) continue; // already matched
|
|
|
|
matchedCurrentBits.markBit(currentPointerIndex);
|
|
matchedLastBits.markBit(lastPointerIndex);
|
|
|
|
uint32_t id = mLastTouch.pointers[lastPointerIndex].id;
|
|
mCurrentTouch.pointers[currentPointerIndex].id = id;
|
|
mCurrentTouch.idToIndex[id] = currentPointerIndex;
|
|
usedIdBits.markBit(id);
|
|
|
|
#if DEBUG_POINTER_ASSIGNMENT
|
|
LOGD("calculatePointerIds - matched: cur=%d, last=%d, id=%d, distance=%lld",
|
|
lastPointerIndex, currentPointerIndex, id, heap[0].distance);
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Assign fresh ids to new pointers.
|
|
if (currentPointerCount > lastPointerCount) {
|
|
for (uint32_t i = currentPointerCount - lastPointerCount; ;) {
|
|
uint32_t currentPointerIndex = matchedCurrentBits.firstUnmarkedBit();
|
|
uint32_t id = usedIdBits.firstUnmarkedBit();
|
|
|
|
mCurrentTouch.pointers[currentPointerIndex].id = id;
|
|
mCurrentTouch.idToIndex[id] = currentPointerIndex;
|
|
usedIdBits.markBit(id);
|
|
|
|
#if DEBUG_POINTER_ASSIGNMENT
|
|
LOGD("calculatePointerIds - assigned: cur=%d, id=%d",
|
|
currentPointerIndex, id);
|
|
#endif
|
|
|
|
if (--i == 0) break; // done
|
|
matchedCurrentBits.markBit(currentPointerIndex);
|
|
}
|
|
}
|
|
|
|
// Fix id bits.
|
|
mCurrentTouch.idBits = usedIdBits;
|
|
}
|
|
}
|
|
|
|
/* Special hack for devices that have bad screen data: if one of the
|
|
* points has moved more than a screen height from the last position,
|
|
* then drop it. */
|
|
bool TouchInputMapper::applyBadTouchFilter() {
|
|
uint32_t pointerCount = mCurrentTouch.pointerCount;
|
|
|
|
// Nothing to do if there are no points.
|
|
if (pointerCount == 0) {
|
|
return false;
|
|
}
|
|
|
|
// Don't do anything if a finger is going down or up. We run
|
|
// here before assigning pointer IDs, so there isn't a good
|
|
// way to do per-finger matching.
|
|
if (pointerCount != mLastTouch.pointerCount) {
|
|
return false;
|
|
}
|
|
|
|
// We consider a single movement across more than a 7/16 of
|
|
// the long size of the screen to be bad. This was a magic value
|
|
// determined by looking at the maximum distance it is feasible
|
|
// to actually move in one sample.
|
|
int32_t maxDeltaY = (mRawAxes.y.maxValue - mRawAxes.y.minValue + 1) * 7 / 16;
|
|
|
|
// XXX The original code in InputDevice.java included commented out
|
|
// code for testing the X axis. Note that when we drop a point
|
|
// we don't actually restore the old X either. Strange.
|
|
// The old code also tries to track when bad points were previously
|
|
// detected but it turns out that due to the placement of a "break"
|
|
// at the end of the loop, we never set mDroppedBadPoint to true
|
|
// so it is effectively dead code.
|
|
// Need to figure out if the old code is busted or just overcomplicated
|
|
// but working as intended.
|
|
|
|
// Look through all new points and see if any are farther than
|
|
// acceptable from all previous points.
|
|
for (uint32_t i = pointerCount; i-- > 0; ) {
|
|
int32_t y = mCurrentTouch.pointers[i].y;
|
|
int32_t closestY = INT_MAX;
|
|
int32_t closestDeltaY = 0;
|
|
|
|
#if DEBUG_HACKS
|
|
LOGD("BadTouchFilter: Looking at next point #%d: y=%d", i, y);
|
|
#endif
|
|
|
|
for (uint32_t j = pointerCount; j-- > 0; ) {
|
|
int32_t lastY = mLastTouch.pointers[j].y;
|
|
int32_t deltaY = abs(y - lastY);
|
|
|
|
#if DEBUG_HACKS
|
|
LOGD("BadTouchFilter: Comparing with last point #%d: y=%d deltaY=%d",
|
|
j, lastY, deltaY);
|
|
#endif
|
|
|
|
if (deltaY < maxDeltaY) {
|
|
goto SkipSufficientlyClosePoint;
|
|
}
|
|
if (deltaY < closestDeltaY) {
|
|
closestDeltaY = deltaY;
|
|
closestY = lastY;
|
|
}
|
|
}
|
|
|
|
// Must not have found a close enough match.
|
|
#if DEBUG_HACKS
|
|
LOGD("BadTouchFilter: Dropping bad point #%d: newY=%d oldY=%d deltaY=%d maxDeltaY=%d",
|
|
i, y, closestY, closestDeltaY, maxDeltaY);
|
|
#endif
|
|
|
|
mCurrentTouch.pointers[i].y = closestY;
|
|
return true; // XXX original code only corrects one point
|
|
|
|
SkipSufficientlyClosePoint: ;
|
|
}
|
|
|
|
// No change.
|
|
return false;
|
|
}
|
|
|
|
/* Special hack for devices that have bad screen data: drop points where
|
|
* the coordinate value for one axis has jumped to the other pointer's location.
|
|
*/
|
|
bool TouchInputMapper::applyJumpyTouchFilter() {
|
|
uint32_t pointerCount = mCurrentTouch.pointerCount;
|
|
if (mLastTouch.pointerCount != pointerCount) {
|
|
#if DEBUG_HACKS
|
|
LOGD("JumpyTouchFilter: Different pointer count %d -> %d",
|
|
mLastTouch.pointerCount, pointerCount);
|
|
for (uint32_t i = 0; i < pointerCount; i++) {
|
|
LOGD(" Pointer %d (%d, %d)", i,
|
|
mCurrentTouch.pointers[i].x, mCurrentTouch.pointers[i].y);
|
|
}
|
|
#endif
|
|
|
|
if (mJumpyTouchFilter.jumpyPointsDropped < JUMPY_TRANSITION_DROPS) {
|
|
if (mLastTouch.pointerCount == 1 && pointerCount == 2) {
|
|
// Just drop the first few events going from 1 to 2 pointers.
|
|
// They're bad often enough that they're not worth considering.
|
|
mCurrentTouch.pointerCount = 1;
|
|
mJumpyTouchFilter.jumpyPointsDropped += 1;
|
|
|
|
#if DEBUG_HACKS
|
|
LOGD("JumpyTouchFilter: Pointer 2 dropped");
|
|
#endif
|
|
return true;
|
|
} else if (mLastTouch.pointerCount == 2 && pointerCount == 1) {
|
|
// The event when we go from 2 -> 1 tends to be messed up too
|
|
mCurrentTouch.pointerCount = 2;
|
|
mCurrentTouch.pointers[0] = mLastTouch.pointers[0];
|
|
mCurrentTouch.pointers[1] = mLastTouch.pointers[1];
|
|
mJumpyTouchFilter.jumpyPointsDropped += 1;
|
|
|
|
#if DEBUG_HACKS
|
|
for (int32_t i = 0; i < 2; i++) {
|
|
LOGD("JumpyTouchFilter: Pointer %d replaced (%d, %d)", i,
|
|
mCurrentTouch.pointers[i].x, mCurrentTouch.pointers[i].y);
|
|
}
|
|
#endif
|
|
return true;
|
|
}
|
|
}
|
|
// Reset jumpy points dropped on other transitions or if limit exceeded.
|
|
mJumpyTouchFilter.jumpyPointsDropped = 0;
|
|
|
|
#if DEBUG_HACKS
|
|
LOGD("JumpyTouchFilter: Transition - drop limit reset");
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
// We have the same number of pointers as last time.
|
|
// A 'jumpy' point is one where the coordinate value for one axis
|
|
// has jumped to the other pointer's location. No need to do anything
|
|
// else if we only have one pointer.
|
|
if (pointerCount < 2) {
|
|
return false;
|
|
}
|
|
|
|
if (mJumpyTouchFilter.jumpyPointsDropped < JUMPY_DROP_LIMIT) {
|
|
int jumpyEpsilon = (mRawAxes.y.maxValue - mRawAxes.y.minValue + 1) / JUMPY_EPSILON_DIVISOR;
|
|
|
|
// We only replace the single worst jumpy point as characterized by pointer distance
|
|
// in a single axis.
|
|
int32_t badPointerIndex = -1;
|
|
int32_t badPointerReplacementIndex = -1;
|
|
int32_t badPointerDistance = INT_MIN; // distance to be corrected
|
|
|
|
for (uint32_t i = pointerCount; i-- > 0; ) {
|
|
int32_t x = mCurrentTouch.pointers[i].x;
|
|
int32_t y = mCurrentTouch.pointers[i].y;
|
|
|
|
#if DEBUG_HACKS
|
|
LOGD("JumpyTouchFilter: Point %d (%d, %d)", i, x, y);
|
|
#endif
|
|
|
|
// Check if a touch point is too close to another's coordinates
|
|
bool dropX = false, dropY = false;
|
|
for (uint32_t j = 0; j < pointerCount; j++) {
|
|
if (i == j) {
|
|
continue;
|
|
}
|
|
|
|
if (abs(x - mCurrentTouch.pointers[j].x) <= jumpyEpsilon) {
|
|
dropX = true;
|
|
break;
|
|
}
|
|
|
|
if (abs(y - mCurrentTouch.pointers[j].y) <= jumpyEpsilon) {
|
|
dropY = true;
|
|
break;
|
|
}
|
|
}
|
|
if (! dropX && ! dropY) {
|
|
continue; // not jumpy
|
|
}
|
|
|
|
// Find a replacement candidate by comparing with older points on the
|
|
// complementary (non-jumpy) axis.
|
|
int32_t distance = INT_MIN; // distance to be corrected
|
|
int32_t replacementIndex = -1;
|
|
|
|
if (dropX) {
|
|
// X looks too close. Find an older replacement point with a close Y.
|
|
int32_t smallestDeltaY = INT_MAX;
|
|
for (uint32_t j = 0; j < pointerCount; j++) {
|
|
int32_t deltaY = abs(y - mLastTouch.pointers[j].y);
|
|
if (deltaY < smallestDeltaY) {
|
|
smallestDeltaY = deltaY;
|
|
replacementIndex = j;
|
|
}
|
|
}
|
|
distance = abs(x - mLastTouch.pointers[replacementIndex].x);
|
|
} else {
|
|
// Y looks too close. Find an older replacement point with a close X.
|
|
int32_t smallestDeltaX = INT_MAX;
|
|
for (uint32_t j = 0; j < pointerCount; j++) {
|
|
int32_t deltaX = abs(x - mLastTouch.pointers[j].x);
|
|
if (deltaX < smallestDeltaX) {
|
|
smallestDeltaX = deltaX;
|
|
replacementIndex = j;
|
|
}
|
|
}
|
|
distance = abs(y - mLastTouch.pointers[replacementIndex].y);
|
|
}
|
|
|
|
// If replacing this pointer would correct a worse error than the previous ones
|
|
// considered, then use this replacement instead.
|
|
if (distance > badPointerDistance) {
|
|
badPointerIndex = i;
|
|
badPointerReplacementIndex = replacementIndex;
|
|
badPointerDistance = distance;
|
|
}
|
|
}
|
|
|
|
// Correct the jumpy pointer if one was found.
|
|
if (badPointerIndex >= 0) {
|
|
#if DEBUG_HACKS
|
|
LOGD("JumpyTouchFilter: Replacing bad pointer %d with (%d, %d)",
|
|
badPointerIndex,
|
|
mLastTouch.pointers[badPointerReplacementIndex].x,
|
|
mLastTouch.pointers[badPointerReplacementIndex].y);
|
|
#endif
|
|
|
|
mCurrentTouch.pointers[badPointerIndex].x =
|
|
mLastTouch.pointers[badPointerReplacementIndex].x;
|
|
mCurrentTouch.pointers[badPointerIndex].y =
|
|
mLastTouch.pointers[badPointerReplacementIndex].y;
|
|
mJumpyTouchFilter.jumpyPointsDropped += 1;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
mJumpyTouchFilter.jumpyPointsDropped = 0;
|
|
return false;
|
|
}
|
|
|
|
/* Special hack for devices that have bad screen data: aggregate and
|
|
* compute averages of the coordinate data, to reduce the amount of
|
|
* jitter seen by applications. */
|
|
void TouchInputMapper::applyAveragingTouchFilter() {
|
|
for (uint32_t currentIndex = 0; currentIndex < mCurrentTouch.pointerCount; currentIndex++) {
|
|
uint32_t id = mCurrentTouch.pointers[currentIndex].id;
|
|
int32_t x = mCurrentTouch.pointers[currentIndex].x;
|
|
int32_t y = mCurrentTouch.pointers[currentIndex].y;
|
|
int32_t pressure;
|
|
switch (mCalibration.pressureSource) {
|
|
case Calibration::PRESSURE_SOURCE_PRESSURE:
|
|
pressure = mCurrentTouch.pointers[currentIndex].pressure;
|
|
break;
|
|
case Calibration::PRESSURE_SOURCE_TOUCH:
|
|
pressure = mCurrentTouch.pointers[currentIndex].touchMajor;
|
|
break;
|
|
default:
|
|
pressure = 1;
|
|
break;
|
|
}
|
|
|
|
if (mLastTouch.idBits.hasBit(id)) {
|
|
// Pointer was down before and is still down now.
|
|
// Compute average over history trace.
|
|
uint32_t start = mAveragingTouchFilter.historyStart[id];
|
|
uint32_t end = mAveragingTouchFilter.historyEnd[id];
|
|
|
|
int64_t deltaX = x - mAveragingTouchFilter.historyData[end].pointers[id].x;
|
|
int64_t deltaY = y - mAveragingTouchFilter.historyData[end].pointers[id].y;
|
|
uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY);
|
|
|
|
#if DEBUG_HACKS
|
|
LOGD("AveragingTouchFilter: Pointer id %d - Distance from last sample: %lld",
|
|
id, distance);
|
|
#endif
|
|
|
|
if (distance < AVERAGING_DISTANCE_LIMIT) {
|
|
// Increment end index in preparation for recording new historical data.
|
|
end += 1;
|
|
if (end > AVERAGING_HISTORY_SIZE) {
|
|
end = 0;
|
|
}
|
|
|
|
// If the end index has looped back to the start index then we have filled
|
|
// the historical trace up to the desired size so we drop the historical
|
|
// data at the start of the trace.
|
|
if (end == start) {
|
|
start += 1;
|
|
if (start > AVERAGING_HISTORY_SIZE) {
|
|
start = 0;
|
|
}
|
|
}
|
|
|
|
// Add the raw data to the historical trace.
|
|
mAveragingTouchFilter.historyStart[id] = start;
|
|
mAveragingTouchFilter.historyEnd[id] = end;
|
|
mAveragingTouchFilter.historyData[end].pointers[id].x = x;
|
|
mAveragingTouchFilter.historyData[end].pointers[id].y = y;
|
|
mAveragingTouchFilter.historyData[end].pointers[id].pressure = pressure;
|
|
|
|
// Average over all historical positions in the trace by total pressure.
|
|
int32_t averagedX = 0;
|
|
int32_t averagedY = 0;
|
|
int32_t totalPressure = 0;
|
|
for (;;) {
|
|
int32_t historicalX = mAveragingTouchFilter.historyData[start].pointers[id].x;
|
|
int32_t historicalY = mAveragingTouchFilter.historyData[start].pointers[id].y;
|
|
int32_t historicalPressure = mAveragingTouchFilter.historyData[start]
|
|
.pointers[id].pressure;
|
|
|
|
averagedX += historicalX * historicalPressure;
|
|
averagedY += historicalY * historicalPressure;
|
|
totalPressure += historicalPressure;
|
|
|
|
if (start == end) {
|
|
break;
|
|
}
|
|
|
|
start += 1;
|
|
if (start > AVERAGING_HISTORY_SIZE) {
|
|
start = 0;
|
|
}
|
|
}
|
|
|
|
if (totalPressure != 0) {
|
|
averagedX /= totalPressure;
|
|
averagedY /= totalPressure;
|
|
|
|
#if DEBUG_HACKS
|
|
LOGD("AveragingTouchFilter: Pointer id %d - "
|
|
"totalPressure=%d, averagedX=%d, averagedY=%d", id, totalPressure,
|
|
averagedX, averagedY);
|
|
#endif
|
|
|
|
mCurrentTouch.pointers[currentIndex].x = averagedX;
|
|
mCurrentTouch.pointers[currentIndex].y = averagedY;
|
|
}
|
|
} else {
|
|
#if DEBUG_HACKS
|
|
LOGD("AveragingTouchFilter: Pointer id %d - Exceeded max distance", id);
|
|
#endif
|
|
}
|
|
} else {
|
|
#if DEBUG_HACKS
|
|
LOGD("AveragingTouchFilter: Pointer id %d - Pointer went up", id);
|
|
#endif
|
|
}
|
|
|
|
// Reset pointer history.
|
|
mAveragingTouchFilter.historyStart[id] = 0;
|
|
mAveragingTouchFilter.historyEnd[id] = 0;
|
|
mAveragingTouchFilter.historyData[0].pointers[id].x = x;
|
|
mAveragingTouchFilter.historyData[0].pointers[id].y = y;
|
|
mAveragingTouchFilter.historyData[0].pointers[id].pressure = pressure;
|
|
}
|
|
}
|
|
|
|
int32_t TouchInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
if (mLocked.currentVirtualKey.down && mLocked.currentVirtualKey.keyCode == keyCode) {
|
|
return AKEY_STATE_VIRTUAL;
|
|
}
|
|
|
|
size_t numVirtualKeys = mLocked.virtualKeys.size();
|
|
for (size_t i = 0; i < numVirtualKeys; i++) {
|
|
const VirtualKey& virtualKey = mLocked.virtualKeys[i];
|
|
if (virtualKey.keyCode == keyCode) {
|
|
return AKEY_STATE_UP;
|
|
}
|
|
}
|
|
} // release lock
|
|
|
|
return AKEY_STATE_UNKNOWN;
|
|
}
|
|
|
|
int32_t TouchInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
if (mLocked.currentVirtualKey.down && mLocked.currentVirtualKey.scanCode == scanCode) {
|
|
return AKEY_STATE_VIRTUAL;
|
|
}
|
|
|
|
size_t numVirtualKeys = mLocked.virtualKeys.size();
|
|
for (size_t i = 0; i < numVirtualKeys; i++) {
|
|
const VirtualKey& virtualKey = mLocked.virtualKeys[i];
|
|
if (virtualKey.scanCode == scanCode) {
|
|
return AKEY_STATE_UP;
|
|
}
|
|
}
|
|
} // release lock
|
|
|
|
return AKEY_STATE_UNKNOWN;
|
|
}
|
|
|
|
bool TouchInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
|
|
const int32_t* keyCodes, uint8_t* outFlags) {
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
size_t numVirtualKeys = mLocked.virtualKeys.size();
|
|
for (size_t i = 0; i < numVirtualKeys; i++) {
|
|
const VirtualKey& virtualKey = mLocked.virtualKeys[i];
|
|
|
|
for (size_t i = 0; i < numCodes; i++) {
|
|
if (virtualKey.keyCode == keyCodes[i]) {
|
|
outFlags[i] = 1;
|
|
}
|
|
}
|
|
}
|
|
} // release lock
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
// --- SingleTouchInputMapper ---
|
|
|
|
SingleTouchInputMapper::SingleTouchInputMapper(InputDevice* device) :
|
|
TouchInputMapper(device) {
|
|
clearState();
|
|
}
|
|
|
|
SingleTouchInputMapper::~SingleTouchInputMapper() {
|
|
}
|
|
|
|
void SingleTouchInputMapper::clearState() {
|
|
mAccumulator.clear();
|
|
|
|
mDown = false;
|
|
mX = 0;
|
|
mY = 0;
|
|
mPressure = 0; // default to 0 for devices that don't report pressure
|
|
mToolWidth = 0; // default to 0 for devices that don't report tool width
|
|
mButtonState = 0;
|
|
}
|
|
|
|
void SingleTouchInputMapper::reset() {
|
|
TouchInputMapper::reset();
|
|
|
|
clearState();
|
|
}
|
|
|
|
void SingleTouchInputMapper::process(const RawEvent* rawEvent) {
|
|
switch (rawEvent->type) {
|
|
case EV_KEY:
|
|
switch (rawEvent->scanCode) {
|
|
case BTN_TOUCH:
|
|
mAccumulator.fields |= Accumulator::FIELD_BTN_TOUCH;
|
|
mAccumulator.btnTouch = rawEvent->value != 0;
|
|
// Don't sync immediately. Wait until the next SYN_REPORT since we might
|
|
// not have received valid position information yet. This logic assumes that
|
|
// BTN_TOUCH is always followed by SYN_REPORT as part of a complete packet.
|
|
break;
|
|
default:
|
|
if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) {
|
|
int32_t buttonState = getButtonStateForScanCode(rawEvent->scanCode);
|
|
if (buttonState) {
|
|
if (rawEvent->value) {
|
|
mAccumulator.buttonDown |= buttonState;
|
|
} else {
|
|
mAccumulator.buttonUp |= buttonState;
|
|
}
|
|
mAccumulator.fields |= Accumulator::FIELD_BUTTONS;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case EV_ABS:
|
|
switch (rawEvent->scanCode) {
|
|
case ABS_X:
|
|
mAccumulator.fields |= Accumulator::FIELD_ABS_X;
|
|
mAccumulator.absX = rawEvent->value;
|
|
break;
|
|
case ABS_Y:
|
|
mAccumulator.fields |= Accumulator::FIELD_ABS_Y;
|
|
mAccumulator.absY = rawEvent->value;
|
|
break;
|
|
case ABS_PRESSURE:
|
|
mAccumulator.fields |= Accumulator::FIELD_ABS_PRESSURE;
|
|
mAccumulator.absPressure = rawEvent->value;
|
|
break;
|
|
case ABS_TOOL_WIDTH:
|
|
mAccumulator.fields |= Accumulator::FIELD_ABS_TOOL_WIDTH;
|
|
mAccumulator.absToolWidth = rawEvent->value;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case EV_SYN:
|
|
switch (rawEvent->scanCode) {
|
|
case SYN_REPORT:
|
|
sync(rawEvent->when);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void SingleTouchInputMapper::sync(nsecs_t when) {
|
|
uint32_t fields = mAccumulator.fields;
|
|
if (fields == 0) {
|
|
return; // no new state changes, so nothing to do
|
|
}
|
|
|
|
if (fields & Accumulator::FIELD_BTN_TOUCH) {
|
|
mDown = mAccumulator.btnTouch;
|
|
}
|
|
|
|
if (fields & Accumulator::FIELD_ABS_X) {
|
|
mX = mAccumulator.absX;
|
|
}
|
|
|
|
if (fields & Accumulator::FIELD_ABS_Y) {
|
|
mY = mAccumulator.absY;
|
|
}
|
|
|
|
if (fields & Accumulator::FIELD_ABS_PRESSURE) {
|
|
mPressure = mAccumulator.absPressure;
|
|
}
|
|
|
|
if (fields & Accumulator::FIELD_ABS_TOOL_WIDTH) {
|
|
mToolWidth = mAccumulator.absToolWidth;
|
|
}
|
|
|
|
if (fields & Accumulator::FIELD_BUTTONS) {
|
|
mButtonState = (mButtonState | mAccumulator.buttonDown) & ~mAccumulator.buttonUp;
|
|
}
|
|
|
|
mCurrentTouch.clear();
|
|
|
|
if (mDown) {
|
|
mCurrentTouch.pointerCount = 1;
|
|
mCurrentTouch.pointers[0].id = 0;
|
|
mCurrentTouch.pointers[0].x = mX;
|
|
mCurrentTouch.pointers[0].y = mY;
|
|
mCurrentTouch.pointers[0].pressure = mPressure;
|
|
mCurrentTouch.pointers[0].touchMajor = 0;
|
|
mCurrentTouch.pointers[0].touchMinor = 0;
|
|
mCurrentTouch.pointers[0].toolMajor = mToolWidth;
|
|
mCurrentTouch.pointers[0].toolMinor = mToolWidth;
|
|
mCurrentTouch.pointers[0].orientation = 0;
|
|
mCurrentTouch.pointers[0].distance = 0;
|
|
mCurrentTouch.pointers[0].isStylus = false; // TODO: Set stylus
|
|
mCurrentTouch.idToIndex[0] = 0;
|
|
mCurrentTouch.idBits.markBit(0);
|
|
mCurrentTouch.buttonState = mButtonState;
|
|
}
|
|
|
|
syncTouch(when, true);
|
|
|
|
mAccumulator.clear();
|
|
}
|
|
|
|
void SingleTouchInputMapper::configureRawAxes() {
|
|
TouchInputMapper::configureRawAxes();
|
|
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_X, & mRawAxes.x);
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_Y, & mRawAxes.y);
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_PRESSURE, & mRawAxes.pressure);
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_TOOL_WIDTH, & mRawAxes.toolMajor);
|
|
}
|
|
|
|
|
|
// --- MultiTouchInputMapper ---
|
|
|
|
MultiTouchInputMapper::MultiTouchInputMapper(InputDevice* device) :
|
|
TouchInputMapper(device), mSlotCount(0), mUsingSlotsProtocol(false) {
|
|
clearState();
|
|
}
|
|
|
|
MultiTouchInputMapper::~MultiTouchInputMapper() {
|
|
}
|
|
|
|
void MultiTouchInputMapper::clearState() {
|
|
mAccumulator.clearSlots(mSlotCount);
|
|
mAccumulator.clearButtons();
|
|
mButtonState = 0;
|
|
}
|
|
|
|
void MultiTouchInputMapper::reset() {
|
|
TouchInputMapper::reset();
|
|
|
|
clearState();
|
|
}
|
|
|
|
void MultiTouchInputMapper::process(const RawEvent* rawEvent) {
|
|
switch (rawEvent->type) {
|
|
case EV_KEY: {
|
|
if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) {
|
|
int32_t buttonState = getButtonStateForScanCode(rawEvent->scanCode);
|
|
if (buttonState) {
|
|
if (rawEvent->value) {
|
|
mAccumulator.buttonDown |= buttonState;
|
|
} else {
|
|
mAccumulator.buttonUp |= buttonState;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case EV_ABS: {
|
|
bool newSlot = false;
|
|
if (mUsingSlotsProtocol && rawEvent->scanCode == ABS_MT_SLOT) {
|
|
mAccumulator.currentSlot = rawEvent->value;
|
|
newSlot = true;
|
|
}
|
|
|
|
if (mAccumulator.currentSlot < 0 || size_t(mAccumulator.currentSlot) >= mSlotCount) {
|
|
#if DEBUG_POINTERS
|
|
if (newSlot) {
|
|
LOGW("MultiTouch device %s emitted invalid slot index %d but it "
|
|
"should be between 0 and %d; ignoring this slot.",
|
|
getDeviceName().string(), mAccumulator.currentSlot, mSlotCount);
|
|
}
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
Accumulator::Slot* slot = &mAccumulator.slots[mAccumulator.currentSlot];
|
|
|
|
switch (rawEvent->scanCode) {
|
|
case ABS_MT_POSITION_X:
|
|
slot->fields |= Accumulator::FIELD_ABS_MT_POSITION_X;
|
|
slot->absMTPositionX = rawEvent->value;
|
|
break;
|
|
case ABS_MT_POSITION_Y:
|
|
slot->fields |= Accumulator::FIELD_ABS_MT_POSITION_Y;
|
|
slot->absMTPositionY = rawEvent->value;
|
|
break;
|
|
case ABS_MT_TOUCH_MAJOR:
|
|
slot->fields |= Accumulator::FIELD_ABS_MT_TOUCH_MAJOR;
|
|
slot->absMTTouchMajor = rawEvent->value;
|
|
break;
|
|
case ABS_MT_TOUCH_MINOR:
|
|
slot->fields |= Accumulator::FIELD_ABS_MT_TOUCH_MINOR;
|
|
slot->absMTTouchMinor = rawEvent->value;
|
|
break;
|
|
case ABS_MT_WIDTH_MAJOR:
|
|
slot->fields |= Accumulator::FIELD_ABS_MT_WIDTH_MAJOR;
|
|
slot->absMTWidthMajor = rawEvent->value;
|
|
break;
|
|
case ABS_MT_WIDTH_MINOR:
|
|
slot->fields |= Accumulator::FIELD_ABS_MT_WIDTH_MINOR;
|
|
slot->absMTWidthMinor = rawEvent->value;
|
|
break;
|
|
case ABS_MT_ORIENTATION:
|
|
slot->fields |= Accumulator::FIELD_ABS_MT_ORIENTATION;
|
|
slot->absMTOrientation = rawEvent->value;
|
|
break;
|
|
case ABS_MT_TRACKING_ID:
|
|
if (mUsingSlotsProtocol && rawEvent->value < 0) {
|
|
slot->clear();
|
|
} else {
|
|
slot->fields |= Accumulator::FIELD_ABS_MT_TRACKING_ID;
|
|
slot->absMTTrackingId = rawEvent->value;
|
|
}
|
|
break;
|
|
case ABS_MT_PRESSURE:
|
|
slot->fields |= Accumulator::FIELD_ABS_MT_PRESSURE;
|
|
slot->absMTPressure = rawEvent->value;
|
|
break;
|
|
case ABS_MT_TOOL_TYPE:
|
|
slot->fields |= Accumulator::FIELD_ABS_MT_TOOL_TYPE;
|
|
slot->absMTToolType = rawEvent->value;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case EV_SYN:
|
|
switch (rawEvent->scanCode) {
|
|
case SYN_MT_REPORT: {
|
|
// MultiTouch Sync: The driver has returned all data for *one* of the pointers.
|
|
mAccumulator.currentSlot += 1;
|
|
break;
|
|
}
|
|
|
|
case SYN_REPORT:
|
|
sync(rawEvent->when);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void MultiTouchInputMapper::sync(nsecs_t when) {
|
|
static const uint32_t REQUIRED_FIELDS =
|
|
Accumulator::FIELD_ABS_MT_POSITION_X | Accumulator::FIELD_ABS_MT_POSITION_Y;
|
|
|
|
size_t inCount = mSlotCount;
|
|
size_t outCount = 0;
|
|
bool havePointerIds = true;
|
|
|
|
mCurrentTouch.clear();
|
|
|
|
for (size_t inIndex = 0; inIndex < inCount; inIndex++) {
|
|
const Accumulator::Slot& inSlot = mAccumulator.slots[inIndex];
|
|
uint32_t fields = inSlot.fields;
|
|
|
|
if ((fields & REQUIRED_FIELDS) != REQUIRED_FIELDS) {
|
|
// Some drivers send empty MT sync packets without X / Y to indicate a pointer up.
|
|
// This may also indicate an unused slot.
|
|
// Drop this finger.
|
|
continue;
|
|
}
|
|
|
|
if (outCount >= MAX_POINTERS) {
|
|
#if DEBUG_POINTERS
|
|
LOGD("MultiTouch device %s emitted more than maximum of %d pointers; "
|
|
"ignoring the rest.",
|
|
getDeviceName().string(), MAX_POINTERS);
|
|
#endif
|
|
break; // too many fingers!
|
|
}
|
|
|
|
PointerData& outPointer = mCurrentTouch.pointers[outCount];
|
|
outPointer.x = inSlot.absMTPositionX;
|
|
outPointer.y = inSlot.absMTPositionY;
|
|
|
|
if (fields & Accumulator::FIELD_ABS_MT_PRESSURE) {
|
|
outPointer.pressure = inSlot.absMTPressure;
|
|
} else {
|
|
// Default pressure to 0 if absent.
|
|
outPointer.pressure = 0;
|
|
}
|
|
|
|
if (fields & Accumulator::FIELD_ABS_MT_TOUCH_MAJOR) {
|
|
if (inSlot.absMTTouchMajor <= 0) {
|
|
// Some devices send sync packets with X / Y but with a 0 touch major to indicate
|
|
// a pointer going up. Drop this finger.
|
|
continue;
|
|
}
|
|
outPointer.touchMajor = inSlot.absMTTouchMajor;
|
|
} else {
|
|
// Default touch area to 0 if absent.
|
|
outPointer.touchMajor = 0;
|
|
}
|
|
|
|
if (fields & Accumulator::FIELD_ABS_MT_TOUCH_MINOR) {
|
|
outPointer.touchMinor = inSlot.absMTTouchMinor;
|
|
} else {
|
|
// Assume touch area is circular.
|
|
outPointer.touchMinor = outPointer.touchMajor;
|
|
}
|
|
|
|
if (fields & Accumulator::FIELD_ABS_MT_WIDTH_MAJOR) {
|
|
outPointer.toolMajor = inSlot.absMTWidthMajor;
|
|
} else {
|
|
// Default tool area to 0 if absent.
|
|
outPointer.toolMajor = 0;
|
|
}
|
|
|
|
if (fields & Accumulator::FIELD_ABS_MT_WIDTH_MINOR) {
|
|
outPointer.toolMinor = inSlot.absMTWidthMinor;
|
|
} else {
|
|
// Assume tool area is circular.
|
|
outPointer.toolMinor = outPointer.toolMajor;
|
|
}
|
|
|
|
if (fields & Accumulator::FIELD_ABS_MT_ORIENTATION) {
|
|
outPointer.orientation = inSlot.absMTOrientation;
|
|
} else {
|
|
// Default orientation to vertical if absent.
|
|
outPointer.orientation = 0;
|
|
}
|
|
|
|
if (fields & Accumulator::FIELD_ABS_MT_DISTANCE) {
|
|
outPointer.distance = inSlot.absMTDistance;
|
|
} else {
|
|
// Default distance is 0 (direct contact).
|
|
outPointer.distance = 0;
|
|
}
|
|
|
|
if (fields & Accumulator::FIELD_ABS_MT_TOOL_TYPE) {
|
|
outPointer.isStylus = (inSlot.absMTToolType == MT_TOOL_PEN);
|
|
} else {
|
|
// Assume this is not a stylus.
|
|
outPointer.isStylus = false;
|
|
}
|
|
|
|
// Assign pointer id using tracking id if available.
|
|
if (havePointerIds) {
|
|
int32_t id;
|
|
if (mUsingSlotsProtocol) {
|
|
id = inIndex;
|
|
} else if (fields & Accumulator::FIELD_ABS_MT_TRACKING_ID) {
|
|
id = inSlot.absMTTrackingId;
|
|
} else {
|
|
id = -1;
|
|
}
|
|
|
|
if (id >= 0 && id <= MAX_POINTER_ID) {
|
|
outPointer.id = id;
|
|
mCurrentTouch.idToIndex[id] = outCount;
|
|
mCurrentTouch.idBits.markBit(id);
|
|
} else {
|
|
if (id >= 0) {
|
|
#if DEBUG_POINTERS
|
|
LOGD("Pointers: Ignoring driver provided slot index or tracking id %d because "
|
|
"it is larger than the maximum supported pointer id %d",
|
|
id, MAX_POINTER_ID);
|
|
#endif
|
|
}
|
|
havePointerIds = false;
|
|
}
|
|
}
|
|
|
|
outCount += 1;
|
|
}
|
|
|
|
mCurrentTouch.pointerCount = outCount;
|
|
|
|
mButtonState = (mButtonState | mAccumulator.buttonDown) & ~mAccumulator.buttonUp;
|
|
mCurrentTouch.buttonState = mButtonState;
|
|
|
|
syncTouch(when, havePointerIds);
|
|
|
|
if (!mUsingSlotsProtocol) {
|
|
mAccumulator.clearSlots(mSlotCount);
|
|
}
|
|
mAccumulator.clearButtons();
|
|
}
|
|
|
|
void MultiTouchInputMapper::configureRawAxes() {
|
|
TouchInputMapper::configureRawAxes();
|
|
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_POSITION_X, &mRawAxes.x);
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_POSITION_Y, &mRawAxes.y);
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_TOUCH_MAJOR, &mRawAxes.touchMajor);
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_TOUCH_MINOR, &mRawAxes.touchMinor);
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_WIDTH_MAJOR, &mRawAxes.toolMajor);
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_WIDTH_MINOR, &mRawAxes.toolMinor);
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_ORIENTATION, &mRawAxes.orientation);
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_PRESSURE, &mRawAxes.pressure);
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_DISTANCE, &mRawAxes.distance);
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_TRACKING_ID, &mRawAxes.trackingId);
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_SLOT, &mRawAxes.slot);
|
|
|
|
if (mRawAxes.trackingId.valid
|
|
&& mRawAxes.slot.valid && mRawAxes.slot.minValue == 0 && mRawAxes.slot.maxValue > 0) {
|
|
mSlotCount = mRawAxes.slot.maxValue + 1;
|
|
if (mSlotCount > MAX_SLOTS) {
|
|
LOGW("MultiTouch Device %s reported %d slots but the framework "
|
|
"only supports a maximum of %d slots at this time.",
|
|
getDeviceName().string(), mSlotCount, MAX_SLOTS);
|
|
mSlotCount = MAX_SLOTS;
|
|
}
|
|
mUsingSlotsProtocol = true;
|
|
} else {
|
|
mSlotCount = MAX_POINTERS;
|
|
mUsingSlotsProtocol = false;
|
|
}
|
|
|
|
mAccumulator.allocateSlots(mSlotCount);
|
|
}
|
|
|
|
|
|
// --- JoystickInputMapper ---
|
|
|
|
JoystickInputMapper::JoystickInputMapper(InputDevice* device) :
|
|
InputMapper(device) {
|
|
}
|
|
|
|
JoystickInputMapper::~JoystickInputMapper() {
|
|
}
|
|
|
|
uint32_t JoystickInputMapper::getSources() {
|
|
return AINPUT_SOURCE_JOYSTICK;
|
|
}
|
|
|
|
void JoystickInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
|
|
InputMapper::populateDeviceInfo(info);
|
|
|
|
for (size_t i = 0; i < mAxes.size(); i++) {
|
|
const Axis& axis = mAxes.valueAt(i);
|
|
info->addMotionRange(axis.axisInfo.axis, AINPUT_SOURCE_JOYSTICK,
|
|
axis.min, axis.max, axis.flat, axis.fuzz);
|
|
if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
|
|
info->addMotionRange(axis.axisInfo.highAxis, AINPUT_SOURCE_JOYSTICK,
|
|
axis.min, axis.max, axis.flat, axis.fuzz);
|
|
}
|
|
}
|
|
}
|
|
|
|
void JoystickInputMapper::dump(String8& dump) {
|
|
dump.append(INDENT2 "Joystick Input Mapper:\n");
|
|
|
|
dump.append(INDENT3 "Axes:\n");
|
|
size_t numAxes = mAxes.size();
|
|
for (size_t i = 0; i < numAxes; i++) {
|
|
const Axis& axis = mAxes.valueAt(i);
|
|
const char* label = getAxisLabel(axis.axisInfo.axis);
|
|
if (label) {
|
|
dump.appendFormat(INDENT4 "%s", label);
|
|
} else {
|
|
dump.appendFormat(INDENT4 "%d", axis.axisInfo.axis);
|
|
}
|
|
if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
|
|
label = getAxisLabel(axis.axisInfo.highAxis);
|
|
if (label) {
|
|
dump.appendFormat(" / %s (split at %d)", label, axis.axisInfo.splitValue);
|
|
} else {
|
|
dump.appendFormat(" / %d (split at %d)", axis.axisInfo.highAxis,
|
|
axis.axisInfo.splitValue);
|
|
}
|
|
} else if (axis.axisInfo.mode == AxisInfo::MODE_INVERT) {
|
|
dump.append(" (invert)");
|
|
}
|
|
|
|
dump.appendFormat(": min=%0.5f, max=%0.5f, flat=%0.5f, fuzz=%0.5f\n",
|
|
axis.min, axis.max, axis.flat, axis.fuzz);
|
|
dump.appendFormat(INDENT4 " scale=%0.5f, offset=%0.5f, "
|
|
"highScale=%0.5f, highOffset=%0.5f\n",
|
|
axis.scale, axis.offset, axis.highScale, axis.highOffset);
|
|
dump.appendFormat(INDENT4 " rawAxis=%d, rawMin=%d, rawMax=%d, rawFlat=%d, rawFuzz=%d\n",
|
|
mAxes.keyAt(i), axis.rawAxisInfo.minValue, axis.rawAxisInfo.maxValue,
|
|
axis.rawAxisInfo.flat, axis.rawAxisInfo.fuzz);
|
|
}
|
|
}
|
|
|
|
void JoystickInputMapper::configure() {
|
|
InputMapper::configure();
|
|
|
|
// Collect all axes.
|
|
for (int32_t abs = 0; abs <= ABS_MAX; abs++) {
|
|
RawAbsoluteAxisInfo rawAxisInfo;
|
|
getEventHub()->getAbsoluteAxisInfo(getDeviceId(), abs, &rawAxisInfo);
|
|
if (rawAxisInfo.valid) {
|
|
// Map axis.
|
|
AxisInfo axisInfo;
|
|
bool explicitlyMapped = !getEventHub()->mapAxis(getDeviceId(), abs, &axisInfo);
|
|
if (!explicitlyMapped) {
|
|
// Axis is not explicitly mapped, will choose a generic axis later.
|
|
axisInfo.mode = AxisInfo::MODE_NORMAL;
|
|
axisInfo.axis = -1;
|
|
}
|
|
|
|
// Apply flat override.
|
|
int32_t rawFlat = axisInfo.flatOverride < 0
|
|
? rawAxisInfo.flat : axisInfo.flatOverride;
|
|
|
|
// Calculate scaling factors and limits.
|
|
Axis axis;
|
|
if (axisInfo.mode == AxisInfo::MODE_SPLIT) {
|
|
float scale = 1.0f / (axisInfo.splitValue - rawAxisInfo.minValue);
|
|
float highScale = 1.0f / (rawAxisInfo.maxValue - axisInfo.splitValue);
|
|
axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped,
|
|
scale, 0.0f, highScale, 0.0f,
|
|
0.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale);
|
|
} else if (isCenteredAxis(axisInfo.axis)) {
|
|
float scale = 2.0f / (rawAxisInfo.maxValue - rawAxisInfo.minValue);
|
|
float offset = avg(rawAxisInfo.minValue, rawAxisInfo.maxValue) * -scale;
|
|
axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped,
|
|
scale, offset, scale, offset,
|
|
-1.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale);
|
|
} else {
|
|
float scale = 1.0f / (rawAxisInfo.maxValue - rawAxisInfo.minValue);
|
|
axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped,
|
|
scale, 0.0f, scale, 0.0f,
|
|
0.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale);
|
|
}
|
|
|
|
// To eliminate noise while the joystick is at rest, filter out small variations
|
|
// in axis values up front.
|
|
axis.filter = axis.flat * 0.25f;
|
|
|
|
mAxes.add(abs, axis);
|
|
}
|
|
}
|
|
|
|
// If there are too many axes, start dropping them.
|
|
// Prefer to keep explicitly mapped axes.
|
|
if (mAxes.size() > PointerCoords::MAX_AXES) {
|
|
LOGI("Joystick '%s' has %d axes but the framework only supports a maximum of %d.",
|
|
getDeviceName().string(), mAxes.size(), PointerCoords::MAX_AXES);
|
|
pruneAxes(true);
|
|
pruneAxes(false);
|
|
}
|
|
|
|
// Assign generic axis ids to remaining axes.
|
|
int32_t nextGenericAxisId = AMOTION_EVENT_AXIS_GENERIC_1;
|
|
size_t numAxes = mAxes.size();
|
|
for (size_t i = 0; i < numAxes; i++) {
|
|
Axis& axis = mAxes.editValueAt(i);
|
|
if (axis.axisInfo.axis < 0) {
|
|
while (nextGenericAxisId <= AMOTION_EVENT_AXIS_GENERIC_16
|
|
&& haveAxis(nextGenericAxisId)) {
|
|
nextGenericAxisId += 1;
|
|
}
|
|
|
|
if (nextGenericAxisId <= AMOTION_EVENT_AXIS_GENERIC_16) {
|
|
axis.axisInfo.axis = nextGenericAxisId;
|
|
nextGenericAxisId += 1;
|
|
} else {
|
|
LOGI("Ignoring joystick '%s' axis %d because all of the generic axis ids "
|
|
"have already been assigned to other axes.",
|
|
getDeviceName().string(), mAxes.keyAt(i));
|
|
mAxes.removeItemsAt(i--);
|
|
numAxes -= 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool JoystickInputMapper::haveAxis(int32_t axisId) {
|
|
size_t numAxes = mAxes.size();
|
|
for (size_t i = 0; i < numAxes; i++) {
|
|
const Axis& axis = mAxes.valueAt(i);
|
|
if (axis.axisInfo.axis == axisId
|
|
|| (axis.axisInfo.mode == AxisInfo::MODE_SPLIT
|
|
&& axis.axisInfo.highAxis == axisId)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void JoystickInputMapper::pruneAxes(bool ignoreExplicitlyMappedAxes) {
|
|
size_t i = mAxes.size();
|
|
while (mAxes.size() > PointerCoords::MAX_AXES && i-- > 0) {
|
|
if (ignoreExplicitlyMappedAxes && mAxes.valueAt(i).explicitlyMapped) {
|
|
continue;
|
|
}
|
|
LOGI("Discarding joystick '%s' axis %d because there are too many axes.",
|
|
getDeviceName().string(), mAxes.keyAt(i));
|
|
mAxes.removeItemsAt(i);
|
|
}
|
|
}
|
|
|
|
bool JoystickInputMapper::isCenteredAxis(int32_t axis) {
|
|
switch (axis) {
|
|
case AMOTION_EVENT_AXIS_X:
|
|
case AMOTION_EVENT_AXIS_Y:
|
|
case AMOTION_EVENT_AXIS_Z:
|
|
case AMOTION_EVENT_AXIS_RX:
|
|
case AMOTION_EVENT_AXIS_RY:
|
|
case AMOTION_EVENT_AXIS_RZ:
|
|
case AMOTION_EVENT_AXIS_HAT_X:
|
|
case AMOTION_EVENT_AXIS_HAT_Y:
|
|
case AMOTION_EVENT_AXIS_ORIENTATION:
|
|
case AMOTION_EVENT_AXIS_RUDDER:
|
|
case AMOTION_EVENT_AXIS_WHEEL:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void JoystickInputMapper::reset() {
|
|
// Recenter all axes.
|
|
nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
|
|
|
|
size_t numAxes = mAxes.size();
|
|
for (size_t i = 0; i < numAxes; i++) {
|
|
Axis& axis = mAxes.editValueAt(i);
|
|
axis.resetValue();
|
|
}
|
|
|
|
sync(when, true /*force*/);
|
|
|
|
InputMapper::reset();
|
|
}
|
|
|
|
void JoystickInputMapper::process(const RawEvent* rawEvent) {
|
|
switch (rawEvent->type) {
|
|
case EV_ABS: {
|
|
ssize_t index = mAxes.indexOfKey(rawEvent->scanCode);
|
|
if (index >= 0) {
|
|
Axis& axis = mAxes.editValueAt(index);
|
|
float newValue, highNewValue;
|
|
switch (axis.axisInfo.mode) {
|
|
case AxisInfo::MODE_INVERT:
|
|
newValue = (axis.rawAxisInfo.maxValue - rawEvent->value)
|
|
* axis.scale + axis.offset;
|
|
highNewValue = 0.0f;
|
|
break;
|
|
case AxisInfo::MODE_SPLIT:
|
|
if (rawEvent->value < axis.axisInfo.splitValue) {
|
|
newValue = (axis.axisInfo.splitValue - rawEvent->value)
|
|
* axis.scale + axis.offset;
|
|
highNewValue = 0.0f;
|
|
} else if (rawEvent->value > axis.axisInfo.splitValue) {
|
|
newValue = 0.0f;
|
|
highNewValue = (rawEvent->value - axis.axisInfo.splitValue)
|
|
* axis.highScale + axis.highOffset;
|
|
} else {
|
|
newValue = 0.0f;
|
|
highNewValue = 0.0f;
|
|
}
|
|
break;
|
|
default:
|
|
newValue = rawEvent->value * axis.scale + axis.offset;
|
|
highNewValue = 0.0f;
|
|
break;
|
|
}
|
|
axis.newValue = newValue;
|
|
axis.highNewValue = highNewValue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case EV_SYN:
|
|
switch (rawEvent->scanCode) {
|
|
case SYN_REPORT:
|
|
sync(rawEvent->when, false /*force*/);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void JoystickInputMapper::sync(nsecs_t when, bool force) {
|
|
if (!filterAxes(force)) {
|
|
return;
|
|
}
|
|
|
|
int32_t metaState = mContext->getGlobalMetaState();
|
|
int32_t buttonState = 0;
|
|
|
|
PointerProperties pointerProperties;
|
|
pointerProperties.clear();
|
|
pointerProperties.id = 0;
|
|
pointerProperties.toolType = AMOTION_EVENT_TOOL_TYPE_UNKNOWN;
|
|
|
|
PointerCoords pointerCoords;
|
|
pointerCoords.clear();
|
|
|
|
size_t numAxes = mAxes.size();
|
|
for (size_t i = 0; i < numAxes; i++) {
|
|
const Axis& axis = mAxes.valueAt(i);
|
|
pointerCoords.setAxisValue(axis.axisInfo.axis, axis.currentValue);
|
|
if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
|
|
pointerCoords.setAxisValue(axis.axisInfo.highAxis, axis.highCurrentValue);
|
|
}
|
|
}
|
|
|
|
// Moving a joystick axis should not wake the devide because joysticks can
|
|
// be fairly noisy even when not in use. On the other hand, pushing a gamepad
|
|
// button will likely wake the device.
|
|
// TODO: Use the input device configuration to control this behavior more finely.
|
|
uint32_t policyFlags = 0;
|
|
|
|
getDispatcher()->notifyMotion(when, getDeviceId(), AINPUT_SOURCE_JOYSTICK, policyFlags,
|
|
AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE,
|
|
1, &pointerProperties, &pointerCoords, 0, 0, 0);
|
|
}
|
|
|
|
bool JoystickInputMapper::filterAxes(bool force) {
|
|
bool atLeastOneSignificantChange = force;
|
|
size_t numAxes = mAxes.size();
|
|
for (size_t i = 0; i < numAxes; i++) {
|
|
Axis& axis = mAxes.editValueAt(i);
|
|
if (force || hasValueChangedSignificantly(axis.filter,
|
|
axis.newValue, axis.currentValue, axis.min, axis.max)) {
|
|
axis.currentValue = axis.newValue;
|
|
atLeastOneSignificantChange = true;
|
|
}
|
|
if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
|
|
if (force || hasValueChangedSignificantly(axis.filter,
|
|
axis.highNewValue, axis.highCurrentValue, axis.min, axis.max)) {
|
|
axis.highCurrentValue = axis.highNewValue;
|
|
atLeastOneSignificantChange = true;
|
|
}
|
|
}
|
|
}
|
|
return atLeastOneSignificantChange;
|
|
}
|
|
|
|
bool JoystickInputMapper::hasValueChangedSignificantly(
|
|
float filter, float newValue, float currentValue, float min, float max) {
|
|
if (newValue != currentValue) {
|
|
// Filter out small changes in value unless the value is converging on the axis
|
|
// bounds or center point. This is intended to reduce the amount of information
|
|
// sent to applications by particularly noisy joysticks (such as PS3).
|
|
if (fabs(newValue - currentValue) > filter
|
|
|| hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, min)
|
|
|| hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, max)
|
|
|| hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, 0)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool JoystickInputMapper::hasMovedNearerToValueWithinFilteredRange(
|
|
float filter, float newValue, float currentValue, float thresholdValue) {
|
|
float newDistance = fabs(newValue - thresholdValue);
|
|
if (newDistance < filter) {
|
|
float oldDistance = fabs(currentValue - thresholdValue);
|
|
if (newDistance < oldDistance) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
} // namespace android
|