This change also fixes an issue with RGBA16F bitmaps when modulated with a color (for instance by setting an alpha on the Paint object). The color space conversion is currently done entirely in the shader, by doing these operations in order: 1. Sample the texture 2. Un-premultiply alpha 3. Apply the EOTF 4. Multiply by the 3x3 color space matrix 5. Apply the OETF 6. Premultiply alpha Optimizations: - Steps 2 & 6 are skipped for opaque (common) bitmaps - Step 3 is skipped when the color space's EOTF is close to sRGB (Display P3 for instance). Instead, we use a hardware sRGB fetch (when the GPU supports it) - When step 3 is necessary, we use one of four standard EOTF implementations, to save cycles when possible: + Linear (doesn't do anything) + Full parametric (ICC parametric curve type 4 as defined in ICC.1:2004-10, section 10.15) + Limited parametric (ICC parametric curve type 3) + Gamma (ICC parametric curve type 0) Color space conversion could be done using texture samplers instead, for instance 3D LUTs, with or without transfer functions baked in, or 1D LUTs for transfer functions. This would result in dependent texture fetches which may or may not be an advantage over an ALU based implementation. The current solution favor the use of ALUs to save precious bandwidth. Test: CtsUiRenderingTests, CtsGraphicsTests Bug: 32984164 Change-Id: I10bc3db515e13973b45220f129c66b23f0f7f8fe
393 lines
14 KiB
C++
393 lines
14 KiB
C++
/*
|
|
* Copyright (C) 2013 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "Caches.h"
|
|
#include "Texture.h"
|
|
#include "utils/GLUtils.h"
|
|
#include "utils/MathUtils.h"
|
|
#include "utils/TraceUtils.h"
|
|
|
|
#include <utils/Log.h>
|
|
|
|
#include <math/mat4.h>
|
|
|
|
#include <SkCanvas.h>
|
|
|
|
namespace android {
|
|
namespace uirenderer {
|
|
|
|
// Number of bytes used by a texture in the given format
|
|
static int bytesPerPixel(GLint glFormat) {
|
|
switch (glFormat) {
|
|
// The wrapped-texture case, usually means a SurfaceTexture
|
|
case 0:
|
|
return 0;
|
|
case GL_LUMINANCE:
|
|
case GL_ALPHA:
|
|
return 1;
|
|
case GL_SRGB8:
|
|
case GL_RGB:
|
|
return 3;
|
|
case GL_SRGB8_ALPHA8:
|
|
case GL_RGBA:
|
|
return 4;
|
|
case GL_RGBA16F:
|
|
return 8;
|
|
default:
|
|
LOG_ALWAYS_FATAL("UNKNOWN FORMAT 0x%x", glFormat);
|
|
}
|
|
}
|
|
|
|
void Texture::setWrapST(GLenum wrapS, GLenum wrapT, bool bindTexture, bool force) {
|
|
if (force || wrapS != mWrapS || wrapT != mWrapT) {
|
|
mWrapS = wrapS;
|
|
mWrapT = wrapT;
|
|
|
|
if (bindTexture) {
|
|
mCaches.textureState().bindTexture(mTarget, mId);
|
|
}
|
|
|
|
glTexParameteri(mTarget, GL_TEXTURE_WRAP_S, wrapS);
|
|
glTexParameteri(mTarget, GL_TEXTURE_WRAP_T, wrapT);
|
|
}
|
|
}
|
|
|
|
void Texture::setFilterMinMag(GLenum min, GLenum mag, bool bindTexture, bool force) {
|
|
if (force || min != mMinFilter || mag != mMagFilter) {
|
|
mMinFilter = min;
|
|
mMagFilter = mag;
|
|
|
|
if (bindTexture) {
|
|
mCaches.textureState().bindTexture(mTarget, mId);
|
|
}
|
|
|
|
if (mipMap && min == GL_LINEAR) min = GL_LINEAR_MIPMAP_LINEAR;
|
|
|
|
glTexParameteri(mTarget, GL_TEXTURE_MIN_FILTER, min);
|
|
glTexParameteri(mTarget, GL_TEXTURE_MAG_FILTER, mag);
|
|
}
|
|
}
|
|
|
|
void Texture::deleteTexture() {
|
|
mCaches.textureState().deleteTexture(mId);
|
|
mId = 0;
|
|
mTarget = GL_NONE;
|
|
if (mEglImageHandle != EGL_NO_IMAGE_KHR) {
|
|
EGLDisplay eglDisplayHandle = eglGetCurrentDisplay();
|
|
eglDestroyImageKHR(eglDisplayHandle, mEglImageHandle);
|
|
mEglImageHandle = EGL_NO_IMAGE_KHR;
|
|
}
|
|
}
|
|
|
|
bool Texture::updateLayout(uint32_t width, uint32_t height, GLint internalFormat,
|
|
GLint format, GLenum target) {
|
|
if (mWidth == width
|
|
&& mHeight == height
|
|
&& mFormat == format
|
|
&& mInternalFormat == internalFormat
|
|
&& mTarget == target) {
|
|
return false;
|
|
}
|
|
mWidth = width;
|
|
mHeight = height;
|
|
mFormat = format;
|
|
mInternalFormat = internalFormat;
|
|
mTarget = target;
|
|
notifySizeChanged(mWidth * mHeight * bytesPerPixel(internalFormat));
|
|
return true;
|
|
}
|
|
|
|
void Texture::resetCachedParams() {
|
|
mWrapS = GL_REPEAT;
|
|
mWrapT = GL_REPEAT;
|
|
mMinFilter = GL_NEAREST_MIPMAP_LINEAR;
|
|
mMagFilter = GL_LINEAR;
|
|
}
|
|
|
|
void Texture::upload(GLint internalFormat, uint32_t width, uint32_t height,
|
|
GLenum format, GLenum type, const void* pixels) {
|
|
GL_CHECKPOINT(MODERATE);
|
|
bool needsAlloc = updateLayout(width, height, internalFormat, format, GL_TEXTURE_2D);
|
|
if (!mId) {
|
|
glGenTextures(1, &mId);
|
|
needsAlloc = true;
|
|
resetCachedParams();
|
|
}
|
|
mCaches.textureState().bindTexture(GL_TEXTURE_2D, mId);
|
|
if (needsAlloc) {
|
|
glTexImage2D(GL_TEXTURE_2D, 0, internalFormat, mWidth, mHeight, 0,
|
|
format, type, pixels);
|
|
} else if (pixels) {
|
|
glTexSubImage2D(GL_TEXTURE_2D, 0, internalFormat, mWidth, mHeight, 0,
|
|
format, type, pixels);
|
|
}
|
|
GL_CHECKPOINT(MODERATE);
|
|
}
|
|
|
|
void Texture::uploadHardwareBitmapToTexture(GraphicBuffer* buffer) {
|
|
EGLDisplay eglDisplayHandle = eglGetCurrentDisplay();
|
|
if (mEglImageHandle != EGL_NO_IMAGE_KHR) {
|
|
eglDestroyImageKHR(eglDisplayHandle, mEglImageHandle);
|
|
mEglImageHandle = EGL_NO_IMAGE_KHR;
|
|
}
|
|
mEglImageHandle = eglCreateImageKHR(eglDisplayHandle, EGL_NO_CONTEXT, EGL_NATIVE_BUFFER_ANDROID,
|
|
buffer->getNativeBuffer(), 0);
|
|
glEGLImageTargetTexture2DOES(GL_TEXTURE_EXTERNAL_OES, mEglImageHandle);
|
|
}
|
|
|
|
static void uploadToTexture(bool resize, GLint internalFormat, GLenum format, GLenum type,
|
|
GLsizei stride, GLsizei bpp, GLsizei width, GLsizei height, const GLvoid * data) {
|
|
|
|
const bool useStride = stride != width
|
|
&& Caches::getInstance().extensions().hasUnpackRowLength();
|
|
if ((stride == width) || useStride) {
|
|
if (useStride) {
|
|
glPixelStorei(GL_UNPACK_ROW_LENGTH, stride);
|
|
}
|
|
|
|
if (resize) {
|
|
glTexImage2D(GL_TEXTURE_2D, 0, internalFormat, width, height, 0, format, type, data);
|
|
} else {
|
|
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, format, type, data);
|
|
}
|
|
|
|
if (useStride) {
|
|
glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
|
|
}
|
|
} else {
|
|
// With OpenGL ES 2.0 we need to copy the bitmap in a temporary buffer
|
|
// if the stride doesn't match the width
|
|
|
|
GLvoid * temp = (GLvoid *) malloc(width * height * bpp);
|
|
if (!temp) return;
|
|
|
|
uint8_t * pDst = (uint8_t *)temp;
|
|
uint8_t * pSrc = (uint8_t *)data;
|
|
for (GLsizei i = 0; i < height; i++) {
|
|
memcpy(pDst, pSrc, width * bpp);
|
|
pDst += width * bpp;
|
|
pSrc += stride * bpp;
|
|
}
|
|
|
|
if (resize) {
|
|
glTexImage2D(GL_TEXTURE_2D, 0, internalFormat, width, height, 0, format, type, temp);
|
|
} else {
|
|
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, format, type, temp);
|
|
}
|
|
|
|
free(temp);
|
|
}
|
|
}
|
|
|
|
void Texture::colorTypeToGlFormatAndType(const Caches& caches, SkColorType colorType,
|
|
bool needSRGB, GLint* outInternalFormat, GLint* outFormat, GLint* outType) {
|
|
switch (colorType) {
|
|
case kAlpha_8_SkColorType:
|
|
*outFormat = GL_ALPHA;
|
|
*outInternalFormat = GL_ALPHA;
|
|
*outType = GL_UNSIGNED_BYTE;
|
|
break;
|
|
case kRGB_565_SkColorType:
|
|
if (needSRGB) {
|
|
// We would ideally use a GL_RGB/GL_SRGB8 texture but the
|
|
// intermediate Skia bitmap needs to be ARGB_8888
|
|
*outFormat = GL_RGBA;
|
|
*outInternalFormat = caches.rgbaInternalFormat();
|
|
*outType = GL_UNSIGNED_BYTE;
|
|
} else {
|
|
*outFormat = GL_RGB;
|
|
*outInternalFormat = GL_RGB;
|
|
*outType = GL_UNSIGNED_SHORT_5_6_5;
|
|
}
|
|
break;
|
|
// ARGB_4444 and Index_8 are both upconverted to RGBA_8888
|
|
case kARGB_4444_SkColorType:
|
|
case kIndex_8_SkColorType:
|
|
case kN32_SkColorType:
|
|
*outFormat = GL_RGBA;
|
|
*outInternalFormat = caches.rgbaInternalFormat(needSRGB);
|
|
*outType = GL_UNSIGNED_BYTE;
|
|
break;
|
|
case kGray_8_SkColorType:
|
|
*outFormat = GL_LUMINANCE;
|
|
*outInternalFormat = GL_LUMINANCE;
|
|
*outType = GL_UNSIGNED_BYTE;
|
|
break;
|
|
case kRGBA_F16_SkColorType:
|
|
// This format is always linear
|
|
*outFormat = GL_RGBA;
|
|
*outInternalFormat = GL_RGBA16F;
|
|
*outType = GL_HALF_FLOAT;
|
|
break;
|
|
default:
|
|
LOG_ALWAYS_FATAL("Unsupported bitmap colorType: %d", colorType);
|
|
break;
|
|
}
|
|
}
|
|
|
|
SkBitmap Texture::uploadToN32(const SkBitmap& bitmap, bool hasLinearBlending,
|
|
sk_sp<SkColorSpace> sRGB) {
|
|
SkBitmap rgbaBitmap;
|
|
rgbaBitmap.allocPixels(SkImageInfo::MakeN32(bitmap.width(), bitmap.height(),
|
|
bitmap.info().alphaType(), hasLinearBlending ? sRGB : nullptr));
|
|
rgbaBitmap.eraseColor(0);
|
|
SkCanvas canvas(rgbaBitmap);
|
|
canvas.drawBitmap(bitmap, 0.0f, 0.0f, nullptr);
|
|
return rgbaBitmap;
|
|
}
|
|
|
|
bool Texture::hasUnsupportedColorType(const SkImageInfo& info, bool hasLinearBlending) {
|
|
return info.colorType() == kARGB_4444_SkColorType
|
|
|| info.colorType() == kIndex_8_SkColorType
|
|
|| (info.colorType() == kRGB_565_SkColorType
|
|
&& hasLinearBlending
|
|
&& info.colorSpace()->isSRGB());
|
|
}
|
|
|
|
void Texture::upload(Bitmap& bitmap) {
|
|
if (!bitmap.readyToDraw()) {
|
|
ALOGE("Cannot generate texture from bitmap");
|
|
return;
|
|
}
|
|
|
|
ATRACE_FORMAT("Upload %ux%u Texture", bitmap.width(), bitmap.height());
|
|
|
|
// We could also enable mipmapping if both bitmap dimensions are powers
|
|
// of 2 but we'd have to deal with size changes. Let's keep this simple
|
|
const bool canMipMap = mCaches.extensions().hasNPot();
|
|
|
|
// If the texture had mipmap enabled but not anymore,
|
|
// force a glTexImage2D to discard the mipmap levels
|
|
bool needsAlloc = canMipMap && mipMap && !bitmap.hasHardwareMipMap();
|
|
bool setDefaultParams = false;
|
|
|
|
if (!mId) {
|
|
glGenTextures(1, &mId);
|
|
needsAlloc = true;
|
|
setDefaultParams = true;
|
|
}
|
|
|
|
bool hasLinearBlending = mCaches.extensions().hasLinearBlending();
|
|
bool needSRGB = transferFunctionCloseToSRGB(bitmap.info().colorSpace());
|
|
|
|
GLint internalFormat, format, type;
|
|
colorTypeToGlFormatAndType(mCaches, bitmap.colorType(),
|
|
needSRGB && hasLinearBlending, &internalFormat, &format, &type);
|
|
|
|
mConnector.reset();
|
|
|
|
// RGBA16F is always extended sRGB, alpha masks don't have color profiles
|
|
if (internalFormat != GL_RGBA16F && internalFormat != GL_ALPHA) {
|
|
SkColorSpace* colorSpace = bitmap.info().colorSpace();
|
|
// If the bitmap is sRGB we don't need conversion
|
|
if (colorSpace != nullptr && !colorSpace->isSRGB()) {
|
|
SkMatrix44 xyzMatrix(SkMatrix44::kUninitialized_Constructor);
|
|
if (!colorSpace->toXYZD50(&xyzMatrix)) {
|
|
ALOGW("Incompatible color space!");
|
|
} else {
|
|
SkColorSpaceTransferFn fn;
|
|
if (!colorSpace->isNumericalTransferFn(&fn)) {
|
|
ALOGW("Incompatible color space, no numerical transfer function!");
|
|
} else {
|
|
float data[16];
|
|
xyzMatrix.asColMajorf(data);
|
|
|
|
ColorSpace::TransferParameters p =
|
|
{fn.fG, fn.fA, fn.fB, fn.fC, fn.fD, fn.fE, fn.fF};
|
|
ColorSpace src("Unnamed", mat4f((const float*) &data[0]).upperLeft(), p);
|
|
mConnector.reset(new ColorSpaceConnector(src, ColorSpace::sRGB()));
|
|
|
|
// A non-sRGB color space might have a transfer function close enough to sRGB
|
|
// that we can save shader instructions by using an sRGB sampler
|
|
// This is only possible if we have hardware support for sRGB textures
|
|
if (needSRGB && internalFormat == GL_RGBA
|
|
&& mCaches.extensions().hasSRGB() && !bitmap.isHardware()) {
|
|
internalFormat = GL_SRGB8_ALPHA8;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
GLenum target = bitmap.isHardware() ? GL_TEXTURE_EXTERNAL_OES : GL_TEXTURE_2D;
|
|
needsAlloc |= updateLayout(bitmap.width(), bitmap.height(), internalFormat, format, target);
|
|
|
|
blend = !bitmap.isOpaque();
|
|
mCaches.textureState().bindTexture(mTarget, mId);
|
|
|
|
// TODO: Handle sRGB gray bitmaps
|
|
if (CC_UNLIKELY(hasUnsupportedColorType(bitmap.info(), hasLinearBlending))) {
|
|
SkBitmap skBitmap;
|
|
bitmap.getSkBitmap(&skBitmap);
|
|
sk_sp<SkColorSpace> sRGB = SkColorSpace::MakeSRGB();
|
|
SkBitmap rgbaBitmap = uploadToN32(skBitmap, hasLinearBlending, std::move(sRGB));
|
|
uploadToTexture(needsAlloc, internalFormat, format, type, rgbaBitmap.rowBytesAsPixels(),
|
|
rgbaBitmap.bytesPerPixel(), rgbaBitmap.width(),
|
|
rgbaBitmap.height(), rgbaBitmap.getPixels());
|
|
} else if (bitmap.isHardware()) {
|
|
uploadHardwareBitmapToTexture(bitmap.graphicBuffer());
|
|
} else {
|
|
uploadToTexture(needsAlloc, internalFormat, format, type, bitmap.rowBytesAsPixels(),
|
|
bitmap.info().bytesPerPixel(), bitmap.width(), bitmap.height(), bitmap.pixels());
|
|
}
|
|
|
|
if (canMipMap) {
|
|
mipMap = bitmap.hasHardwareMipMap();
|
|
if (mipMap) {
|
|
glGenerateMipmap(GL_TEXTURE_2D);
|
|
}
|
|
}
|
|
|
|
if (setDefaultParams) {
|
|
setFilter(GL_NEAREST);
|
|
setWrap(GL_CLAMP_TO_EDGE);
|
|
}
|
|
}
|
|
|
|
void Texture::wrap(GLuint id, uint32_t width, uint32_t height,
|
|
GLint internalFormat, GLint format, GLenum target) {
|
|
mId = id;
|
|
mWidth = width;
|
|
mHeight = height;
|
|
mFormat = format;
|
|
mInternalFormat = internalFormat;
|
|
mTarget = target;
|
|
mConnector.reset();
|
|
// We're wrapping an existing texture, so don't double count this memory
|
|
notifySizeChanged(0);
|
|
}
|
|
|
|
TransferFunctionType Texture::getTransferFunctionType() const {
|
|
if (mConnector.get() != nullptr && mInternalFormat != GL_SRGB8_ALPHA8) {
|
|
const ColorSpace::TransferParameters& p = mConnector->getSource().getTransferParameters();
|
|
if (MathUtils::isZero(p.e) && MathUtils::isZero(p.f)) {
|
|
if (MathUtils::areEqual(p.a, 1.0f) && MathUtils::isZero(p.b)
|
|
&& MathUtils::isZero(p.c) && MathUtils::isZero(p.d)) {
|
|
if (MathUtils::areEqual(p.g, 1.0f)) {
|
|
return TransferFunctionType::None;
|
|
}
|
|
return TransferFunctionType::Gamma;
|
|
}
|
|
return TransferFunctionType::Limited;
|
|
}
|
|
return TransferFunctionType::Full;
|
|
}
|
|
return TransferFunctionType::None;
|
|
}
|
|
|
|
}; // namespace uirenderer
|
|
}; // namespace android
|