Neil Fuller 490d480a95 Switch "UTC time" to "Unix epoch time" (Location)
This is more correct. Android devices, even under ideal conditions,
don't track UTC (which contains leap seconds and uses the SI definition
of a second) but use a clock based on Unix epoch time (no leap seconds,
but clocks may skip/stop or smear around leap seconds to ensure a fixed
number of second increments per calendar day when leap seconds are
applied to UTC).

Bug: 218802673
Test: Compile only
Change-Id: If87023af06ba9933f96029e52df9cb3841bca0cb
2022-02-11 11:29:05 +00:00

811 lines
27 KiB
Java

/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License
*/
package android.location;
import android.annotation.FloatRange;
import android.annotation.NonNull;
import android.annotation.TestApi;
import android.os.Parcel;
import android.os.Parcelable;
/**
* A class containing a GNSS clock timestamp.
*
* <p>It represents a measurement of the GNSS receiver's clock.
*/
public final class GnssClock implements Parcelable {
// The following enumerations must be in sync with the values declared in gps.h
private static final int HAS_NO_FLAGS = 0;
private static final int HAS_LEAP_SECOND = (1<<0);
private static final int HAS_TIME_UNCERTAINTY = (1<<1);
private static final int HAS_FULL_BIAS = (1<<2);
private static final int HAS_BIAS = (1<<3);
private static final int HAS_BIAS_UNCERTAINTY = (1<<4);
private static final int HAS_DRIFT = (1<<5);
private static final int HAS_DRIFT_UNCERTAINTY = (1<<6);
private static final int HAS_ELAPSED_REALTIME_NANOS = (1 << 7);
private static final int HAS_ELAPSED_REALTIME_UNCERTAINTY_NANOS = (1 << 8);
private static final int HAS_REFERENCE_CONSTELLATION_TYPE_FOR_ISB = (1 << 9);
private static final int HAS_REFERENCE_CARRIER_FREQUENCY_FOR_ISB = (1 << 10);
private static final int HAS_REFERENCE_CODE_TYPE_FOR_ISB = (1 << 11);
// End enumerations in sync with gps.h
private int mFlags;
private int mLeapSecond;
private long mTimeNanos;
private double mTimeUncertaintyNanos;
private long mFullBiasNanos;
private double mBiasNanos;
private double mBiasUncertaintyNanos;
private double mDriftNanosPerSecond;
private double mDriftUncertaintyNanosPerSecond;
private int mHardwareClockDiscontinuityCount;
private long mElapsedRealtimeNanos;
private double mElapsedRealtimeUncertaintyNanos;
private int mReferenceConstellationTypeForIsb;
private double mReferenceCarrierFrequencyHzForIsb;
private String mReferenceCodeTypeForIsb;
/**
* @hide
*/
@TestApi
public GnssClock() {
initialize();
}
/**
* Sets all contents to the values stored in the provided object.
* @hide
*/
@TestApi
public void set(GnssClock clock) {
mFlags = clock.mFlags;
mLeapSecond = clock.mLeapSecond;
mTimeNanos = clock.mTimeNanos;
mTimeUncertaintyNanos = clock.mTimeUncertaintyNanos;
mFullBiasNanos = clock.mFullBiasNanos;
mBiasNanos = clock.mBiasNanos;
mBiasUncertaintyNanos = clock.mBiasUncertaintyNanos;
mDriftNanosPerSecond = clock.mDriftNanosPerSecond;
mDriftUncertaintyNanosPerSecond = clock.mDriftUncertaintyNanosPerSecond;
mHardwareClockDiscontinuityCount = clock.mHardwareClockDiscontinuityCount;
mElapsedRealtimeNanos = clock.mElapsedRealtimeNanos;
mElapsedRealtimeUncertaintyNanos = clock.mElapsedRealtimeUncertaintyNanos;
mReferenceConstellationTypeForIsb = clock.mReferenceConstellationTypeForIsb;
mReferenceCarrierFrequencyHzForIsb = clock.mReferenceCarrierFrequencyHzForIsb;
mReferenceCodeTypeForIsb = clock.mReferenceCodeTypeForIsb;
}
/**
* Resets all the contents to its original state.
* @hide
*/
@TestApi
public void reset() {
initialize();
}
/**
* Returns {@code true} if {@link #getLeapSecond()} is available, {@code false} otherwise.
*/
public boolean hasLeapSecond() {
return isFlagSet(HAS_LEAP_SECOND);
}
/**
* Gets the leap second associated with the clock's time.
*
* <p>The sign of the value is defined by the following equation:
* <pre>
* UtcTimeNanos = TimeNanos - (FullBiasNanos + BiasNanos) - LeapSecond * 1,000,000,000</pre>
*
* <p>The value is only available if {@link #hasLeapSecond()} is {@code true}.
*/
public int getLeapSecond() {
return mLeapSecond;
}
/**
* Sets the leap second associated with the clock's time.
* @hide
*/
@TestApi
public void setLeapSecond(int leapSecond) {
setFlag(HAS_LEAP_SECOND);
mLeapSecond = leapSecond;
}
/**
* Resets the leap second associated with the clock's time.
* @hide
*/
@TestApi
public void resetLeapSecond() {
resetFlag(HAS_LEAP_SECOND);
mLeapSecond = Integer.MIN_VALUE;
}
/**
* Gets the GNSS receiver internal hardware clock value in nanoseconds.
*
* <p>This value is expected to be monotonically increasing while the hardware clock remains
* powered on. For the case of a hardware clock that is not continuously on, see the
* {@link #getHardwareClockDiscontinuityCount} field. The GPS time can be derived by subtracting
* the sum of {@link #getFullBiasNanos()} and {@link #getBiasNanos()} (when they are available)
* from this value. Sub-nanosecond accuracy can be provided by means of {@link #getBiasNanos()}.
*
* <p>The error estimate for this value (if applicable) is {@link #getTimeUncertaintyNanos()}.
*/
public long getTimeNanos() {
return mTimeNanos;
}
/**
* Sets the GNSS receiver internal clock in nanoseconds.
* @hide
*/
@TestApi
public void setTimeNanos(long timeNanos) {
mTimeNanos = timeNanos;
}
/**
* Returns {@code true} if {@link #getTimeUncertaintyNanos()} is available, {@code false}
* otherwise.
*/
public boolean hasTimeUncertaintyNanos() {
return isFlagSet(HAS_TIME_UNCERTAINTY);
}
/**
* Gets the clock's time Uncertainty (1-Sigma) in nanoseconds.
*
* <p>The uncertainty is represented as an absolute (single sided) value.
*
* <p>The value is only available if {@link #hasTimeUncertaintyNanos()} is {@code true}.
*
* <p>This value is often effectively zero (it is the reference clock by which all other times
* and time uncertainties are measured), and thus this field may often be 0, or not provided.
*/
@FloatRange(from = 0.0f)
public double getTimeUncertaintyNanos() {
return mTimeUncertaintyNanos;
}
/**
* Sets the clock's Time Uncertainty (1-Sigma) in nanoseconds.
* @hide
*/
@TestApi
public void setTimeUncertaintyNanos(@FloatRange(from = 0.0f) double timeUncertaintyNanos) {
setFlag(HAS_TIME_UNCERTAINTY);
mTimeUncertaintyNanos = timeUncertaintyNanos;
}
/**
* Resets the clock's Time Uncertainty (1-Sigma) in nanoseconds.
* @hide
*/
@TestApi
public void resetTimeUncertaintyNanos() {
resetFlag(HAS_TIME_UNCERTAINTY);
}
/**
* Returns {@code true} if {@link #getFullBiasNanos()} is available, {@code false} otherwise.
*/
public boolean hasFullBiasNanos() {
return isFlagSet(HAS_FULL_BIAS);
}
/**
* Gets the difference between hardware clock ({@link #getTimeNanos()}) inside GPS receiver and
* the true GPS time since 0000Z, January 6, 1980, in nanoseconds.
*
* <p>This value is available if the receiver has estimated GPS time. If the computed time is
* for a non-GPS constellation, the time offset of that constellation to GPS has to be applied
* to fill this value. The value is only available if {@link #hasFullBiasNanos()} is
* {@code true}.
*
* <p>The error estimate for the sum of this field and {@link #getBiasNanos} is
* {@link #getBiasUncertaintyNanos()}.
*
* <p>The sign of the value is defined by the following equation:
*
* <pre>
* local estimate of GPS time = TimeNanos - (FullBiasNanos + BiasNanos)</pre>
*/
public long getFullBiasNanos() {
return mFullBiasNanos;
}
/**
* Sets the full bias in nanoseconds.
* @hide
*/
@TestApi
public void setFullBiasNanos(long value) {
setFlag(HAS_FULL_BIAS);
mFullBiasNanos = value;
}
/**
* Resets the full bias in nanoseconds.
* @hide
*/
@TestApi
public void resetFullBiasNanos() {
resetFlag(HAS_FULL_BIAS);
mFullBiasNanos = Long.MIN_VALUE;
}
/**
* Returns {@code true} if {@link #getBiasNanos()} is available, {@code false} otherwise.
*/
public boolean hasBiasNanos() {
return isFlagSet(HAS_BIAS);
}
/**
* Gets the clock's sub-nanosecond bias.
*
* <p>See the description of how this field is part of converting from hardware clock time, to
* GPS time, in {@link #getFullBiasNanos()}.
*
* <p>The error estimate for the sum of this field and {@link #getFullBiasNanos} is
* {@link #getBiasUncertaintyNanos()}.
*
* <p>The value is only available if {@link #hasBiasNanos()} is {@code true}.
*/
public double getBiasNanos() {
return mBiasNanos;
}
/**
* Sets the sub-nanosecond bias.
* @hide
*/
@TestApi
public void setBiasNanos(double biasNanos) {
setFlag(HAS_BIAS);
mBiasNanos = biasNanos;
}
/**
* Resets the clock's Bias in nanoseconds.
* @hide
*/
@TestApi
public void resetBiasNanos() {
resetFlag(HAS_BIAS);
}
/**
* Returns {@code true} if {@link #getBiasUncertaintyNanos()} is available, {@code false}
* otherwise.
*/
public boolean hasBiasUncertaintyNanos() {
return isFlagSet(HAS_BIAS_UNCERTAINTY);
}
/**
* Gets the clock's Bias Uncertainty (1-Sigma) in nanoseconds.
*
* <p>See the description of how this field provides the error estimate in the conversion from
* hardware clock time, to GPS time, in {@link #getFullBiasNanos()}.
*
* <p>The value is only available if {@link #hasBiasUncertaintyNanos()} is {@code true}.
*/
@FloatRange(from = 0.0f)
public double getBiasUncertaintyNanos() {
return mBiasUncertaintyNanos;
}
/**
* Sets the clock's Bias Uncertainty (1-Sigma) in nanoseconds.
* @hide
*/
@TestApi
public void setBiasUncertaintyNanos(@FloatRange(from = 0.0f) double biasUncertaintyNanos) {
setFlag(HAS_BIAS_UNCERTAINTY);
mBiasUncertaintyNanos = biasUncertaintyNanos;
}
/**
* Resets the clock's Bias Uncertainty (1-Sigma) in nanoseconds.
* @hide
*/
@TestApi
public void resetBiasUncertaintyNanos() {
resetFlag(HAS_BIAS_UNCERTAINTY);
}
/**
* Returns {@code true} if {@link #getDriftNanosPerSecond()} is available, {@code false}
* otherwise.
*/
public boolean hasDriftNanosPerSecond() {
return isFlagSet(HAS_DRIFT);
}
/**
* Gets the clock's Drift in nanoseconds per second.
*
* <p>This value is the instantaneous time-derivative of the value provided by
* {@link #getBiasNanos()}.
*
* <p>A positive value indicates that the frequency is higher than the nominal (e.g. GPS master
* clock) frequency. The error estimate for this reported drift is
* {@link #getDriftUncertaintyNanosPerSecond()}.
*
* <p>The value is only available if {@link #hasDriftNanosPerSecond()} is {@code true}.
*/
public double getDriftNanosPerSecond() {
return mDriftNanosPerSecond;
}
/**
* Sets the clock's Drift in nanoseconds per second.
* @hide
*/
@TestApi
public void setDriftNanosPerSecond(double driftNanosPerSecond) {
setFlag(HAS_DRIFT);
mDriftNanosPerSecond = driftNanosPerSecond;
}
/**
* Resets the clock's Drift in nanoseconds per second.
* @hide
*/
@TestApi
public void resetDriftNanosPerSecond() {
resetFlag(HAS_DRIFT);
}
/**
* Returns {@code true} if {@link #getDriftUncertaintyNanosPerSecond()} is available,
* {@code false} otherwise.
*/
public boolean hasDriftUncertaintyNanosPerSecond() {
return isFlagSet(HAS_DRIFT_UNCERTAINTY);
}
/**
* Gets the clock's Drift Uncertainty (1-Sigma) in nanoseconds per second.
*
* <p>The value is only available if {@link #hasDriftUncertaintyNanosPerSecond()} is
* {@code true}.
*/
@FloatRange(from = 0.0f)
public double getDriftUncertaintyNanosPerSecond() {
return mDriftUncertaintyNanosPerSecond;
}
/**
* Sets the clock's Drift Uncertainty (1-Sigma) in nanoseconds per second.
* @hide
*/
@TestApi
public void setDriftUncertaintyNanosPerSecond(
@FloatRange(from = 0.0f) double driftUncertaintyNanosPerSecond) {
setFlag(HAS_DRIFT_UNCERTAINTY);
mDriftUncertaintyNanosPerSecond = driftUncertaintyNanosPerSecond;
}
/**
* Resets the clock's Drift Uncertainty (1-Sigma) in nanoseconds per second.
* @hide
*/
@TestApi
public void resetDriftUncertaintyNanosPerSecond() {
resetFlag(HAS_DRIFT_UNCERTAINTY);
}
/**
* Returns {@code true} if {@link #getElapsedRealtimeNanos()} is available, {@code false}
* otherwise.
*/
public boolean hasElapsedRealtimeNanos() {
return isFlagSet(HAS_ELAPSED_REALTIME_NANOS);
}
/**
* Returns the elapsed real-time of this clock since system boot, in nanoseconds.
*
* <p>The value is only available if {@link #hasElapsedRealtimeNanos()} is
* {@code true}.
*/
public long getElapsedRealtimeNanos() {
return mElapsedRealtimeNanos;
}
/**
* Sets the elapsed real-time of this clock since system boot, in nanoseconds.
* @hide
*/
@TestApi
public void setElapsedRealtimeNanos(long elapsedRealtimeNanos) {
setFlag(HAS_ELAPSED_REALTIME_NANOS);
mElapsedRealtimeNanos = elapsedRealtimeNanos;
}
/**
* Resets the elapsed real-time of this clock since system boot, in nanoseconds.
* @hide
*/
@TestApi
public void resetElapsedRealtimeNanos() {
resetFlag(HAS_ELAPSED_REALTIME_NANOS);
mElapsedRealtimeNanos = 0;
}
/**
* Returns {@code true} if {@link #getElapsedRealtimeUncertaintyNanos()} is available, {@code
* false} otherwise.
*/
public boolean hasElapsedRealtimeUncertaintyNanos() {
return isFlagSet(HAS_ELAPSED_REALTIME_UNCERTAINTY_NANOS);
}
/**
* Gets the estimate of the relative precision of the alignment of the
* {@link #getElapsedRealtimeNanos()} timestamp, with the reported measurements in
* nanoseconds (68% confidence).
*
* <p>The value is only available if {@link #hasElapsedRealtimeUncertaintyNanos()} is
* {@code true}.
*/
@FloatRange(from = 0.0f)
public double getElapsedRealtimeUncertaintyNanos() {
return mElapsedRealtimeUncertaintyNanos;
}
/**
* Sets the estimate of the relative precision of the alignment of the
* {@link #getElapsedRealtimeNanos()} timestamp, with the reported measurements in
* nanoseconds (68% confidence).
* @hide
*/
@TestApi
public void setElapsedRealtimeUncertaintyNanos(
@FloatRange(from = 0.0f) double elapsedRealtimeUncertaintyNanos) {
setFlag(HAS_ELAPSED_REALTIME_UNCERTAINTY_NANOS);
mElapsedRealtimeUncertaintyNanos = elapsedRealtimeUncertaintyNanos;
}
/**
* Resets the estimate of the relative precision of the alignment of the
* {@link #getElapsedRealtimeNanos()} timestamp, with the reported measurements in
* nanoseconds (68% confidence).
* @hide
*/
@TestApi
public void resetElapsedRealtimeUncertaintyNanos() {
resetFlag(HAS_ELAPSED_REALTIME_UNCERTAINTY_NANOS);
}
/**
* Returns {@code true} if {@link #getReferenceConstellationTypeForIsb()} is available,
* {@code false} otherwise.
*/
public boolean hasReferenceConstellationTypeForIsb() {
return isFlagSet(HAS_REFERENCE_CONSTELLATION_TYPE_FOR_ISB);
}
/**
* Returns the reference constellation type for inter-signal bias.
*
* <p>The value is only available if {@link #hasReferenceConstellationTypeForIsb()} is
* {@code true}.
*
* <p>The return value is one of those constants with {@code CONSTELLATION_} prefix in
* {@link GnssStatus}.
*/
@GnssStatus.ConstellationType
public int getReferenceConstellationTypeForIsb() {
return mReferenceConstellationTypeForIsb;
}
/**
* Sets the reference constellation type for inter-signal bias.
* @hide
*/
@TestApi
public void setReferenceConstellationTypeForIsb(@GnssStatus.ConstellationType int value) {
setFlag(HAS_REFERENCE_CONSTELLATION_TYPE_FOR_ISB);
mReferenceConstellationTypeForIsb = value;
}
/**
* Resets the reference constellation type for inter-signal bias.
* @hide
*/
@TestApi
public void resetReferenceConstellationTypeForIsb() {
resetFlag(HAS_REFERENCE_CONSTELLATION_TYPE_FOR_ISB);
mReferenceConstellationTypeForIsb = GnssStatus.CONSTELLATION_UNKNOWN;
}
/**
* Returns {@code true} if {@link #getReferenceCarrierFrequencyHzForIsb()} is available, {@code
* false} otherwise.
*/
public boolean hasReferenceCarrierFrequencyHzForIsb() {
return isFlagSet(HAS_REFERENCE_CARRIER_FREQUENCY_FOR_ISB);
}
/**
* Returns the reference carrier frequency in Hz for inter-signal bias.
*
* <p>The value is only available if {@link #hasReferenceCarrierFrequencyHzForIsb()} is
* {@code true}.
*/
@FloatRange(from = 0.0)
public double getReferenceCarrierFrequencyHzForIsb() {
return mReferenceCarrierFrequencyHzForIsb;
}
/**
* Sets the reference carrier frequency in Hz for inter-signal bias.
* @hide
*/
@TestApi
public void setReferenceCarrierFrequencyHzForIsb(@FloatRange(from = 0.0) double value) {
setFlag(HAS_REFERENCE_CARRIER_FREQUENCY_FOR_ISB);
mReferenceCarrierFrequencyHzForIsb = value;
}
/**
* Resets the reference carrier frequency in Hz for inter-signal bias.
* @hide
*/
@TestApi
public void resetReferenceCarrierFrequencyHzForIsb() {
resetFlag(HAS_REFERENCE_CARRIER_FREQUENCY_FOR_ISB);
}
/**
* Returns {@code true} if {@link #getReferenceCodeTypeForIsb()} is available, {@code
* false} otherwise.
*/
public boolean hasReferenceCodeTypeForIsb() {
return isFlagSet(HAS_REFERENCE_CODE_TYPE_FOR_ISB);
}
/**
* Returns the reference code type for inter-signal bias.
*
* <p>The value is only available if {@link #hasReferenceCodeTypeForIsb()} is
* {@code true}.
*
* <p>The return value is one of those constants defined in
* {@link GnssMeasurement#getCodeType()}.
*/
@NonNull
public String getReferenceCodeTypeForIsb() {
return mReferenceCodeTypeForIsb;
}
/**
* Sets the reference code type for inter-signal bias.
* @hide
*/
@TestApi
public void setReferenceCodeTypeForIsb(@NonNull String codeType) {
setFlag(HAS_REFERENCE_CODE_TYPE_FOR_ISB);
mReferenceCodeTypeForIsb = codeType;
}
/**
* Resets the reference code type for inter-signal bias.
* @hide
*/
@TestApi
public void resetReferenceCodeTypeForIsb() {
resetFlag(HAS_REFERENCE_CODE_TYPE_FOR_ISB);
mReferenceCodeTypeForIsb = "UNKNOWN";
}
/**
* Gets count of hardware clock discontinuities.
*
* <p>When this value stays the same, vs. a value in a previously reported {@link GnssClock}, it
* can be safely assumed that the {@code TimeNanos} value has been derived from a clock that has
* been running continuously - e.g. a single continuously powered crystal oscillator, and thus
* the {@code (FullBiasNanos + BiasNanos)} offset can be modelled with traditional clock bias
* &amp; drift models.
*
* <p>Each time this value changes, vs. the value in a previously reported {@link GnssClock},
* that suggests the hardware clock may have experienced a discontinuity (e.g. a power cycle or
* other anomaly), so that any assumptions about modelling a smoothly changing
* {@code (FullBiasNanos + BiasNanos)} offset, and a smoothly growing {@code (TimeNanos)}
* between this and the previously reported {@code GnssClock}, should be reset.
*/
public int getHardwareClockDiscontinuityCount() {
return mHardwareClockDiscontinuityCount;
}
/**
* Sets count of last hardware clock discontinuity.
* @hide
*/
@TestApi
public void setHardwareClockDiscontinuityCount(int value) {
mHardwareClockDiscontinuityCount = value;
}
public static final @android.annotation.NonNull Creator<GnssClock> CREATOR = new Creator<GnssClock>() {
@Override
public GnssClock createFromParcel(Parcel parcel) {
GnssClock gpsClock = new GnssClock();
gpsClock.mFlags = parcel.readInt();
gpsClock.mLeapSecond = parcel.readInt();
gpsClock.mTimeNanos = parcel.readLong();
gpsClock.mTimeUncertaintyNanos = parcel.readDouble();
gpsClock.mFullBiasNanos = parcel.readLong();
gpsClock.mBiasNanos = parcel.readDouble();
gpsClock.mBiasUncertaintyNanos = parcel.readDouble();
gpsClock.mDriftNanosPerSecond = parcel.readDouble();
gpsClock.mDriftUncertaintyNanosPerSecond = parcel.readDouble();
gpsClock.mHardwareClockDiscontinuityCount = parcel.readInt();
gpsClock.mElapsedRealtimeNanos = parcel.readLong();
gpsClock.mElapsedRealtimeUncertaintyNanos = parcel.readDouble();
gpsClock.mReferenceConstellationTypeForIsb = parcel.readInt();
gpsClock.mReferenceCarrierFrequencyHzForIsb = parcel.readDouble();
gpsClock.mReferenceCodeTypeForIsb = parcel.readString();
return gpsClock;
}
@Override
public GnssClock[] newArray(int size) {
return new GnssClock[size];
}
};
@Override
public void writeToParcel(Parcel parcel, int flags) {
parcel.writeInt(mFlags);
parcel.writeInt(mLeapSecond);
parcel.writeLong(mTimeNanos);
parcel.writeDouble(mTimeUncertaintyNanos);
parcel.writeLong(mFullBiasNanos);
parcel.writeDouble(mBiasNanos);
parcel.writeDouble(mBiasUncertaintyNanos);
parcel.writeDouble(mDriftNanosPerSecond);
parcel.writeDouble(mDriftUncertaintyNanosPerSecond);
parcel.writeInt(mHardwareClockDiscontinuityCount);
parcel.writeLong(mElapsedRealtimeNanos);
parcel.writeDouble(mElapsedRealtimeUncertaintyNanos);
parcel.writeInt(mReferenceConstellationTypeForIsb);
parcel.writeDouble(mReferenceCarrierFrequencyHzForIsb);
parcel.writeString(mReferenceCodeTypeForIsb);
}
@Override
public int describeContents() {
return 0;
}
@Override
public String toString() {
final String format = " %-15s = %s\n";
final String formatWithUncertainty = " %-15s = %-25s %-26s = %s\n";
StringBuilder builder = new StringBuilder("GnssClock:\n");
if (hasLeapSecond()) {
builder.append(String.format(format, "LeapSecond", mLeapSecond));
}
builder.append(String.format(
formatWithUncertainty,
"TimeNanos",
mTimeNanos,
"TimeUncertaintyNanos",
hasTimeUncertaintyNanos() ? mTimeUncertaintyNanos : null));
if (hasFullBiasNanos()) {
builder.append(String.format(format, "FullBiasNanos", mFullBiasNanos));
}
if (hasBiasNanos() || hasBiasUncertaintyNanos()) {
builder.append(String.format(
formatWithUncertainty,
"BiasNanos",
hasBiasNanos() ? mBiasNanos : null,
"BiasUncertaintyNanos",
hasBiasUncertaintyNanos() ? mBiasUncertaintyNanos : null));
}
if (hasDriftNanosPerSecond() || hasDriftUncertaintyNanosPerSecond()) {
builder.append(String.format(
formatWithUncertainty,
"DriftNanosPerSecond",
hasDriftNanosPerSecond() ? mDriftNanosPerSecond : null,
"DriftUncertaintyNanosPerSecond",
hasDriftUncertaintyNanosPerSecond() ? mDriftUncertaintyNanosPerSecond : null));
}
builder.append(String.format(
format,
"HardwareClockDiscontinuityCount",
mHardwareClockDiscontinuityCount));
if (hasElapsedRealtimeNanos() || hasElapsedRealtimeUncertaintyNanos()) {
builder.append(String.format(
formatWithUncertainty,
"ElapsedRealtimeNanos",
hasElapsedRealtimeNanos() ? mElapsedRealtimeNanos : null,
"ElapsedRealtimeUncertaintyNanos",
hasElapsedRealtimeUncertaintyNanos() ? mElapsedRealtimeUncertaintyNanos
: null));
}
if (hasReferenceConstellationTypeForIsb()) {
builder.append(String.format(format, "ReferenceConstellationTypeForIsb",
mReferenceConstellationTypeForIsb));
}
if (hasReferenceCarrierFrequencyHzForIsb()) {
builder.append(String.format(format, "ReferenceCarrierFrequencyHzForIsb",
mReferenceCarrierFrequencyHzForIsb));
}
if (hasReferenceCodeTypeForIsb()) {
builder.append(
String.format(format, "ReferenceCodeTypeForIsb", mReferenceCodeTypeForIsb));
}
return builder.toString();
}
private void initialize() {
mFlags = HAS_NO_FLAGS;
resetLeapSecond();
setTimeNanos(Long.MIN_VALUE);
resetTimeUncertaintyNanos();
resetFullBiasNanos();
resetBiasNanos();
resetBiasUncertaintyNanos();
resetDriftNanosPerSecond();
resetDriftUncertaintyNanosPerSecond();
setHardwareClockDiscontinuityCount(Integer.MIN_VALUE);
resetElapsedRealtimeNanos();
resetElapsedRealtimeUncertaintyNanos();
resetReferenceConstellationTypeForIsb();
resetReferenceCarrierFrequencyHzForIsb();
resetReferenceCodeTypeForIsb();
}
private void setFlag(int flag) {
mFlags |= flag;
}
private void resetFlag(int flag) {
mFlags &= ~flag;
}
private boolean isFlagSet(int flag) {
return (mFlags & flag) == flag;
}
}