Romain Guy e4998e1ea9 Fast loadInverse() implementation for the common case
Most matrices used by the UI toolkit are translation matrices, whose
inverses can be quickly computed by using the negated translation
vector.

Change-Id: I54a28a634a586085779bfc26f3a4160cd5ab2b22
2015-01-15 16:49:18 -08:00

526 lines
15 KiB
C++

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "OpenGLRenderer"
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <utils/Log.h>
#include <SkMatrix.h>
#include "Matrix.h"
namespace android {
namespace uirenderer {
///////////////////////////////////////////////////////////////////////////////
// Defines
///////////////////////////////////////////////////////////////////////////////
static const float EPSILON = 0.0000001f;
///////////////////////////////////////////////////////////////////////////////
// Matrix
///////////////////////////////////////////////////////////////////////////////
const Matrix4& Matrix4::identity() {
static Matrix4 sIdentity;
return sIdentity;
}
void Matrix4::loadIdentity() {
data[kScaleX] = 1.0f;
data[kSkewY] = 0.0f;
data[2] = 0.0f;
data[kPerspective0] = 0.0f;
data[kSkewX] = 0.0f;
data[kScaleY] = 1.0f;
data[6] = 0.0f;
data[kPerspective1] = 0.0f;
data[8] = 0.0f;
data[9] = 0.0f;
data[kScaleZ] = 1.0f;
data[11] = 0.0f;
data[kTranslateX] = 0.0f;
data[kTranslateY] = 0.0f;
data[kTranslateZ] = 0.0f;
data[kPerspective2] = 1.0f;
mType = kTypeIdentity | kTypeRectToRect;
}
static bool isZero(float f) {
return fabs(f) <= EPSILON;
}
uint8_t Matrix4::getType() const {
if (mType & kTypeUnknown) {
mType = kTypeIdentity;
if (data[kPerspective0] != 0.0f || data[kPerspective1] != 0.0f ||
data[kPerspective2] != 1.0f) {
mType |= kTypePerspective;
}
if (data[kTranslateX] != 0.0f || data[kTranslateY] != 0.0f) {
mType |= kTypeTranslate;
}
float m00 = data[kScaleX];
float m01 = data[kSkewX];
float m10 = data[kSkewY];
float m11 = data[kScaleY];
float m32 = data[kTranslateZ];
if (m01 != 0.0f || m10 != 0.0f || m32 != 0.0f) {
mType |= kTypeAffine;
}
if (m00 != 1.0f || m11 != 1.0f) {
mType |= kTypeScale;
}
// The following section determines whether the matrix will preserve
// rectangles. For instance, a rectangle transformed by a pure
// translation matrix will result in a rectangle. A rectangle
// transformed by a 45 degrees rotation matrix is not a rectangle.
// If the matrix has a perspective component then we already know
// it doesn't preserve rectangles.
if (!(mType & kTypePerspective)) {
if ((isZero(m00) && isZero(m11) && !isZero(m01) && !isZero(m10)) ||
(isZero(m01) && isZero(m10) && !isZero(m00) && !isZero(m11))) {
mType |= kTypeRectToRect;
}
}
}
return mType;
}
uint8_t Matrix4::getGeometryType() const {
return getType() & sGeometryMask;
}
bool Matrix4::rectToRect() const {
return getType() & kTypeRectToRect;
}
bool Matrix4::positiveScale() const {
return (data[kScaleX] > 0.0f && data[kScaleY] > 0.0f);
}
bool Matrix4::changesBounds() const {
return getType() & (kTypeScale | kTypeAffine | kTypePerspective);
}
bool Matrix4::isPureTranslate() const {
// NOTE: temporary hack to workaround ignoreTransform behavior with Z values
// TODO: separate this into isPure2dTranslate vs isPure3dTranslate
return getGeometryType() <= kTypeTranslate && (data[kTranslateZ] == 0.0f);
}
bool Matrix4::isSimple() const {
return getGeometryType() <= (kTypeScale | kTypeTranslate) && (data[kTranslateZ] == 0.0f);
}
bool Matrix4::isIdentity() const {
return getGeometryType() == kTypeIdentity;
}
bool Matrix4::isPerspective() const {
return getType() & kTypePerspective;
}
void Matrix4::load(const float* v) {
memcpy(data, v, sizeof(data));
mType = kTypeUnknown;
}
void Matrix4::load(const Matrix4& v) {
memcpy(data, v.data, sizeof(data));
mType = v.getType();
}
void Matrix4::load(const SkMatrix& v) {
memset(data, 0, sizeof(data));
data[kScaleX] = v[SkMatrix::kMScaleX];
data[kSkewX] = v[SkMatrix::kMSkewX];
data[kTranslateX] = v[SkMatrix::kMTransX];
data[kSkewY] = v[SkMatrix::kMSkewY];
data[kScaleY] = v[SkMatrix::kMScaleY];
data[kTranslateY] = v[SkMatrix::kMTransY];
data[kPerspective0] = v[SkMatrix::kMPersp0];
data[kPerspective1] = v[SkMatrix::kMPersp1];
data[kPerspective2] = v[SkMatrix::kMPersp2];
data[kScaleZ] = 1.0f;
// NOTE: The flags are compatible between SkMatrix and this class.
// However, SkMatrix::getType() does not return the flag
// kRectStaysRect. The return value is masked with 0xF
// so we need the extra rectStaysRect() check
mType = v.getType();
if (v.rectStaysRect()) {
mType |= kTypeRectToRect;
}
}
void Matrix4::copyTo(SkMatrix& v) const {
v.reset();
v.set(SkMatrix::kMScaleX, data[kScaleX]);
v.set(SkMatrix::kMSkewX, data[kSkewX]);
v.set(SkMatrix::kMTransX, data[kTranslateX]);
v.set(SkMatrix::kMSkewY, data[kSkewY]);
v.set(SkMatrix::kMScaleY, data[kScaleY]);
v.set(SkMatrix::kMTransY, data[kTranslateY]);
v.set(SkMatrix::kMPersp0, data[kPerspective0]);
v.set(SkMatrix::kMPersp1, data[kPerspective1]);
v.set(SkMatrix::kMPersp2, data[kPerspective2]);
}
void Matrix4::loadInverse(const Matrix4& v) {
// Fast case for common translation matrices
if (v.isPureTranslate()) {
// Reset the matrix
// Unnamed fields are never written to except by
// loadIdentity(), they don't need to be reset
data[kScaleX] = 1.0f;
data[kSkewX] = 0.0f;
data[kScaleY] = 1.0f;
data[kSkewY] = 0.0f;
data[kScaleZ] = 1.0f;
data[kPerspective0] = 0.0f;
data[kPerspective1] = 0.0f;
data[kPerspective2] = 1.0f;
// No need to deal with kTranslateZ because isPureTranslate()
// only returns true when the kTranslateZ component is 0
data[kTranslateX] = -v.data[kTranslateX];
data[kTranslateY] = -v.data[kTranslateY];
data[kTranslateZ] = 0.0f;
// A "pure translate" matrix can be identity or translation
mType = v.getType();
return;
}
double scale = 1.0 /
(v.data[kScaleX] * ((double) v.data[kScaleY] * v.data[kPerspective2] -
(double) v.data[kTranslateY] * v.data[kPerspective1]) +
v.data[kSkewX] * ((double) v.data[kTranslateY] * v.data[kPerspective0] -
(double) v.data[kSkewY] * v.data[kPerspective2]) +
v.data[kTranslateX] * ((double) v.data[kSkewY] * v.data[kPerspective1] -
(double) v.data[kScaleY] * v.data[kPerspective0]));
data[kScaleX] = (v.data[kScaleY] * v.data[kPerspective2] -
v.data[kTranslateY] * v.data[kPerspective1]) * scale;
data[kSkewX] = (v.data[kTranslateX] * v.data[kPerspective1] -
v.data[kSkewX] * v.data[kPerspective2]) * scale;
data[kTranslateX] = (v.data[kSkewX] * v.data[kTranslateY] -
v.data[kTranslateX] * v.data[kScaleY]) * scale;
data[kSkewY] = (v.data[kTranslateY] * v.data[kPerspective0] -
v.data[kSkewY] * v.data[kPerspective2]) * scale;
data[kScaleY] = (v.data[kScaleX] * v.data[kPerspective2] -
v.data[kTranslateX] * v.data[kPerspective0]) * scale;
data[kTranslateY] = (v.data[kTranslateX] * v.data[kSkewY] -
v.data[kScaleX] * v.data[kTranslateY]) * scale;
data[kPerspective0] = (v.data[kSkewY] * v.data[kPerspective1] -
v.data[kScaleY] * v.data[kPerspective0]) * scale;
data[kPerspective1] = (v.data[kSkewX] * v.data[kPerspective0] -
v.data[kScaleX] * v.data[kPerspective1]) * scale;
data[kPerspective2] = (v.data[kScaleX] * v.data[kScaleY] -
v.data[kSkewX] * v.data[kSkewY]) * scale;
mType = kTypeUnknown;
}
void Matrix4::copyTo(float* v) const {
memcpy(v, data, sizeof(data));
}
float Matrix4::getTranslateX() const {
return data[kTranslateX];
}
float Matrix4::getTranslateY() const {
return data[kTranslateY];
}
void Matrix4::multiply(float v) {
for (int i = 0; i < 16; i++) {
data[i] *= v;
}
mType = kTypeUnknown;
}
void Matrix4::loadTranslate(float x, float y, float z) {
loadIdentity();
data[kTranslateX] = x;
data[kTranslateY] = y;
data[kTranslateZ] = z;
mType = kTypeTranslate | kTypeRectToRect;
}
void Matrix4::loadScale(float sx, float sy, float sz) {
loadIdentity();
data[kScaleX] = sx;
data[kScaleY] = sy;
data[kScaleZ] = sz;
mType = kTypeScale | kTypeRectToRect;
}
void Matrix4::loadSkew(float sx, float sy) {
loadIdentity();
data[kScaleX] = 1.0f;
data[kSkewX] = sx;
data[kTranslateX] = 0.0f;
data[kSkewY] = sy;
data[kScaleY] = 1.0f;
data[kTranslateY] = 0.0f;
data[kPerspective0] = 0.0f;
data[kPerspective1] = 0.0f;
data[kPerspective2] = 1.0f;
mType = kTypeUnknown;
}
void Matrix4::loadRotate(float angle) {
angle *= float(M_PI / 180.0f);
float c = cosf(angle);
float s = sinf(angle);
loadIdentity();
data[kScaleX] = c;
data[kSkewX] = -s;
data[kSkewY] = s;
data[kScaleY] = c;
mType = kTypeUnknown;
}
void Matrix4::loadRotate(float angle, float x, float y, float z) {
data[kPerspective0] = 0.0f;
data[kPerspective1] = 0.0f;
data[11] = 0.0f;
data[kTranslateX] = 0.0f;
data[kTranslateY] = 0.0f;
data[kTranslateZ] = 0.0f;
data[kPerspective2] = 1.0f;
angle *= float(M_PI / 180.0f);
float c = cosf(angle);
float s = sinf(angle);
const float length = sqrtf(x * x + y * y + z * z);
float recipLen = 1.0f / length;
x *= recipLen;
y *= recipLen;
z *= recipLen;
const float nc = 1.0f - c;
const float xy = x * y;
const float yz = y * z;
const float zx = z * x;
const float xs = x * s;
const float ys = y * s;
const float zs = z * s;
data[kScaleX] = x * x * nc + c;
data[kSkewX] = xy * nc - zs;
data[8] = zx * nc + ys;
data[kSkewY] = xy * nc + zs;
data[kScaleY] = y * y * nc + c;
data[9] = yz * nc - xs;
data[2] = zx * nc - ys;
data[6] = yz * nc + xs;
data[kScaleZ] = z * z * nc + c;
mType = kTypeUnknown;
}
void Matrix4::loadMultiply(const Matrix4& u, const Matrix4& v) {
for (int i = 0 ; i < 4 ; i++) {
float x = 0;
float y = 0;
float z = 0;
float w = 0;
for (int j = 0 ; j < 4 ; j++) {
const float e = v.get(i, j);
x += u.get(j, 0) * e;
y += u.get(j, 1) * e;
z += u.get(j, 2) * e;
w += u.get(j, 3) * e;
}
set(i, 0, x);
set(i, 1, y);
set(i, 2, z);
set(i, 3, w);
}
mType = kTypeUnknown;
}
void Matrix4::loadOrtho(float left, float right, float bottom, float top, float near, float far) {
loadIdentity();
data[kScaleX] = 2.0f / (right - left);
data[kScaleY] = 2.0f / (top - bottom);
data[kScaleZ] = -2.0f / (far - near);
data[kTranslateX] = -(right + left) / (right - left);
data[kTranslateY] = -(top + bottom) / (top - bottom);
data[kTranslateZ] = -(far + near) / (far - near);
mType = kTypeTranslate | kTypeScale | kTypeRectToRect;
}
float Matrix4::mapZ(const Vector3& orig) const {
// duplicates logic for mapPoint3d's z coordinate
return orig.x * data[2] + orig.y * data[6] + orig.z * data[kScaleZ] + data[kTranslateZ];
}
void Matrix4::mapPoint3d(Vector3& vec) const {
//TODO: optimize simple case
const Vector3 orig(vec);
vec.x = orig.x * data[kScaleX] + orig.y * data[kSkewX] + orig.z * data[8] + data[kTranslateX];
vec.y = orig.x * data[kSkewY] + orig.y * data[kScaleY] + orig.z * data[9] + data[kTranslateY];
vec.z = orig.x * data[2] + orig.y * data[6] + orig.z * data[kScaleZ] + data[kTranslateZ];
}
#define MUL_ADD_STORE(a, b, c) a = (a) * (b) + (c)
void Matrix4::mapPoint(float& x, float& y) const {
if (isSimple()) {
MUL_ADD_STORE(x, data[kScaleX], data[kTranslateX]);
MUL_ADD_STORE(y, data[kScaleY], data[kTranslateY]);
return;
}
float dx = x * data[kScaleX] + y * data[kSkewX] + data[kTranslateX];
float dy = x * data[kSkewY] + y * data[kScaleY] + data[kTranslateY];
float dz = x * data[kPerspective0] + y * data[kPerspective1] + data[kPerspective2];
if (dz) dz = 1.0f / dz;
x = dx * dz;
y = dy * dz;
}
void Matrix4::mapRect(Rect& r) const {
if (isIdentity()) return;
if (isSimple()) {
MUL_ADD_STORE(r.left, data[kScaleX], data[kTranslateX]);
MUL_ADD_STORE(r.right, data[kScaleX], data[kTranslateX]);
MUL_ADD_STORE(r.top, data[kScaleY], data[kTranslateY]);
MUL_ADD_STORE(r.bottom, data[kScaleY], data[kTranslateY]);
if (r.left > r.right) {
float x = r.left;
r.left = r.right;
r.right = x;
}
if (r.top > r.bottom) {
float y = r.top;
r.top = r.bottom;
r.bottom = y;
}
return;
}
float vertices[] = {
r.left, r.top,
r.right, r.top,
r.right, r.bottom,
r.left, r.bottom
};
float x, y, z;
for (int i = 0; i < 8; i+= 2) {
float px = vertices[i];
float py = vertices[i + 1];
x = px * data[kScaleX] + py * data[kSkewX] + data[kTranslateX];
y = px * data[kSkewY] + py * data[kScaleY] + data[kTranslateY];
z = px * data[kPerspective0] + py * data[kPerspective1] + data[kPerspective2];
if (z) z = 1.0f / z;
vertices[i] = x * z;
vertices[i + 1] = y * z;
}
r.left = r.right = vertices[0];
r.top = r.bottom = vertices[1];
for (int i = 2; i < 8; i += 2) {
x = vertices[i];
y = vertices[i + 1];
if (x < r.left) r.left = x;
else if (x > r.right) r.right = x;
if (y < r.top) r.top = y;
else if (y > r.bottom) r.bottom = y;
}
}
void Matrix4::decomposeScale(float& sx, float& sy) const {
float len;
len = data[mat4::kScaleX] * data[mat4::kScaleX] + data[mat4::kSkewX] * data[mat4::kSkewX];
sx = copysignf(sqrtf(len), data[mat4::kScaleX]);
len = data[mat4::kScaleY] * data[mat4::kScaleY] + data[mat4::kSkewY] * data[mat4::kSkewY];
sy = copysignf(sqrtf(len), data[mat4::kScaleY]);
}
void Matrix4::dump(const char* label) const {
ALOGD("%s[simple=%d, type=0x%x", label ? label : "Matrix4", isSimple(), getType());
ALOGD(" %f %f %f %f", data[kScaleX], data[kSkewX], data[8], data[kTranslateX]);
ALOGD(" %f %f %f %f", data[kSkewY], data[kScaleY], data[9], data[kTranslateY]);
ALOGD(" %f %f %f %f", data[2], data[6], data[kScaleZ], data[kTranslateZ]);
ALOGD(" %f %f %f %f", data[kPerspective0], data[kPerspective1], data[11], data[kPerspective2]);
ALOGD("]");
}
}; // namespace uirenderer
}; // namespace android