804618d086
Introduced PathData in Java, which is effectively a thin layer around the native instance. PathData holds the verbs and points which is being used in path morphing/interpolation. The verbs and points can be interpreted into skia path commands, which is now done in native and therefore saves a handful of JNI calls during path creation. Removed the old PathDataNode mechanism and changed the PathEvaluator to use PathData instead. Also added tests and a microbench. Also ran CTS tests for VectorDrawable and AnimatedVectorDrawable, and passed all of the existing tests. Change-Id: Ia166f5172ff031fe18b154327967f911a62caec1
492 lines
18 KiB
C++
492 lines
18 KiB
C++
/*
|
|
* Copyright (C) 2015 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "VectorDrawableUtils.h"
|
|
|
|
#include "PathParser.h"
|
|
|
|
#include <math.h>
|
|
#include <utils/Log.h>
|
|
|
|
namespace android {
|
|
namespace uirenderer {
|
|
|
|
class PathResolver {
|
|
public:
|
|
float currentX = 0;
|
|
float currentY = 0;
|
|
float ctrlPointX = 0;
|
|
float ctrlPointY = 0;
|
|
float currentSegmentStartX = 0;
|
|
float currentSegmentStartY = 0;
|
|
void addCommand(SkPath* outPath, char previousCmd,
|
|
char cmd, const std::vector<float>* points, size_t start, size_t end);
|
|
};
|
|
|
|
bool VectorDrawableUtils::canMorph(const PathData& morphFrom, const PathData& morphTo) {
|
|
if (morphFrom.verbs.size() != morphTo.verbs.size()) {
|
|
return false;
|
|
}
|
|
|
|
for (unsigned int i = 0; i < morphFrom.verbs.size(); i++) {
|
|
if (morphFrom.verbs[i] != morphTo.verbs[i]
|
|
|| morphFrom.verbSizes[i] != morphTo.verbSizes[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool VectorDrawableUtils::interpolatePathData(PathData* outData, const PathData& morphFrom,
|
|
const PathData& morphTo, float fraction) {
|
|
if (!canMorph(morphFrom, morphTo)) {
|
|
return false;
|
|
}
|
|
interpolatePaths(outData, morphFrom, morphTo, fraction);
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Convert an array of PathVerb to Path.
|
|
*/
|
|
void VectorDrawableUtils::verbsToPath(SkPath* outPath, const PathData& data) {
|
|
PathResolver resolver;
|
|
char previousCommand = 'm';
|
|
size_t start = 0;
|
|
outPath->reset();
|
|
for (unsigned int i = 0; i < data.verbs.size(); i++) {
|
|
size_t verbSize = data.verbSizes[i];
|
|
resolver.addCommand(outPath, previousCommand, data.verbs[i], &data.points, start,
|
|
start + verbSize);
|
|
previousCommand = data.verbs[i];
|
|
start += verbSize;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* The current PathVerb will be interpolated between the
|
|
* <code>nodeFrom</code> and <code>nodeTo</code> according to the
|
|
* <code>fraction</code>.
|
|
*
|
|
* @param nodeFrom The start value as a PathVerb.
|
|
* @param nodeTo The end value as a PathVerb
|
|
* @param fraction The fraction to interpolate.
|
|
*/
|
|
void VectorDrawableUtils::interpolatePaths(PathData* outData,
|
|
const PathData& from, const PathData& to, float fraction) {
|
|
outData->points.resize(from.points.size());
|
|
outData->verbSizes = from.verbSizes;
|
|
outData->verbs = from.verbs;
|
|
|
|
for (size_t i = 0; i < from.points.size(); i++) {
|
|
outData->points[i] = from.points[i] * (1 - fraction) + to.points[i] * fraction;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Converts an arc to cubic Bezier segments and records them in p.
|
|
*
|
|
* @param p The target for the cubic Bezier segments
|
|
* @param cx The x coordinate center of the ellipse
|
|
* @param cy The y coordinate center of the ellipse
|
|
* @param a The radius of the ellipse in the horizontal direction
|
|
* @param b The radius of the ellipse in the vertical direction
|
|
* @param e1x E(eta1) x coordinate of the starting point of the arc
|
|
* @param e1y E(eta2) y coordinate of the starting point of the arc
|
|
* @param theta The angle that the ellipse bounding rectangle makes with horizontal plane
|
|
* @param start The start angle of the arc on the ellipse
|
|
* @param sweep The angle (positive or negative) of the sweep of the arc on the ellipse
|
|
*/
|
|
static void arcToBezier(SkPath* p,
|
|
double cx,
|
|
double cy,
|
|
double a,
|
|
double b,
|
|
double e1x,
|
|
double e1y,
|
|
double theta,
|
|
double start,
|
|
double sweep) {
|
|
// Taken from equations at: http://spaceroots.org/documents/ellipse/node8.html
|
|
// and http://www.spaceroots.org/documents/ellipse/node22.html
|
|
|
|
// Maximum of 45 degrees per cubic Bezier segment
|
|
int numSegments = ceil(fabs(sweep * 4 / M_PI));
|
|
|
|
double eta1 = start;
|
|
double cosTheta = cos(theta);
|
|
double sinTheta = sin(theta);
|
|
double cosEta1 = cos(eta1);
|
|
double sinEta1 = sin(eta1);
|
|
double ep1x = (-a * cosTheta * sinEta1) - (b * sinTheta * cosEta1);
|
|
double ep1y = (-a * sinTheta * sinEta1) + (b * cosTheta * cosEta1);
|
|
|
|
double anglePerSegment = sweep / numSegments;
|
|
for (int i = 0; i < numSegments; i++) {
|
|
double eta2 = eta1 + anglePerSegment;
|
|
double sinEta2 = sin(eta2);
|
|
double cosEta2 = cos(eta2);
|
|
double e2x = cx + (a * cosTheta * cosEta2) - (b * sinTheta * sinEta2);
|
|
double e2y = cy + (a * sinTheta * cosEta2) + (b * cosTheta * sinEta2);
|
|
double ep2x = -a * cosTheta * sinEta2 - b * sinTheta * cosEta2;
|
|
double ep2y = -a * sinTheta * sinEta2 + b * cosTheta * cosEta2;
|
|
double tanDiff2 = tan((eta2 - eta1) / 2);
|
|
double alpha =
|
|
sin(eta2 - eta1) * (sqrt(4 + (3 * tanDiff2 * tanDiff2)) - 1) / 3;
|
|
double q1x = e1x + alpha * ep1x;
|
|
double q1y = e1y + alpha * ep1y;
|
|
double q2x = e2x - alpha * ep2x;
|
|
double q2y = e2y - alpha * ep2y;
|
|
|
|
p->cubicTo((float) q1x,
|
|
(float) q1y,
|
|
(float) q2x,
|
|
(float) q2y,
|
|
(float) e2x,
|
|
(float) e2y);
|
|
eta1 = eta2;
|
|
e1x = e2x;
|
|
e1y = e2y;
|
|
ep1x = ep2x;
|
|
ep1y = ep2y;
|
|
}
|
|
}
|
|
|
|
inline double toRadians(float theta) { return theta * M_PI / 180;}
|
|
|
|
static void drawArc(SkPath* p,
|
|
float x0,
|
|
float y0,
|
|
float x1,
|
|
float y1,
|
|
float a,
|
|
float b,
|
|
float theta,
|
|
bool isMoreThanHalf,
|
|
bool isPositiveArc) {
|
|
|
|
/* Convert rotation angle from degrees to radians */
|
|
double thetaD = toRadians(theta);
|
|
/* Pre-compute rotation matrix entries */
|
|
double cosTheta = cos(thetaD);
|
|
double sinTheta = sin(thetaD);
|
|
/* Transform (x0, y0) and (x1, y1) into unit space */
|
|
/* using (inverse) rotation, followed by (inverse) scale */
|
|
double x0p = (x0 * cosTheta + y0 * sinTheta) / a;
|
|
double y0p = (-x0 * sinTheta + y0 * cosTheta) / b;
|
|
double x1p = (x1 * cosTheta + y1 * sinTheta) / a;
|
|
double y1p = (-x1 * sinTheta + y1 * cosTheta) / b;
|
|
|
|
/* Compute differences and averages */
|
|
double dx = x0p - x1p;
|
|
double dy = y0p - y1p;
|
|
double xm = (x0p + x1p) / 2;
|
|
double ym = (y0p + y1p) / 2;
|
|
/* Solve for intersecting unit circles */
|
|
double dsq = dx * dx + dy * dy;
|
|
if (dsq == 0.0) {
|
|
ALOGW("Points are coincident");
|
|
return; /* Points are coincident */
|
|
}
|
|
double disc = 1.0 / dsq - 1.0 / 4.0;
|
|
if (disc < 0.0) {
|
|
ALOGW("Points are too far apart %f", dsq);
|
|
float adjust = (float) (sqrt(dsq) / 1.99999);
|
|
drawArc(p, x0, y0, x1, y1, a * adjust,
|
|
b * adjust, theta, isMoreThanHalf, isPositiveArc);
|
|
return; /* Points are too far apart */
|
|
}
|
|
double s = sqrt(disc);
|
|
double sdx = s * dx;
|
|
double sdy = s * dy;
|
|
double cx;
|
|
double cy;
|
|
if (isMoreThanHalf == isPositiveArc) {
|
|
cx = xm - sdy;
|
|
cy = ym + sdx;
|
|
} else {
|
|
cx = xm + sdy;
|
|
cy = ym - sdx;
|
|
}
|
|
|
|
double eta0 = atan2((y0p - cy), (x0p - cx));
|
|
|
|
double eta1 = atan2((y1p - cy), (x1p - cx));
|
|
|
|
double sweep = (eta1 - eta0);
|
|
if (isPositiveArc != (sweep >= 0)) {
|
|
if (sweep > 0) {
|
|
sweep -= 2 * M_PI;
|
|
} else {
|
|
sweep += 2 * M_PI;
|
|
}
|
|
}
|
|
|
|
cx *= a;
|
|
cy *= b;
|
|
double tcx = cx;
|
|
cx = cx * cosTheta - cy * sinTheta;
|
|
cy = tcx * sinTheta + cy * cosTheta;
|
|
|
|
arcToBezier(p, cx, cy, a, b, x0, y0, thetaD, eta0, sweep);
|
|
}
|
|
|
|
|
|
|
|
// Use the given verb, and points in the range [start, end) to insert a command into the SkPath.
|
|
void PathResolver::addCommand(SkPath* outPath, char previousCmd,
|
|
char cmd, const std::vector<float>* points, size_t start, size_t end) {
|
|
|
|
int incr = 2;
|
|
float reflectiveCtrlPointX;
|
|
float reflectiveCtrlPointY;
|
|
|
|
switch (cmd) {
|
|
case 'z':
|
|
case 'Z':
|
|
outPath->close();
|
|
// Path is closed here, but we need to move the pen to the
|
|
// closed position. So we cache the segment's starting position,
|
|
// and restore it here.
|
|
currentX = currentSegmentStartX;
|
|
currentY = currentSegmentStartY;
|
|
ctrlPointX = currentSegmentStartX;
|
|
ctrlPointY = currentSegmentStartY;
|
|
outPath->moveTo(currentX, currentY);
|
|
break;
|
|
case 'm':
|
|
case 'M':
|
|
case 'l':
|
|
case 'L':
|
|
case 't':
|
|
case 'T':
|
|
incr = 2;
|
|
break;
|
|
case 'h':
|
|
case 'H':
|
|
case 'v':
|
|
case 'V':
|
|
incr = 1;
|
|
break;
|
|
case 'c':
|
|
case 'C':
|
|
incr = 6;
|
|
break;
|
|
case 's':
|
|
case 'S':
|
|
case 'q':
|
|
case 'Q':
|
|
incr = 4;
|
|
break;
|
|
case 'a':
|
|
case 'A':
|
|
incr = 7;
|
|
break;
|
|
}
|
|
|
|
for (unsigned int k = start; k < end; k += incr) {
|
|
switch (cmd) {
|
|
case 'm': // moveto - Start a new sub-path (relative)
|
|
currentX += points->at(k + 0);
|
|
currentY += points->at(k + 1);
|
|
if (k > start) {
|
|
// According to the spec, if a moveto is followed by multiple
|
|
// pairs of coordinates, the subsequent pairs are treated as
|
|
// implicit lineto commands.
|
|
outPath->rLineTo(points->at(k + 0), points->at(k + 1));
|
|
} else {
|
|
outPath->rMoveTo(points->at(k + 0), points->at(k + 1));
|
|
currentSegmentStartX = currentX;
|
|
currentSegmentStartY = currentY;
|
|
}
|
|
break;
|
|
case 'M': // moveto - Start a new sub-path
|
|
currentX = points->at(k + 0);
|
|
currentY = points->at(k + 1);
|
|
if (k > start) {
|
|
// According to the spec, if a moveto is followed by multiple
|
|
// pairs of coordinates, the subsequent pairs are treated as
|
|
// implicit lineto commands.
|
|
outPath->lineTo(points->at(k + 0), points->at(k + 1));
|
|
} else {
|
|
outPath->moveTo(points->at(k + 0), points->at(k + 1));
|
|
currentSegmentStartX = currentX;
|
|
currentSegmentStartY = currentY;
|
|
}
|
|
break;
|
|
case 'l': // lineto - Draw a line from the current point (relative)
|
|
outPath->rLineTo(points->at(k + 0), points->at(k + 1));
|
|
currentX += points->at(k + 0);
|
|
currentY += points->at(k + 1);
|
|
break;
|
|
case 'L': // lineto - Draw a line from the current point
|
|
outPath->lineTo(points->at(k + 0), points->at(k + 1));
|
|
currentX = points->at(k + 0);
|
|
currentY = points->at(k + 1);
|
|
break;
|
|
case 'h': // horizontal lineto - Draws a horizontal line (relative)
|
|
outPath->rLineTo(points->at(k + 0), 0);
|
|
currentX += points->at(k + 0);
|
|
break;
|
|
case 'H': // horizontal lineto - Draws a horizontal line
|
|
outPath->lineTo(points->at(k + 0), currentY);
|
|
currentX = points->at(k + 0);
|
|
break;
|
|
case 'v': // vertical lineto - Draws a vertical line from the current point (r)
|
|
outPath->rLineTo(0, points->at(k + 0));
|
|
currentY += points->at(k + 0);
|
|
break;
|
|
case 'V': // vertical lineto - Draws a vertical line from the current point
|
|
outPath->lineTo(currentX, points->at(k + 0));
|
|
currentY = points->at(k + 0);
|
|
break;
|
|
case 'c': // curveto - Draws a cubic Bézier curve (relative)
|
|
outPath->rCubicTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3),
|
|
points->at(k + 4), points->at(k + 5));
|
|
|
|
ctrlPointX = currentX + points->at(k + 2);
|
|
ctrlPointY = currentY + points->at(k + 3);
|
|
currentX += points->at(k + 4);
|
|
currentY += points->at(k + 5);
|
|
|
|
break;
|
|
case 'C': // curveto - Draws a cubic Bézier curve
|
|
outPath->cubicTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3),
|
|
points->at(k + 4), points->at(k + 5));
|
|
currentX = points->at(k + 4);
|
|
currentY = points->at(k + 5);
|
|
ctrlPointX = points->at(k + 2);
|
|
ctrlPointY = points->at(k + 3);
|
|
break;
|
|
case 's': // smooth curveto - Draws a cubic Bézier curve (reflective cp)
|
|
reflectiveCtrlPointX = 0;
|
|
reflectiveCtrlPointY = 0;
|
|
if (previousCmd == 'c' || previousCmd == 's'
|
|
|| previousCmd == 'C' || previousCmd == 'S') {
|
|
reflectiveCtrlPointX = currentX - ctrlPointX;
|
|
reflectiveCtrlPointY = currentY - ctrlPointY;
|
|
}
|
|
outPath->rCubicTo(reflectiveCtrlPointX, reflectiveCtrlPointY,
|
|
points->at(k + 0), points->at(k + 1),
|
|
points->at(k + 2), points->at(k + 3));
|
|
ctrlPointX = currentX + points->at(k + 0);
|
|
ctrlPointY = currentY + points->at(k + 1);
|
|
currentX += points->at(k + 2);
|
|
currentY += points->at(k + 3);
|
|
break;
|
|
case 'S': // shorthand/smooth curveto Draws a cubic Bézier curve(reflective cp)
|
|
reflectiveCtrlPointX = currentX;
|
|
reflectiveCtrlPointY = currentY;
|
|
if (previousCmd == 'c' || previousCmd == 's'
|
|
|| previousCmd == 'C' || previousCmd == 'S') {
|
|
reflectiveCtrlPointX = 2 * currentX - ctrlPointX;
|
|
reflectiveCtrlPointY = 2 * currentY - ctrlPointY;
|
|
}
|
|
outPath->cubicTo(reflectiveCtrlPointX, reflectiveCtrlPointY,
|
|
points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3));
|
|
ctrlPointX = points->at(k + 0);
|
|
ctrlPointY = points->at(k + 1);
|
|
currentX = points->at(k + 2);
|
|
currentY = points->at(k + 3);
|
|
break;
|
|
case 'q': // Draws a quadratic Bézier (relative)
|
|
outPath->rQuadTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3));
|
|
ctrlPointX = currentX + points->at(k + 0);
|
|
ctrlPointY = currentY + points->at(k + 1);
|
|
currentX += points->at(k + 2);
|
|
currentY += points->at(k + 3);
|
|
break;
|
|
case 'Q': // Draws a quadratic Bézier
|
|
outPath->quadTo(points->at(k + 0), points->at(k + 1), points->at(k + 2), points->at(k + 3));
|
|
ctrlPointX = points->at(k + 0);
|
|
ctrlPointY = points->at(k + 1);
|
|
currentX = points->at(k + 2);
|
|
currentY = points->at(k + 3);
|
|
break;
|
|
case 't': // Draws a quadratic Bézier curve(reflective control point)(relative)
|
|
reflectiveCtrlPointX = 0;
|
|
reflectiveCtrlPointY = 0;
|
|
if (previousCmd == 'q' || previousCmd == 't'
|
|
|| previousCmd == 'Q' || previousCmd == 'T') {
|
|
reflectiveCtrlPointX = currentX - ctrlPointX;
|
|
reflectiveCtrlPointY = currentY - ctrlPointY;
|
|
}
|
|
outPath->rQuadTo(reflectiveCtrlPointX, reflectiveCtrlPointY,
|
|
points->at(k + 0), points->at(k + 1));
|
|
ctrlPointX = currentX + reflectiveCtrlPointX;
|
|
ctrlPointY = currentY + reflectiveCtrlPointY;
|
|
currentX += points->at(k + 0);
|
|
currentY += points->at(k + 1);
|
|
break;
|
|
case 'T': // Draws a quadratic Bézier curve (reflective control point)
|
|
reflectiveCtrlPointX = currentX;
|
|
reflectiveCtrlPointY = currentY;
|
|
if (previousCmd == 'q' || previousCmd == 't'
|
|
|| previousCmd == 'Q' || previousCmd == 'T') {
|
|
reflectiveCtrlPointX = 2 * currentX - ctrlPointX;
|
|
reflectiveCtrlPointY = 2 * currentY - ctrlPointY;
|
|
}
|
|
outPath->quadTo(reflectiveCtrlPointX, reflectiveCtrlPointY,
|
|
points->at(k + 0), points->at(k + 1));
|
|
ctrlPointX = reflectiveCtrlPointX;
|
|
ctrlPointY = reflectiveCtrlPointY;
|
|
currentX = points->at(k + 0);
|
|
currentY = points->at(k + 1);
|
|
break;
|
|
case 'a': // Draws an elliptical arc
|
|
// (rx ry x-axis-rotation large-arc-flag sweep-flag x y)
|
|
drawArc(outPath,
|
|
currentX,
|
|
currentY,
|
|
points->at(k + 5) + currentX,
|
|
points->at(k + 6) + currentY,
|
|
points->at(k + 0),
|
|
points->at(k + 1),
|
|
points->at(k + 2),
|
|
points->at(k + 3) != 0,
|
|
points->at(k + 4) != 0);
|
|
currentX += points->at(k + 5);
|
|
currentY += points->at(k + 6);
|
|
ctrlPointX = currentX;
|
|
ctrlPointY = currentY;
|
|
break;
|
|
case 'A': // Draws an elliptical arc
|
|
drawArc(outPath,
|
|
currentX,
|
|
currentY,
|
|
points->at(k + 5),
|
|
points->at(k + 6),
|
|
points->at(k + 0),
|
|
points->at(k + 1),
|
|
points->at(k + 2),
|
|
points->at(k + 3) != 0,
|
|
points->at(k + 4) != 0);
|
|
currentX = points->at(k + 5);
|
|
currentY = points->at(k + 6);
|
|
ctrlPointX = currentX;
|
|
ctrlPointY = currentY;
|
|
break;
|
|
default:
|
|
LOG_ALWAYS_FATAL("Unsupported command: %c", cmd);
|
|
break;
|
|
}
|
|
previousCmd = cmd;
|
|
}
|
|
}
|
|
|
|
} // namespace uirenderer
|
|
} // namespace android
|