Fix the valid umbra detection. This looks better b/c every vertex will have one ray shooting at it, such that we don't miss the corner. This performs better too, due to the polygon intersection is removed and less ray intersection. 2x performance for rect and circle for spot shadow in test app. b/17288227 b/15598793 b/16712006 Change-Id: I4a5ee397b9e192e93c8e35e6260b499e3e38a6f4
1664 lines
64 KiB
C++
1664 lines
64 KiB
C++
/*
|
|
* Copyright (C) 2014 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "OpenGLRenderer"
|
|
|
|
// The highest z value can't be higher than (CASTER_Z_CAP_RATIO * light.z)
|
|
#define CASTER_Z_CAP_RATIO 0.95f
|
|
|
|
// When there is no umbra, then just fake the umbra using
|
|
// centroid * (1 - FAKE_UMBRA_SIZE_RATIO) + outline * FAKE_UMBRA_SIZE_RATIO
|
|
#define FAKE_UMBRA_SIZE_RATIO 0.05f
|
|
|
|
// When the polygon is about 90 vertices, the penumbra + umbra can reach 270 rays.
|
|
// That is consider pretty fine tessllated polygon so far.
|
|
// This is just to prevent using too much some memory when edge slicing is not
|
|
// needed any more.
|
|
#define FINE_TESSELLATED_POLYGON_RAY_NUMBER 270
|
|
/**
|
|
* Extra vertices for the corner for smoother corner.
|
|
* Only for outer loop.
|
|
* Note that we use such extra memory to avoid an extra loop.
|
|
*/
|
|
// For half circle, we could add EXTRA_VERTEX_PER_PI vertices.
|
|
// Set to 1 if we don't want to have any.
|
|
#define SPOT_EXTRA_CORNER_VERTEX_PER_PI 18
|
|
|
|
// For the whole polygon, the sum of all the deltas b/t normals is 2 * M_PI,
|
|
// therefore, the maximum number of extra vertices will be twice bigger.
|
|
#define SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER (2 * SPOT_EXTRA_CORNER_VERTEX_PER_PI)
|
|
|
|
// For each RADIANS_DIVISOR, we would allocate one more vertex b/t the normals.
|
|
#define SPOT_CORNER_RADIANS_DIVISOR (M_PI / SPOT_EXTRA_CORNER_VERTEX_PER_PI)
|
|
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <utils/Log.h>
|
|
|
|
#include "ShadowTessellator.h"
|
|
#include "SpotShadow.h"
|
|
#include "Vertex.h"
|
|
#include "utils/MathUtils.h"
|
|
|
|
// TODO: After we settle down the new algorithm, we can remove the old one and
|
|
// its utility functions.
|
|
// Right now, we still need to keep it for comparison purpose and future expansion.
|
|
namespace android {
|
|
namespace uirenderer {
|
|
|
|
static const double EPSILON = 1e-7;
|
|
|
|
/**
|
|
* For each polygon's vertex, the light center will project it to the receiver
|
|
* as one of the outline vertex.
|
|
* For each outline vertex, we need to store the position and normal.
|
|
* Normal here is defined against the edge by the current vertex and the next vertex.
|
|
*/
|
|
struct OutlineData {
|
|
Vector2 position;
|
|
Vector2 normal;
|
|
float radius;
|
|
};
|
|
|
|
/**
|
|
* For each vertex, we need to keep track of its angle, whether it is penumbra or
|
|
* umbra, and its corresponding vertex index.
|
|
*/
|
|
struct SpotShadow::VertexAngleData {
|
|
// The angle to the vertex from the centroid.
|
|
float mAngle;
|
|
// True is the vertex comes from penumbra, otherwise it comes from umbra.
|
|
bool mIsPenumbra;
|
|
// The index of the vertex described by this data.
|
|
int mVertexIndex;
|
|
void set(float angle, bool isPenumbra, int index) {
|
|
mAngle = angle;
|
|
mIsPenumbra = isPenumbra;
|
|
mVertexIndex = index;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Calculate the angle between and x and a y coordinate.
|
|
* The atan2 range from -PI to PI.
|
|
*/
|
|
static float angle(const Vector2& point, const Vector2& center) {
|
|
return atan2(point.y - center.y, point.x - center.x);
|
|
}
|
|
|
|
/**
|
|
* Calculate the intersection of a ray with the line segment defined by two points.
|
|
*
|
|
* Returns a negative value in error conditions.
|
|
|
|
* @param rayOrigin The start of the ray
|
|
* @param dx The x vector of the ray
|
|
* @param dy The y vector of the ray
|
|
* @param p1 The first point defining the line segment
|
|
* @param p2 The second point defining the line segment
|
|
* @return The distance along the ray if it intersects with the line segment, negative if otherwise
|
|
*/
|
|
static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy,
|
|
const Vector2& p1, const Vector2& p2) {
|
|
// The math below is derived from solving this formula, basically the
|
|
// intersection point should stay on both the ray and the edge of (p1, p2).
|
|
// solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
|
|
|
|
double divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
|
|
if (divisor == 0) return -1.0f; // error, invalid divisor
|
|
|
|
#if DEBUG_SHADOW
|
|
double interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
|
|
if (interpVal < 0 || interpVal > 1) {
|
|
ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal);
|
|
}
|
|
#endif
|
|
|
|
double distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
|
|
rayOrigin.x * (p2.y - p1.y)) / divisor;
|
|
|
|
return distance; // may be negative in error cases
|
|
}
|
|
|
|
/**
|
|
* Sort points by their X coordinates
|
|
*
|
|
* @param points the points as a Vector2 array.
|
|
* @param pointsLength the number of vertices of the polygon.
|
|
*/
|
|
void SpotShadow::xsort(Vector2* points, int pointsLength) {
|
|
quicksortX(points, 0, pointsLength - 1);
|
|
}
|
|
|
|
/**
|
|
* compute the convex hull of a collection of Points
|
|
*
|
|
* @param points the points as a Vector2 array.
|
|
* @param pointsLength the number of vertices of the polygon.
|
|
* @param retPoly pre allocated array of floats to put the vertices
|
|
* @return the number of points in the polygon 0 if no intersection
|
|
*/
|
|
int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
|
|
xsort(points, pointsLength);
|
|
int n = pointsLength;
|
|
Vector2 lUpper[n];
|
|
lUpper[0] = points[0];
|
|
lUpper[1] = points[1];
|
|
|
|
int lUpperSize = 2;
|
|
|
|
for (int i = 2; i < n; i++) {
|
|
lUpper[lUpperSize] = points[i];
|
|
lUpperSize++;
|
|
|
|
while (lUpperSize > 2 && !ccw(
|
|
lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y,
|
|
lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y,
|
|
lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
|
|
// Remove the middle point of the three last
|
|
lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
|
|
lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
|
|
lUpperSize--;
|
|
}
|
|
}
|
|
|
|
Vector2 lLower[n];
|
|
lLower[0] = points[n - 1];
|
|
lLower[1] = points[n - 2];
|
|
|
|
int lLowerSize = 2;
|
|
|
|
for (int i = n - 3; i >= 0; i--) {
|
|
lLower[lLowerSize] = points[i];
|
|
lLowerSize++;
|
|
|
|
while (lLowerSize > 2 && !ccw(
|
|
lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y,
|
|
lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y,
|
|
lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
|
|
// Remove the middle point of the three last
|
|
lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
|
|
lLowerSize--;
|
|
}
|
|
}
|
|
|
|
// output points in CW ordering
|
|
const int total = lUpperSize + lLowerSize - 2;
|
|
int outIndex = total - 1;
|
|
for (int i = 0; i < lUpperSize; i++) {
|
|
retPoly[outIndex] = lUpper[i];
|
|
outIndex--;
|
|
}
|
|
|
|
for (int i = 1; i < lLowerSize - 1; i++) {
|
|
retPoly[outIndex] = lLower[i];
|
|
outIndex--;
|
|
}
|
|
// TODO: Add test harness which verify that all the points are inside the hull.
|
|
return total;
|
|
}
|
|
|
|
/**
|
|
* Test whether the 3 points form a counter clockwise turn.
|
|
*
|
|
* @return true if a right hand turn
|
|
*/
|
|
bool SpotShadow::ccw(double ax, double ay, double bx, double by,
|
|
double cx, double cy) {
|
|
return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
|
|
}
|
|
|
|
/**
|
|
* Calculates the intersection of poly1 with poly2 and put in poly2.
|
|
* Note that both poly1 and poly2 must be in CW order already!
|
|
*
|
|
* @param poly1 The 1st polygon, as a Vector2 array.
|
|
* @param poly1Length The number of vertices of 1st polygon.
|
|
* @param poly2 The 2nd and output polygon, as a Vector2 array.
|
|
* @param poly2Length The number of vertices of 2nd polygon.
|
|
* @return number of vertices in output polygon as poly2.
|
|
*/
|
|
int SpotShadow::intersection(const Vector2* poly1, int poly1Length,
|
|
Vector2* poly2, int poly2Length) {
|
|
#if DEBUG_SHADOW
|
|
if (!ShadowTessellator::isClockwise(poly1, poly1Length)) {
|
|
ALOGW("Poly1 is not clockwise! Intersection is wrong!");
|
|
}
|
|
if (!ShadowTessellator::isClockwise(poly2, poly2Length)) {
|
|
ALOGW("Poly2 is not clockwise! Intersection is wrong!");
|
|
}
|
|
#endif
|
|
Vector2 poly[poly1Length * poly2Length + 2];
|
|
int count = 0;
|
|
int pcount = 0;
|
|
|
|
// If one vertex from one polygon sits inside another polygon, add it and
|
|
// count them.
|
|
for (int i = 0; i < poly1Length; i++) {
|
|
if (testPointInsidePolygon(poly1[i], poly2, poly2Length)) {
|
|
poly[count] = poly1[i];
|
|
count++;
|
|
pcount++;
|
|
|
|
}
|
|
}
|
|
|
|
int insidePoly2 = pcount;
|
|
for (int i = 0; i < poly2Length; i++) {
|
|
if (testPointInsidePolygon(poly2[i], poly1, poly1Length)) {
|
|
poly[count] = poly2[i];
|
|
count++;
|
|
}
|
|
}
|
|
|
|
int insidePoly1 = count - insidePoly2;
|
|
// If all vertices from poly1 are inside poly2, then just return poly1.
|
|
if (insidePoly2 == poly1Length) {
|
|
memcpy(poly2, poly1, poly1Length * sizeof(Vector2));
|
|
return poly1Length;
|
|
}
|
|
|
|
// If all vertices from poly2 are inside poly1, then just return poly2.
|
|
if (insidePoly1 == poly2Length) {
|
|
return poly2Length;
|
|
}
|
|
|
|
// Since neither polygon fully contain the other one, we need to add all the
|
|
// intersection points.
|
|
Vector2 intersection = {0, 0};
|
|
for (int i = 0; i < poly2Length; i++) {
|
|
for (int j = 0; j < poly1Length; j++) {
|
|
int poly2LineStart = i;
|
|
int poly2LineEnd = ((i + 1) % poly2Length);
|
|
int poly1LineStart = j;
|
|
int poly1LineEnd = ((j + 1) % poly1Length);
|
|
bool found = lineIntersection(
|
|
poly2[poly2LineStart].x, poly2[poly2LineStart].y,
|
|
poly2[poly2LineEnd].x, poly2[poly2LineEnd].y,
|
|
poly1[poly1LineStart].x, poly1[poly1LineStart].y,
|
|
poly1[poly1LineEnd].x, poly1[poly1LineEnd].y,
|
|
intersection);
|
|
if (found) {
|
|
poly[count].x = intersection.x;
|
|
poly[count].y = intersection.y;
|
|
count++;
|
|
} else {
|
|
Vector2 delta = poly2[i] - poly1[j];
|
|
if (delta.lengthSquared() < EPSILON) {
|
|
poly[count] = poly2[i];
|
|
count++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (count == 0) {
|
|
return 0;
|
|
}
|
|
|
|
// Sort the result polygon around the center.
|
|
Vector2 center = {0.0f, 0.0f};
|
|
for (int i = 0; i < count; i++) {
|
|
center += poly[i];
|
|
}
|
|
center /= count;
|
|
sort(poly, count, center);
|
|
|
|
#if DEBUG_SHADOW
|
|
// Since poly2 is overwritten as the result, we need to save a copy to do
|
|
// our verification.
|
|
Vector2 oldPoly2[poly2Length];
|
|
int oldPoly2Length = poly2Length;
|
|
memcpy(oldPoly2, poly2, sizeof(Vector2) * poly2Length);
|
|
#endif
|
|
|
|
// Filter the result out from poly and put it into poly2.
|
|
poly2[0] = poly[0];
|
|
int lastOutputIndex = 0;
|
|
for (int i = 1; i < count; i++) {
|
|
Vector2 delta = poly[i] - poly2[lastOutputIndex];
|
|
if (delta.lengthSquared() >= EPSILON) {
|
|
poly2[++lastOutputIndex] = poly[i];
|
|
} else {
|
|
// If the vertices are too close, pick the inner one, because the
|
|
// inner one is more likely to be an intersection point.
|
|
Vector2 delta1 = poly[i] - center;
|
|
Vector2 delta2 = poly2[lastOutputIndex] - center;
|
|
if (delta1.lengthSquared() < delta2.lengthSquared()) {
|
|
poly2[lastOutputIndex] = poly[i];
|
|
}
|
|
}
|
|
}
|
|
int resultLength = lastOutputIndex + 1;
|
|
|
|
#if DEBUG_SHADOW
|
|
testConvex(poly2, resultLength, "intersection");
|
|
testConvex(poly1, poly1Length, "input poly1");
|
|
testConvex(oldPoly2, oldPoly2Length, "input poly2");
|
|
|
|
testIntersection(poly1, poly1Length, oldPoly2, oldPoly2Length, poly2, resultLength);
|
|
#endif
|
|
|
|
return resultLength;
|
|
}
|
|
|
|
/**
|
|
* Sort points about a center point
|
|
*
|
|
* @param poly The in and out polyogon as a Vector2 array.
|
|
* @param polyLength The number of vertices of the polygon.
|
|
* @param center the center ctr[0] = x , ctr[1] = y to sort around.
|
|
*/
|
|
void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
|
|
quicksortCirc(poly, 0, polyLength - 1, center);
|
|
}
|
|
|
|
/**
|
|
* Swap points pointed to by i and j
|
|
*/
|
|
void SpotShadow::swap(Vector2* points, int i, int j) {
|
|
Vector2 temp = points[i];
|
|
points[i] = points[j];
|
|
points[j] = temp;
|
|
}
|
|
|
|
/**
|
|
* quick sort implementation about the center.
|
|
*/
|
|
void SpotShadow::quicksortCirc(Vector2* points, int low, int high,
|
|
const Vector2& center) {
|
|
int i = low, j = high;
|
|
int p = low + (high - low) / 2;
|
|
float pivot = angle(points[p], center);
|
|
while (i <= j) {
|
|
while (angle(points[i], center) > pivot) {
|
|
i++;
|
|
}
|
|
while (angle(points[j], center) < pivot) {
|
|
j--;
|
|
}
|
|
|
|
if (i <= j) {
|
|
swap(points, i, j);
|
|
i++;
|
|
j--;
|
|
}
|
|
}
|
|
if (low < j) quicksortCirc(points, low, j, center);
|
|
if (i < high) quicksortCirc(points, i, high, center);
|
|
}
|
|
|
|
/**
|
|
* Sort points by x axis
|
|
*
|
|
* @param points points to sort
|
|
* @param low start index
|
|
* @param high end index
|
|
*/
|
|
void SpotShadow::quicksortX(Vector2* points, int low, int high) {
|
|
int i = low, j = high;
|
|
int p = low + (high - low) / 2;
|
|
float pivot = points[p].x;
|
|
while (i <= j) {
|
|
while (points[i].x < pivot) {
|
|
i++;
|
|
}
|
|
while (points[j].x > pivot) {
|
|
j--;
|
|
}
|
|
|
|
if (i <= j) {
|
|
swap(points, i, j);
|
|
i++;
|
|
j--;
|
|
}
|
|
}
|
|
if (low < j) quicksortX(points, low, j);
|
|
if (i < high) quicksortX(points, i, high);
|
|
}
|
|
|
|
/**
|
|
* Test whether a point is inside the polygon.
|
|
*
|
|
* @param testPoint the point to test
|
|
* @param poly the polygon
|
|
* @return true if the testPoint is inside the poly.
|
|
*/
|
|
bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint,
|
|
const Vector2* poly, int len) {
|
|
bool c = false;
|
|
double testx = testPoint.x;
|
|
double testy = testPoint.y;
|
|
for (int i = 0, j = len - 1; i < len; j = i++) {
|
|
double startX = poly[j].x;
|
|
double startY = poly[j].y;
|
|
double endX = poly[i].x;
|
|
double endY = poly[i].y;
|
|
|
|
if (((endY > testy) != (startY > testy))
|
|
&& (testx < (startX - endX) * (testy - endY)
|
|
/ (startY - endY) + endX)) {
|
|
c = !c;
|
|
}
|
|
}
|
|
return c;
|
|
}
|
|
|
|
/**
|
|
* Make the polygon turn clockwise.
|
|
*
|
|
* @param polygon the polygon as a Vector2 array.
|
|
* @param len the number of points of the polygon
|
|
*/
|
|
void SpotShadow::makeClockwise(Vector2* polygon, int len) {
|
|
if (polygon == 0 || len == 0) {
|
|
return;
|
|
}
|
|
if (!ShadowTessellator::isClockwise(polygon, len)) {
|
|
reverse(polygon, len);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Reverse the polygon
|
|
*
|
|
* @param polygon the polygon as a Vector2 array
|
|
* @param len the number of points of the polygon
|
|
*/
|
|
void SpotShadow::reverse(Vector2* polygon, int len) {
|
|
int n = len / 2;
|
|
for (int i = 0; i < n; i++) {
|
|
Vector2 tmp = polygon[i];
|
|
int k = len - 1 - i;
|
|
polygon[i] = polygon[k];
|
|
polygon[k] = tmp;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Intersects two lines in parametric form. This function is called in a tight
|
|
* loop, and we need double precision to get things right.
|
|
*
|
|
* @param x1 the x coordinate point 1 of line 1
|
|
* @param y1 the y coordinate point 1 of line 1
|
|
* @param x2 the x coordinate point 2 of line 1
|
|
* @param y2 the y coordinate point 2 of line 1
|
|
* @param x3 the x coordinate point 1 of line 2
|
|
* @param y3 the y coordinate point 1 of line 2
|
|
* @param x4 the x coordinate point 2 of line 2
|
|
* @param y4 the y coordinate point 2 of line 2
|
|
* @param ret the x,y location of the intersection
|
|
* @return true if it found an intersection
|
|
*/
|
|
inline bool SpotShadow::lineIntersection(double x1, double y1, double x2, double y2,
|
|
double x3, double y3, double x4, double y4, Vector2& ret) {
|
|
double d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4);
|
|
if (d == 0.0) return false;
|
|
|
|
double dx = (x1 * y2 - y1 * x2);
|
|
double dy = (x3 * y4 - y3 * x4);
|
|
double x = (dx * (x3 - x4) - (x1 - x2) * dy) / d;
|
|
double y = (dx * (y3 - y4) - (y1 - y2) * dy) / d;
|
|
|
|
// The intersection should be in the middle of the point 1 and point 2,
|
|
// likewise point 3 and point 4.
|
|
if (((x - x1) * (x - x2) > EPSILON)
|
|
|| ((x - x3) * (x - x4) > EPSILON)
|
|
|| ((y - y1) * (y - y2) > EPSILON)
|
|
|| ((y - y3) * (y - y4) > EPSILON)) {
|
|
// Not interesected
|
|
return false;
|
|
}
|
|
ret.x = x;
|
|
ret.y = y;
|
|
return true;
|
|
|
|
}
|
|
|
|
/**
|
|
* Compute a horizontal circular polygon about point (x , y , height) of radius
|
|
* (size)
|
|
*
|
|
* @param points number of the points of the output polygon.
|
|
* @param lightCenter the center of the light.
|
|
* @param size the light size.
|
|
* @param ret result polygon.
|
|
*/
|
|
void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter,
|
|
float size, Vector3* ret) {
|
|
// TODO: Caching all the sin / cos values and store them in a look up table.
|
|
for (int i = 0; i < points; i++) {
|
|
double angle = 2 * i * M_PI / points;
|
|
ret[i].x = cosf(angle) * size + lightCenter.x;
|
|
ret[i].y = sinf(angle) * size + lightCenter.y;
|
|
ret[i].z = lightCenter.z;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* From light center, project one vertex to the z=0 surface and get the outline.
|
|
*
|
|
* @param outline The result which is the outline position.
|
|
* @param lightCenter The center of light.
|
|
* @param polyVertex The input polygon's vertex.
|
|
*
|
|
* @return float The ratio of (polygon.z / light.z - polygon.z)
|
|
*/
|
|
float SpotShadow::projectCasterToOutline(Vector2& outline,
|
|
const Vector3& lightCenter, const Vector3& polyVertex) {
|
|
float lightToPolyZ = lightCenter.z - polyVertex.z;
|
|
float ratioZ = CASTER_Z_CAP_RATIO;
|
|
if (lightToPolyZ != 0) {
|
|
// If any caster's vertex is almost above the light, we just keep it as 95%
|
|
// of the height of the light.
|
|
ratioZ = MathUtils::clamp(polyVertex.z / lightToPolyZ, 0.0f, CASTER_Z_CAP_RATIO);
|
|
}
|
|
|
|
outline.x = polyVertex.x - ratioZ * (lightCenter.x - polyVertex.x);
|
|
outline.y = polyVertex.y - ratioZ * (lightCenter.y - polyVertex.y);
|
|
return ratioZ;
|
|
}
|
|
|
|
/**
|
|
* Generate the shadow spot light of shape lightPoly and a object poly
|
|
*
|
|
* @param isCasterOpaque whether the caster is opaque
|
|
* @param lightCenter the center of the light
|
|
* @param lightSize the radius of the light
|
|
* @param poly x,y,z vertexes of a convex polygon that occludes the light source
|
|
* @param polyLength number of vertexes of the occluding polygon
|
|
* @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
|
|
* empty strip if error.
|
|
*/
|
|
void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCenter,
|
|
float lightSize, const Vector3* poly, int polyLength, const Vector3& polyCentroid,
|
|
VertexBuffer& shadowTriangleStrip) {
|
|
if (CC_UNLIKELY(lightCenter.z <= 0)) {
|
|
ALOGW("Relative Light Z is not positive. No spot shadow!");
|
|
return;
|
|
}
|
|
if (CC_UNLIKELY(polyLength < 3)) {
|
|
#if DEBUG_SHADOW
|
|
ALOGW("Invalid polygon length. No spot shadow!");
|
|
#endif
|
|
return;
|
|
}
|
|
OutlineData outlineData[polyLength];
|
|
Vector2 outlineCentroid;
|
|
// Calculate the projected outline for each polygon's vertices from the light center.
|
|
//
|
|
// O Light
|
|
// /
|
|
// /
|
|
// . Polygon vertex
|
|
// /
|
|
// /
|
|
// O Outline vertices
|
|
//
|
|
// Ratio = (Poly - Outline) / (Light - Poly)
|
|
// Outline.x = Poly.x - Ratio * (Light.x - Poly.x)
|
|
// Outline's radius / Light's radius = Ratio
|
|
|
|
// Compute the last outline vertex to make sure we can get the normal and outline
|
|
// in one single loop.
|
|
projectCasterToOutline(outlineData[polyLength - 1].position, lightCenter,
|
|
poly[polyLength - 1]);
|
|
|
|
// Take the outline's polygon, calculate the normal for each outline edge.
|
|
int currentNormalIndex = polyLength - 1;
|
|
int nextNormalIndex = 0;
|
|
|
|
for (int i = 0; i < polyLength; i++) {
|
|
float ratioZ = projectCasterToOutline(outlineData[i].position,
|
|
lightCenter, poly[i]);
|
|
outlineData[i].radius = ratioZ * lightSize;
|
|
|
|
outlineData[currentNormalIndex].normal = ShadowTessellator::calculateNormal(
|
|
outlineData[currentNormalIndex].position,
|
|
outlineData[nextNormalIndex].position);
|
|
currentNormalIndex = (currentNormalIndex + 1) % polyLength;
|
|
nextNormalIndex++;
|
|
}
|
|
|
|
projectCasterToOutline(outlineCentroid, lightCenter, polyCentroid);
|
|
|
|
int penumbraIndex = 0;
|
|
// Then each polygon's vertex produce at minmal 2 penumbra vertices.
|
|
// Since the size can be dynamic here, we keep track of the size and update
|
|
// the real size at the end.
|
|
int allocatedPenumbraLength = 2 * polyLength + SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER;
|
|
Vector2 penumbra[allocatedPenumbraLength];
|
|
int totalExtraCornerSliceNumber = 0;
|
|
|
|
Vector2 umbra[polyLength];
|
|
|
|
// When centroid is covered by all circles from outline, then we consider
|
|
// the umbra is invalid, and we will tune down the shadow strength.
|
|
bool hasValidUmbra = true;
|
|
// We need the minimal of RaitoVI to decrease the spot shadow strength accordingly.
|
|
float minRaitoVI = FLT_MAX;
|
|
|
|
for (int i = 0; i < polyLength; i++) {
|
|
// Generate all the penumbra's vertices only using the (outline vertex + normal * radius)
|
|
// There is no guarantee that the penumbra is still convex, but for
|
|
// each outline vertex, it will connect to all its corresponding penumbra vertices as
|
|
// triangle fans. And for neighber penumbra vertex, it will be a trapezoid.
|
|
//
|
|
// Penumbra Vertices marked as Pi
|
|
// Outline Vertices marked as Vi
|
|
// (P3)
|
|
// (P2) | ' (P4)
|
|
// (P1)' | | '
|
|
// ' | | '
|
|
// (P0) ------------------------------------------------(P5)
|
|
// | (V0) |(V1)
|
|
// | |
|
|
// | |
|
|
// | |
|
|
// | |
|
|
// | |
|
|
// | |
|
|
// | |
|
|
// | |
|
|
// (V3)-----------------------------------(V2)
|
|
int preNormalIndex = (i + polyLength - 1) % polyLength;
|
|
|
|
const Vector2& previousNormal = outlineData[preNormalIndex].normal;
|
|
const Vector2& currentNormal = outlineData[i].normal;
|
|
|
|
// Depending on how roundness we want for each corner, we can subdivide
|
|
// further here and/or introduce some heuristic to decide how much the
|
|
// subdivision should be.
|
|
int currentExtraSliceNumber = ShadowTessellator::getExtraVertexNumber(
|
|
previousNormal, currentNormal, SPOT_CORNER_RADIANS_DIVISOR);
|
|
|
|
int currentCornerSliceNumber = 1 + currentExtraSliceNumber;
|
|
totalExtraCornerSliceNumber += currentExtraSliceNumber;
|
|
#if DEBUG_SHADOW
|
|
ALOGD("currentExtraSliceNumber should be %d", currentExtraSliceNumber);
|
|
ALOGD("currentCornerSliceNumber should be %d", currentCornerSliceNumber);
|
|
ALOGD("totalCornerSliceNumber is %d", totalExtraCornerSliceNumber);
|
|
#endif
|
|
if (CC_UNLIKELY(totalExtraCornerSliceNumber > SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER)) {
|
|
currentCornerSliceNumber = 1;
|
|
}
|
|
for (int k = 0; k <= currentCornerSliceNumber; k++) {
|
|
Vector2 avgNormal =
|
|
(previousNormal * (currentCornerSliceNumber - k) + currentNormal * k) /
|
|
currentCornerSliceNumber;
|
|
avgNormal.normalize();
|
|
penumbra[penumbraIndex++] = outlineData[i].position +
|
|
avgNormal * outlineData[i].radius;
|
|
}
|
|
|
|
|
|
// Compute the umbra by the intersection from the outline's centroid!
|
|
//
|
|
// (V) ------------------------------------
|
|
// | ' |
|
|
// | ' |
|
|
// | ' (I) |
|
|
// | ' |
|
|
// | ' (C) |
|
|
// | |
|
|
// | |
|
|
// | |
|
|
// | |
|
|
// ------------------------------------
|
|
//
|
|
// Connect a line b/t the outline vertex (V) and the centroid (C), it will
|
|
// intersect with the outline vertex's circle at point (I).
|
|
// Now, ratioVI = VI / VC, ratioIC = IC / VC
|
|
// Then the intersetion point can be computed as Ixy = Vxy * ratioIC + Cxy * ratioVI;
|
|
//
|
|
// When all of the outline circles cover the the outline centroid, (like I is
|
|
// on the other side of C), there is no real umbra any more, so we just fake
|
|
// a small area around the centroid as the umbra, and tune down the spot
|
|
// shadow's umbra strength to simulate the effect the whole shadow will
|
|
// become lighter in this case.
|
|
// The ratio can be simulated by using the inverse of maximum of ratioVI for
|
|
// all (V).
|
|
float distOutline = (outlineData[i].position - outlineCentroid).length();
|
|
if (CC_UNLIKELY(distOutline == 0)) {
|
|
// If the outline has 0 area, then there is no spot shadow anyway.
|
|
ALOGW("Outline has 0 area, no spot shadow!");
|
|
return;
|
|
}
|
|
|
|
float ratioVI = outlineData[i].radius / distOutline;
|
|
minRaitoVI = MathUtils::min(minRaitoVI, ratioVI);
|
|
if (ratioVI >= (1 - FAKE_UMBRA_SIZE_RATIO)) {
|
|
ratioVI = (1 - FAKE_UMBRA_SIZE_RATIO);
|
|
}
|
|
// When we know we don't have valid umbra, don't bother to compute the
|
|
// values below. But we can't skip the loop yet since we want to know the
|
|
// maximum ratio.
|
|
float ratioIC = 1 - ratioVI;
|
|
umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI;
|
|
}
|
|
|
|
hasValidUmbra = (minRaitoVI <= 1.0);
|
|
float shadowStrengthScale = 1.0;
|
|
if (!hasValidUmbra) {
|
|
#if DEBUG_SHADOW
|
|
ALOGW("The object is too close to the light or too small, no real umbra!");
|
|
#endif
|
|
for (int i = 0; i < polyLength; i++) {
|
|
umbra[i] = outlineData[i].position * FAKE_UMBRA_SIZE_RATIO +
|
|
outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO);
|
|
}
|
|
shadowStrengthScale = 1.0 / minRaitoVI;
|
|
}
|
|
|
|
int penumbraLength = penumbraIndex;
|
|
int umbraLength = polyLength;
|
|
|
|
#if DEBUG_SHADOW
|
|
ALOGD("penumbraLength is %d , allocatedPenumbraLength %d", penumbraLength, allocatedPenumbraLength);
|
|
dumpPolygon(poly, polyLength, "input poly");
|
|
dumpPolygon(penumbra, penumbraLength, "penumbra");
|
|
dumpPolygon(umbra, umbraLength, "umbra");
|
|
ALOGD("hasValidUmbra is %d and shadowStrengthScale is %f", hasValidUmbra, shadowStrengthScale);
|
|
#endif
|
|
|
|
// The penumbra and umbra needs to be in convex shape to keep consistency
|
|
// and quality.
|
|
// Since we are still shooting rays to penumbra, it needs to be convex.
|
|
// Umbra can be represented as a fan from the centroid, but visually umbra
|
|
// looks nicer when it is convex.
|
|
Vector2 finalUmbra[umbraLength];
|
|
Vector2 finalPenumbra[penumbraLength];
|
|
int finalUmbraLength = hull(umbra, umbraLength, finalUmbra);
|
|
int finalPenumbraLength = hull(penumbra, penumbraLength, finalPenumbra);
|
|
|
|
generateTriangleStrip(isCasterOpaque, shadowStrengthScale, finalPenumbra,
|
|
finalPenumbraLength, finalUmbra, finalUmbraLength, poly, polyLength,
|
|
shadowTriangleStrip, outlineCentroid);
|
|
|
|
}
|
|
|
|
/**
|
|
* Converts a polygon specified with CW vertices into an array of distance-from-centroid values.
|
|
*
|
|
* Returns false in error conditions
|
|
*
|
|
* @param poly Array of vertices. Note that these *must* be CW.
|
|
* @param polyLength The number of vertices in the polygon.
|
|
* @param polyCentroid The centroid of the polygon, from which rays will be cast
|
|
* @param rayDist The output array for the calculated distances, must be SHADOW_RAY_COUNT in size
|
|
*/
|
|
bool convertPolyToRayDist(const Vector2* poly, int polyLength, const Vector2& polyCentroid,
|
|
float* rayDist) {
|
|
const int rays = SHADOW_RAY_COUNT;
|
|
const float step = M_PI * 2 / rays;
|
|
|
|
const Vector2* lastVertex = &(poly[polyLength - 1]);
|
|
float startAngle = angle(*lastVertex, polyCentroid);
|
|
|
|
// Start with the ray that's closest to and less than startAngle
|
|
int rayIndex = floor((startAngle - EPSILON) / step);
|
|
rayIndex = (rayIndex + rays) % rays; // ensure positive
|
|
|
|
for (int polyIndex = 0; polyIndex < polyLength; polyIndex++) {
|
|
/*
|
|
* For a given pair of vertices on the polygon, poly[i-1] and poly[i], the rays that
|
|
* intersect these will be those that are between the two angles from the centroid that the
|
|
* vertices define.
|
|
*
|
|
* Because the polygon vertices are stored clockwise, the closest ray with an angle
|
|
* *smaller* than that defined by angle(poly[i], centroid) will be the first ray that does
|
|
* not intersect with poly[i-1], poly[i].
|
|
*/
|
|
float currentAngle = angle(poly[polyIndex], polyCentroid);
|
|
|
|
// find first ray that will not intersect the line segment poly[i-1] & poly[i]
|
|
int firstRayIndexOnNextSegment = floor((currentAngle - EPSILON) / step);
|
|
firstRayIndexOnNextSegment = (firstRayIndexOnNextSegment + rays) % rays; // ensure positive
|
|
|
|
// Iterate through all rays that intersect with poly[i-1], poly[i] line segment.
|
|
// This may be 0 rays.
|
|
while (rayIndex != firstRayIndexOnNextSegment) {
|
|
float distanceToIntersect = rayIntersectPoints(polyCentroid,
|
|
cos(rayIndex * step),
|
|
sin(rayIndex * step),
|
|
*lastVertex, poly[polyIndex]);
|
|
if (distanceToIntersect < 0) {
|
|
#if DEBUG_SHADOW
|
|
ALOGW("ERROR: convertPolyToRayDist failed");
|
|
#endif
|
|
return false; // error case, abort
|
|
}
|
|
|
|
rayDist[rayIndex] = distanceToIntersect;
|
|
|
|
rayIndex = (rayIndex - 1 + rays) % rays;
|
|
}
|
|
lastVertex = &poly[polyIndex];
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int SpotShadow::calculateOccludedUmbra(const Vector2* umbra, int umbraLength,
|
|
const Vector3* poly, int polyLength, Vector2* occludedUmbra) {
|
|
// Occluded umbra area is computed as the intersection of the projected 2D
|
|
// poly and umbra.
|
|
for (int i = 0; i < polyLength; i++) {
|
|
occludedUmbra[i].x = poly[i].x;
|
|
occludedUmbra[i].y = poly[i].y;
|
|
}
|
|
|
|
// Both umbra and incoming polygon are guaranteed to be CW, so we can call
|
|
// intersection() directly.
|
|
return intersection(umbra, umbraLength,
|
|
occludedUmbra, polyLength);
|
|
}
|
|
|
|
/**
|
|
* This is only for experimental purpose.
|
|
* After intersections are calculated, we could smooth the polygon if needed.
|
|
* So far, we don't think it is more appealing yet.
|
|
*
|
|
* @param level The level of smoothness.
|
|
* @param rays The total number of rays.
|
|
* @param rayDist (In and Out) The distance for each ray.
|
|
*
|
|
*/
|
|
void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
|
|
for (int k = 0; k < level; k++) {
|
|
for (int i = 0; i < rays; i++) {
|
|
float p1 = rayDist[(rays - 1 + i) % rays];
|
|
float p2 = rayDist[i];
|
|
float p3 = rayDist[(i + 1) % rays];
|
|
rayDist[i] = (p1 + p2 * 2 + p3) / 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Generate a array of the angleData for either umbra or penumbra vertices.
|
|
*
|
|
* This array will be merged and used to guide where to shoot the rays, in clockwise order.
|
|
*
|
|
* @param angleDataList The result array of angle data.
|
|
*
|
|
* @return int The maximum angle's index in the array.
|
|
*/
|
|
int SpotShadow::setupAngleList(VertexAngleData* angleDataList,
|
|
int polyLength, const Vector2* polygon, const Vector2& centroid,
|
|
bool isPenumbra, const char* name) {
|
|
float maxAngle = FLT_MIN;
|
|
int maxAngleIndex = 0;
|
|
for (int i = 0; i < polyLength; i++) {
|
|
float currentAngle = angle(polygon[i], centroid);
|
|
if (currentAngle > maxAngle) {
|
|
maxAngle = currentAngle;
|
|
maxAngleIndex = i;
|
|
}
|
|
angleDataList[i].set(currentAngle, isPenumbra, i);
|
|
#if DEBUG_SHADOW
|
|
ALOGD("%s AngleList i %d %f", name, i, currentAngle);
|
|
#endif
|
|
}
|
|
return maxAngleIndex;
|
|
}
|
|
|
|
/**
|
|
* Make sure the polygons are indeed in clockwise order.
|
|
*
|
|
* Possible reasons to return false: 1. The input polygon is not setup properly. 2. The hull
|
|
* algorithm is not able to generate it properly.
|
|
*
|
|
* Anyway, since the algorithm depends on the clockwise, when these kind of unexpected error
|
|
* situation is found, we need to detect it and early return without corrupting the memory.
|
|
*
|
|
* @return bool True if the angle list is actually from big to small.
|
|
*/
|
|
bool SpotShadow::checkClockwise(int indexOfMaxAngle, int listLength, VertexAngleData* angleList,
|
|
const char* name) {
|
|
int currentIndex = indexOfMaxAngle;
|
|
#if DEBUG_SHADOW
|
|
ALOGD("max index %d", currentIndex);
|
|
#endif
|
|
for (int i = 0; i < listLength - 1; i++) {
|
|
// TODO: Cache the last angle.
|
|
float currentAngle = angleList[currentIndex].mAngle;
|
|
float nextAngle = angleList[(currentIndex + 1) % listLength].mAngle;
|
|
if (currentAngle < nextAngle) {
|
|
#if DEBUG_SHADOW
|
|
ALOGE("%s, is not CW, at index %d", name, currentIndex);
|
|
#endif
|
|
return false;
|
|
}
|
|
currentIndex = (currentIndex + 1) % listLength;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Check the polygon is clockwise.
|
|
*
|
|
* @return bool True is the polygon is clockwise.
|
|
*/
|
|
bool SpotShadow::checkPolyClockwise(int polyAngleLength, int maxPolyAngleIndex,
|
|
const float* polyAngleList) {
|
|
bool isPolyCW = true;
|
|
// Starting from maxPolyAngleIndex , check around to make sure angle decrease.
|
|
for (int i = 0; i < polyAngleLength - 1; i++) {
|
|
float currentAngle = polyAngleList[(i + maxPolyAngleIndex) % polyAngleLength];
|
|
float nextAngle = polyAngleList[(i + maxPolyAngleIndex + 1) % polyAngleLength];
|
|
if (currentAngle < nextAngle) {
|
|
isPolyCW = false;
|
|
}
|
|
}
|
|
return isPolyCW;
|
|
}
|
|
|
|
/**
|
|
* Given the sorted array of all the vertices angle data, calculate for each
|
|
* vertices, the offset value to array element which represent the start edge
|
|
* of the polygon we need to shoot the ray at.
|
|
*
|
|
* TODO: Calculate this for umbra and penumbra in one loop using one single array.
|
|
*
|
|
* @param distances The result of the array distance counter.
|
|
*/
|
|
void SpotShadow::calculateDistanceCounter(bool needsOffsetToUmbra, int angleLength,
|
|
const VertexAngleData* allVerticesAngleData, int* distances) {
|
|
|
|
bool firstVertexIsPenumbra = allVerticesAngleData[0].mIsPenumbra;
|
|
// If we want distance to inner, then we just set to 0 when we see inner.
|
|
bool needsSearch = needsOffsetToUmbra ? firstVertexIsPenumbra : !firstVertexIsPenumbra;
|
|
int distanceCounter = 0;
|
|
if (needsSearch) {
|
|
int foundIndex = -1;
|
|
for (int i = (angleLength - 1); i >= 0; i--) {
|
|
bool currentIsOuter = allVerticesAngleData[i].mIsPenumbra;
|
|
// If we need distance to inner, then we need to find a inner vertex.
|
|
if (currentIsOuter != firstVertexIsPenumbra) {
|
|
foundIndex = i;
|
|
break;
|
|
}
|
|
}
|
|
LOG_ALWAYS_FATAL_IF(foundIndex == -1, "Wrong index found, means either"
|
|
" umbra or penumbra's length is 0");
|
|
distanceCounter = angleLength - foundIndex;
|
|
}
|
|
#if DEBUG_SHADOW
|
|
ALOGD("distances[0] is %d", distanceCounter);
|
|
#endif
|
|
|
|
distances[0] = distanceCounter; // means never see a target poly
|
|
|
|
for (int i = 1; i < angleLength; i++) {
|
|
bool firstVertexIsPenumbra = allVerticesAngleData[i].mIsPenumbra;
|
|
// When we needs for distance for each outer vertex to inner, then we
|
|
// increase the distance when seeing outer vertices. Otherwise, we clear
|
|
// to 0.
|
|
bool needsIncrement = needsOffsetToUmbra ? firstVertexIsPenumbra : !firstVertexIsPenumbra;
|
|
// If counter is not -1, that means we have seen an other polygon's vertex.
|
|
if (needsIncrement && distanceCounter != -1) {
|
|
distanceCounter++;
|
|
} else {
|
|
distanceCounter = 0;
|
|
}
|
|
distances[i] = distanceCounter;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Given umbra and penumbra angle data list, merge them by sorting the angle
|
|
* from the biggest to smallest.
|
|
*
|
|
* @param allVerticesAngleData The result array of merged angle data.
|
|
*/
|
|
void SpotShadow::mergeAngleList(int maxUmbraAngleIndex, int maxPenumbraAngleIndex,
|
|
const VertexAngleData* umbraAngleList, int umbraLength,
|
|
const VertexAngleData* penumbraAngleList, int penumbraLength,
|
|
VertexAngleData* allVerticesAngleData) {
|
|
|
|
int totalRayNumber = umbraLength + penumbraLength;
|
|
int umbraIndex = maxUmbraAngleIndex;
|
|
int penumbraIndex = maxPenumbraAngleIndex;
|
|
|
|
float currentUmbraAngle = umbraAngleList[umbraIndex].mAngle;
|
|
float currentPenumbraAngle = penumbraAngleList[penumbraIndex].mAngle;
|
|
|
|
// TODO: Clean this up using a while loop with 2 iterators.
|
|
for (int i = 0; i < totalRayNumber; i++) {
|
|
if (currentUmbraAngle > currentPenumbraAngle) {
|
|
allVerticesAngleData[i] = umbraAngleList[umbraIndex];
|
|
umbraIndex = (umbraIndex + 1) % umbraLength;
|
|
|
|
// If umbraIndex round back, that means we are running out of
|
|
// umbra vertices to merge, so just copy all the penumbra leftover.
|
|
// Otherwise, we update the currentUmbraAngle.
|
|
if (umbraIndex != maxUmbraAngleIndex) {
|
|
currentUmbraAngle = umbraAngleList[umbraIndex].mAngle;
|
|
} else {
|
|
for (int j = i + 1; j < totalRayNumber; j++) {
|
|
allVerticesAngleData[j] = penumbraAngleList[penumbraIndex];
|
|
penumbraIndex = (penumbraIndex + 1) % penumbraLength;
|
|
}
|
|
break;
|
|
}
|
|
} else {
|
|
allVerticesAngleData[i] = penumbraAngleList[penumbraIndex];
|
|
penumbraIndex = (penumbraIndex + 1) % penumbraLength;
|
|
// If penumbraIndex round back, that means we are running out of
|
|
// penumbra vertices to merge, so just copy all the umbra leftover.
|
|
// Otherwise, we update the currentPenumbraAngle.
|
|
if (penumbraIndex != maxPenumbraAngleIndex) {
|
|
currentPenumbraAngle = penumbraAngleList[penumbraIndex].mAngle;
|
|
} else {
|
|
for (int j = i + 1; j < totalRayNumber; j++) {
|
|
allVerticesAngleData[j] = umbraAngleList[umbraIndex];
|
|
umbraIndex = (umbraIndex + 1) % umbraLength;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if DEBUG_SHADOW
|
|
/**
|
|
* DEBUG ONLY: Verify all the offset compuation is correctly done by examining
|
|
* each vertex and its neighbor.
|
|
*/
|
|
static void verifyDistanceCounter(const VertexAngleData* allVerticesAngleData,
|
|
const int* distances, int angleLength, const char* name) {
|
|
int currentDistance = distances[0];
|
|
for (int i = 1; i < angleLength; i++) {
|
|
if (distances[i] != INT_MIN) {
|
|
if (!((currentDistance + 1) == distances[i]
|
|
|| distances[i] == 0)) {
|
|
ALOGE("Wrong distance found at i %d name %s", i, name);
|
|
}
|
|
currentDistance = distances[i];
|
|
if (currentDistance != 0) {
|
|
bool currentOuter = allVerticesAngleData[i].mIsPenumbra;
|
|
for (int j = 1; j <= (currentDistance - 1); j++) {
|
|
bool neigborOuter =
|
|
allVerticesAngleData[(i + angleLength - j) % angleLength].mIsPenumbra;
|
|
if (neigborOuter != currentOuter) {
|
|
ALOGE("Wrong distance found at i %d name %s", i, name);
|
|
}
|
|
}
|
|
bool oppositeOuter =
|
|
allVerticesAngleData[(i + angleLength - currentDistance) % angleLength].mIsPenumbra;
|
|
if (oppositeOuter == currentOuter) {
|
|
ALOGE("Wrong distance found at i %d name %s", i, name);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* DEBUG ONLY: Verify all the angle data compuated are is correctly done
|
|
*/
|
|
static void verifyAngleData(int totalRayNumber, const VertexAngleData* allVerticesAngleData,
|
|
const int* distancesToInner, const int* distancesToOuter,
|
|
const VertexAngleData* umbraAngleList, int maxUmbraAngleIndex, int umbraLength,
|
|
const VertexAngleData* penumbraAngleList, int maxPenumbraAngleIndex,
|
|
int penumbraLength) {
|
|
for (int i = 0; i < totalRayNumber; i++) {
|
|
ALOGD("currentAngleList i %d, angle %f, isInner %d, index %d distancesToInner"
|
|
" %d distancesToOuter %d", i, allVerticesAngleData[i].mAngle,
|
|
!allVerticesAngleData[i].mIsPenumbra,
|
|
allVerticesAngleData[i].mVertexIndex, distancesToInner[i], distancesToOuter[i]);
|
|
}
|
|
|
|
verifyDistanceCounter(allVerticesAngleData, distancesToInner, totalRayNumber, "distancesToInner");
|
|
verifyDistanceCounter(allVerticesAngleData, distancesToOuter, totalRayNumber, "distancesToOuter");
|
|
|
|
for (int i = 0; i < totalRayNumber; i++) {
|
|
if ((distancesToInner[i] * distancesToOuter[i]) != 0) {
|
|
ALOGE("distancesToInner wrong at index %d distancesToInner[i] %d,"
|
|
" distancesToOuter[i] %d", i, distancesToInner[i], distancesToOuter[i]);
|
|
}
|
|
}
|
|
int currentUmbraVertexIndex =
|
|
umbraAngleList[maxUmbraAngleIndex].mVertexIndex;
|
|
int currentPenumbraVertexIndex =
|
|
penumbraAngleList[maxPenumbraAngleIndex].mVertexIndex;
|
|
for (int i = 0; i < totalRayNumber; i++) {
|
|
if (allVerticesAngleData[i].mIsPenumbra == true) {
|
|
if (allVerticesAngleData[i].mVertexIndex != currentPenumbraVertexIndex) {
|
|
ALOGW("wrong penumbra indexing i %d allVerticesAngleData[i].mVertexIndex %d "
|
|
"currentpenumbraVertexIndex %d", i,
|
|
allVerticesAngleData[i].mVertexIndex, currentPenumbraVertexIndex);
|
|
}
|
|
currentPenumbraVertexIndex = (currentPenumbraVertexIndex + 1) % penumbraLength;
|
|
} else {
|
|
if (allVerticesAngleData[i].mVertexIndex != currentUmbraVertexIndex) {
|
|
ALOGW("wrong umbra indexing i %d allVerticesAngleData[i].mVertexIndex %d "
|
|
"currentUmbraVertexIndex %d", i,
|
|
allVerticesAngleData[i].mVertexIndex, currentUmbraVertexIndex);
|
|
}
|
|
currentUmbraVertexIndex = (currentUmbraVertexIndex + 1) % umbraLength;
|
|
}
|
|
}
|
|
for (int i = 0; i < totalRayNumber - 1; i++) {
|
|
float currentAngle = allVerticesAngleData[i].mAngle;
|
|
float nextAngle = allVerticesAngleData[(i + 1) % totalRayNumber].mAngle;
|
|
if (currentAngle < nextAngle) {
|
|
ALOGE("Unexpected angle values!, currentAngle nextAngle %f %f", currentAngle, nextAngle);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* In order to compute the occluded umbra, we need to setup the angle data list
|
|
* for the polygon data. Since we only store one poly vertex per polygon vertex,
|
|
* this array only needs to be a float array which are the angles for each vertex.
|
|
*
|
|
* @param polyAngleList The result list
|
|
*
|
|
* @return int The index for the maximum angle in this array.
|
|
*/
|
|
int SpotShadow::setupPolyAngleList(float* polyAngleList, int polyAngleLength,
|
|
const Vector2* poly2d, const Vector2& centroid) {
|
|
int maxPolyAngleIndex = -1;
|
|
float maxPolyAngle = -FLT_MAX;
|
|
for (int i = 0; i < polyAngleLength; i++) {
|
|
polyAngleList[i] = angle(poly2d[i], centroid);
|
|
if (polyAngleList[i] > maxPolyAngle) {
|
|
maxPolyAngle = polyAngleList[i];
|
|
maxPolyAngleIndex = i;
|
|
}
|
|
}
|
|
return maxPolyAngleIndex;
|
|
}
|
|
|
|
/**
|
|
* For umbra and penumbra, given the offset info and the current ray number,
|
|
* find the right edge index (the (starting vertex) for the ray to shoot at.
|
|
*
|
|
* @return int The index of the starting vertex of the edge.
|
|
*/
|
|
inline int SpotShadow::getEdgeStartIndex(const int* offsets, int rayIndex, int totalRayNumber,
|
|
const VertexAngleData* allVerticesAngleData) {
|
|
int tempOffset = offsets[rayIndex];
|
|
int targetRayIndex = (rayIndex - tempOffset + totalRayNumber) % totalRayNumber;
|
|
return allVerticesAngleData[targetRayIndex].mVertexIndex;
|
|
}
|
|
|
|
/**
|
|
* For the occluded umbra, given the array of angles, find the index of the
|
|
* starting vertex of the edge, for the ray to shoo at.
|
|
*
|
|
* TODO: Save the last result to shorten the search distance.
|
|
*
|
|
* @return int The index of the starting vertex of the edge.
|
|
*/
|
|
inline int SpotShadow::getPolyEdgeStartIndex(int maxPolyAngleIndex, int polyLength,
|
|
const float* polyAngleList, float rayAngle) {
|
|
int minPolyAngleIndex = (maxPolyAngleIndex + polyLength - 1) % polyLength;
|
|
int resultIndex = -1;
|
|
if (rayAngle > polyAngleList[maxPolyAngleIndex]
|
|
|| rayAngle <= polyAngleList[minPolyAngleIndex]) {
|
|
resultIndex = minPolyAngleIndex;
|
|
} else {
|
|
for (int i = 0; i < polyLength - 1; i++) {
|
|
int currentIndex = (maxPolyAngleIndex + i) % polyLength;
|
|
int nextIndex = (maxPolyAngleIndex + i + 1) % polyLength;
|
|
if (rayAngle <= polyAngleList[currentIndex]
|
|
&& rayAngle > polyAngleList[nextIndex]) {
|
|
resultIndex = currentIndex;
|
|
}
|
|
}
|
|
}
|
|
if (CC_UNLIKELY(resultIndex == -1)) {
|
|
// TODO: Add more error handling here.
|
|
ALOGE("Wrong index found, means no edge can't be found for rayAngle %f", rayAngle);
|
|
}
|
|
return resultIndex;
|
|
}
|
|
|
|
/**
|
|
* Convert the incoming polygons into arrays of vertices, for each ray.
|
|
* Ray only shoots when there is one vertex either on penumbra on umbra.
|
|
*
|
|
* Finally, it will generate vertices per ray for umbra, penumbra and optionally
|
|
* occludedUmbra.
|
|
*
|
|
* Return true (success) when all vertices are generated
|
|
*/
|
|
int SpotShadow::convertPolysToVerticesPerRay(
|
|
bool hasOccludedUmbraArea, const Vector2* poly2d, int polyLength,
|
|
const Vector2* umbra, int umbraLength, const Vector2* penumbra,
|
|
int penumbraLength, const Vector2& centroid,
|
|
Vector2* umbraVerticesPerRay, Vector2* penumbraVerticesPerRay,
|
|
Vector2* occludedUmbraVerticesPerRay) {
|
|
int totalRayNumber = umbraLength + penumbraLength;
|
|
|
|
// For incoming umbra / penumbra polygons, we will build an intermediate data
|
|
// structure to help us sort all the vertices according to the vertices.
|
|
// Using this data structure, we can tell where (the angle) to shoot the ray,
|
|
// whether we shoot at penumbra edge or umbra edge, and which edge to shoot at.
|
|
//
|
|
// We first parse each vertices and generate a table of VertexAngleData.
|
|
// Based on that, we create 2 arrays telling us which edge to shoot at.
|
|
VertexAngleData allVerticesAngleData[totalRayNumber];
|
|
VertexAngleData umbraAngleList[umbraLength];
|
|
VertexAngleData penumbraAngleList[penumbraLength];
|
|
|
|
int polyAngleLength = hasOccludedUmbraArea ? polyLength : 0;
|
|
float polyAngleList[polyAngleLength];
|
|
|
|
const int maxUmbraAngleIndex =
|
|
setupAngleList(umbraAngleList, umbraLength, umbra, centroid, false, "umbra");
|
|
const int maxPenumbraAngleIndex =
|
|
setupAngleList(penumbraAngleList, penumbraLength, penumbra, centroid, true, "penumbra");
|
|
const int maxPolyAngleIndex = setupPolyAngleList(polyAngleList, polyAngleLength, poly2d, centroid);
|
|
|
|
// Check all the polygons here are CW.
|
|
bool isPolyCW = checkPolyClockwise(polyAngleLength, maxPolyAngleIndex, polyAngleList);
|
|
bool isUmbraCW = checkClockwise(maxUmbraAngleIndex, umbraLength,
|
|
umbraAngleList, "umbra");
|
|
bool isPenumbraCW = checkClockwise(maxPenumbraAngleIndex, penumbraLength,
|
|
penumbraAngleList, "penumbra");
|
|
|
|
if (!isUmbraCW || !isPenumbraCW || !isPolyCW) {
|
|
#if DEBUG_SHADOW
|
|
ALOGE("One polygon is not CW isUmbraCW %d isPenumbraCW %d isPolyCW %d",
|
|
isUmbraCW, isPenumbraCW, isPolyCW);
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
mergeAngleList(maxUmbraAngleIndex, maxPenumbraAngleIndex,
|
|
umbraAngleList, umbraLength, penumbraAngleList, penumbraLength,
|
|
allVerticesAngleData);
|
|
|
|
// Calculate the offset to the left most Inner vertex for each outerVertex.
|
|
// Then the offset to the left most Outer vertex for each innerVertex.
|
|
int offsetToInner[totalRayNumber];
|
|
int offsetToOuter[totalRayNumber];
|
|
calculateDistanceCounter(true, totalRayNumber, allVerticesAngleData, offsetToInner);
|
|
calculateDistanceCounter(false, totalRayNumber, allVerticesAngleData, offsetToOuter);
|
|
|
|
// Generate both umbraVerticesPerRay and penumbraVerticesPerRay
|
|
for (int i = 0; i < totalRayNumber; i++) {
|
|
float rayAngle = allVerticesAngleData[i].mAngle;
|
|
bool isUmbraVertex = !allVerticesAngleData[i].mIsPenumbra;
|
|
|
|
float dx = cosf(rayAngle);
|
|
float dy = sinf(rayAngle);
|
|
float distanceToIntersectUmbra = -1;
|
|
|
|
if (isUmbraVertex) {
|
|
// We can just copy umbra easily, and calculate the distance for the
|
|
// occluded umbra computation.
|
|
int startUmbraIndex = allVerticesAngleData[i].mVertexIndex;
|
|
umbraVerticesPerRay[i] = umbra[startUmbraIndex];
|
|
if (hasOccludedUmbraArea) {
|
|
distanceToIntersectUmbra = (umbraVerticesPerRay[i] - centroid).length();
|
|
}
|
|
|
|
//shoot ray to penumbra only
|
|
int startPenumbraIndex = getEdgeStartIndex(offsetToOuter, i, totalRayNumber,
|
|
allVerticesAngleData);
|
|
float distanceToIntersectPenumbra = rayIntersectPoints(centroid, dx, dy,
|
|
penumbra[startPenumbraIndex],
|
|
penumbra[(startPenumbraIndex + 1) % penumbraLength]);
|
|
if (distanceToIntersectPenumbra < 0) {
|
|
#if DEBUG_SHADOW
|
|
ALOGW("convertPolyToRayDist for penumbra failed rayAngle %f dx %f dy %f",
|
|
rayAngle, dx, dy);
|
|
#endif
|
|
distanceToIntersectPenumbra = 0;
|
|
}
|
|
penumbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectPenumbra;
|
|
penumbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectPenumbra;
|
|
} else {
|
|
// We can just copy the penumbra
|
|
int startPenumbraIndex = allVerticesAngleData[i].mVertexIndex;
|
|
penumbraVerticesPerRay[i] = penumbra[startPenumbraIndex];
|
|
|
|
// And shoot ray to umbra only
|
|
int startUmbraIndex = getEdgeStartIndex(offsetToInner, i, totalRayNumber,
|
|
allVerticesAngleData);
|
|
|
|
distanceToIntersectUmbra = rayIntersectPoints(centroid, dx, dy,
|
|
umbra[startUmbraIndex], umbra[(startUmbraIndex + 1) % umbraLength]);
|
|
if (distanceToIntersectUmbra < 0) {
|
|
#if DEBUG_SHADOW
|
|
ALOGW("convertPolyToRayDist for umbra failed rayAngle %f dx %f dy %f",
|
|
rayAngle, dx, dy);
|
|
#endif
|
|
distanceToIntersectUmbra = 0;
|
|
}
|
|
umbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectUmbra;
|
|
umbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectUmbra;
|
|
}
|
|
|
|
if (hasOccludedUmbraArea) {
|
|
// Shoot the same ray to the poly2d, and get the distance.
|
|
int startPolyIndex = getPolyEdgeStartIndex(maxPolyAngleIndex, polyLength,
|
|
polyAngleList, rayAngle);
|
|
|
|
float distanceToIntersectPoly = rayIntersectPoints(centroid, dx, dy,
|
|
poly2d[startPolyIndex], poly2d[(startPolyIndex + 1) % polyLength]);
|
|
if (distanceToIntersectPoly < 0) {
|
|
distanceToIntersectPoly = 0;
|
|
}
|
|
distanceToIntersectPoly = MathUtils::min(distanceToIntersectUmbra, distanceToIntersectPoly);
|
|
occludedUmbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectPoly;
|
|
occludedUmbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectPoly;
|
|
}
|
|
}
|
|
|
|
#if DEBUG_SHADOW
|
|
verifyAngleData(totalRayNumber, allVerticesAngleData, offsetToInner,
|
|
offsetToOuter, umbraAngleList, maxUmbraAngleIndex, umbraLength,
|
|
penumbraAngleList, maxPenumbraAngleIndex, penumbraLength);
|
|
#endif
|
|
return true; // success
|
|
|
|
}
|
|
|
|
/**
|
|
* Generate a triangle strip given two convex polygon
|
|
**/
|
|
void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale,
|
|
Vector2* penumbra, int penumbraLength, Vector2* umbra, int umbraLength,
|
|
const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip,
|
|
const Vector2& centroid) {
|
|
|
|
bool hasOccludedUmbraArea = false;
|
|
Vector2 poly2d[polyLength];
|
|
|
|
if (isCasterOpaque) {
|
|
for (int i = 0; i < polyLength; i++) {
|
|
poly2d[i].x = poly[i].x;
|
|
poly2d[i].y = poly[i].y;
|
|
}
|
|
// Make sure the centroid is inside the umbra, otherwise, fall back to the
|
|
// approach as if there is no occluded umbra area.
|
|
if (testPointInsidePolygon(centroid, poly2d, polyLength)) {
|
|
hasOccludedUmbraArea = true;
|
|
}
|
|
}
|
|
|
|
int totalRayNum = umbraLength + penumbraLength;
|
|
Vector2 umbraVertices[totalRayNum];
|
|
Vector2 penumbraVertices[totalRayNum];
|
|
Vector2 occludedUmbraVertices[totalRayNum];
|
|
bool convertSuccess = convertPolysToVerticesPerRay(hasOccludedUmbraArea, poly2d,
|
|
polyLength, umbra, umbraLength, penumbra, penumbraLength,
|
|
centroid, umbraVertices, penumbraVertices, occludedUmbraVertices);
|
|
if (!convertSuccess) {
|
|
return;
|
|
}
|
|
|
|
// Minimal value is 1, for each vertex show up once.
|
|
// The bigger this value is , the smoother the look is, but more memory
|
|
// is consumed.
|
|
// When the ray number is high, that means the polygon has been fine
|
|
// tessellated, we don't need this extra slice, just keep it as 1.
|
|
int sliceNumberPerEdge = (totalRayNum > FINE_TESSELLATED_POLYGON_RAY_NUMBER) ? 1 : 2;
|
|
|
|
// For each polygon, we at most add (totalRayNum * sliceNumberPerEdge) vertices.
|
|
int slicedVertexCountPerPolygon = totalRayNum * sliceNumberPerEdge;
|
|
int totalVertexCount = slicedVertexCountPerPolygon * 2 + totalRayNum;
|
|
int totalIndexCount = 2 * (slicedVertexCountPerPolygon * 2 + 2);
|
|
AlphaVertex* shadowVertices =
|
|
shadowTriangleStrip.alloc<AlphaVertex>(totalVertexCount);
|
|
uint16_t* indexBuffer =
|
|
shadowTriangleStrip.allocIndices<uint16_t>(totalIndexCount);
|
|
|
|
int indexBufferIndex = 0;
|
|
int vertexBufferIndex = 0;
|
|
|
|
uint16_t slicedUmbraVertexIndex[totalRayNum * sliceNumberPerEdge];
|
|
// Should be something like 0 0 0 1 1 1 2 3 3 3...
|
|
int rayNumberPerSlicedUmbra[totalRayNum * sliceNumberPerEdge];
|
|
int realUmbraVertexCount = 0;
|
|
for (int i = 0; i < totalRayNum; i++) {
|
|
Vector2 currentPenumbra = penumbraVertices[i];
|
|
Vector2 currentUmbra = umbraVertices[i];
|
|
|
|
Vector2 nextPenumbra = penumbraVertices[(i + 1) % totalRayNum];
|
|
Vector2 nextUmbra = umbraVertices[(i + 1) % totalRayNum];
|
|
// NextUmbra/Penumbra will be done in the next loop!!
|
|
for (int weight = 0; weight < sliceNumberPerEdge; weight++) {
|
|
const Vector2& slicedPenumbra = (currentPenumbra * (sliceNumberPerEdge - weight)
|
|
+ nextPenumbra * weight) / sliceNumberPerEdge;
|
|
|
|
const Vector2& slicedUmbra = (currentUmbra * (sliceNumberPerEdge - weight)
|
|
+ nextUmbra * weight) / sliceNumberPerEdge;
|
|
|
|
// In the vertex buffer, we fill the Penumbra first, then umbra.
|
|
indexBuffer[indexBufferIndex++] = vertexBufferIndex;
|
|
AlphaVertex::set(&shadowVertices[vertexBufferIndex++], slicedPenumbra.x,
|
|
slicedPenumbra.y, 0.0f);
|
|
|
|
// When we add umbra vertex, we need to remember its current ray number.
|
|
// And its own vertexBufferIndex. This is for occluded umbra usage.
|
|
indexBuffer[indexBufferIndex++] = vertexBufferIndex;
|
|
rayNumberPerSlicedUmbra[realUmbraVertexCount] = i;
|
|
slicedUmbraVertexIndex[realUmbraVertexCount] = vertexBufferIndex;
|
|
realUmbraVertexCount++;
|
|
AlphaVertex::set(&shadowVertices[vertexBufferIndex++], slicedUmbra.x,
|
|
slicedUmbra.y, M_PI);
|
|
}
|
|
}
|
|
|
|
indexBuffer[indexBufferIndex++] = 0;
|
|
//RealUmbraVertexIndex[0] must be 1, so we connect back well at the
|
|
//beginning of occluded area.
|
|
indexBuffer[indexBufferIndex++] = 1;
|
|
|
|
float occludedUmbraAlpha = M_PI;
|
|
if (hasOccludedUmbraArea) {
|
|
// Now the occludedUmbra area;
|
|
int currentRayNumber = -1;
|
|
int firstOccludedUmbraIndex = -1;
|
|
for (int i = 0; i < realUmbraVertexCount; i++) {
|
|
indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[i];
|
|
|
|
// If the occludedUmbra vertex has not been added yet, then add it.
|
|
// Otherwise, just use the previously added occludedUmbra vertices.
|
|
if (rayNumberPerSlicedUmbra[i] != currentRayNumber) {
|
|
currentRayNumber++;
|
|
indexBuffer[indexBufferIndex++] = vertexBufferIndex;
|
|
// We need to remember the begining of the occludedUmbra vertices
|
|
// to close this loop.
|
|
if (currentRayNumber == 0) {
|
|
firstOccludedUmbraIndex = vertexBufferIndex;
|
|
}
|
|
AlphaVertex::set(&shadowVertices[vertexBufferIndex++],
|
|
occludedUmbraVertices[currentRayNumber].x,
|
|
occludedUmbraVertices[currentRayNumber].y,
|
|
occludedUmbraAlpha);
|
|
} else {
|
|
indexBuffer[indexBufferIndex++] = (vertexBufferIndex - 1);
|
|
}
|
|
}
|
|
// Close the loop here!
|
|
indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[0];
|
|
indexBuffer[indexBufferIndex++] = firstOccludedUmbraIndex;
|
|
} else {
|
|
int lastCentroidIndex = vertexBufferIndex;
|
|
AlphaVertex::set(&shadowVertices[vertexBufferIndex++], centroid.x,
|
|
centroid.y, occludedUmbraAlpha);
|
|
for (int i = 0; i < realUmbraVertexCount; i++) {
|
|
indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[i];
|
|
indexBuffer[indexBufferIndex++] = lastCentroidIndex;
|
|
}
|
|
// Close the loop here!
|
|
indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[0];
|
|
indexBuffer[indexBufferIndex++] = lastCentroidIndex;
|
|
}
|
|
|
|
#if DEBUG_SHADOW
|
|
ALOGD("allocated IB %d allocated VB is %d", totalIndexCount, totalVertexCount);
|
|
ALOGD("IB index %d VB index is %d", indexBufferIndex, vertexBufferIndex);
|
|
for (int i = 0; i < vertexBufferIndex; i++) {
|
|
ALOGD("vertexBuffer i %d, (%f, %f %f)", i, shadowVertices[i].x, shadowVertices[i].y,
|
|
shadowVertices[i].alpha);
|
|
}
|
|
for (int i = 0; i < indexBufferIndex; i++) {
|
|
ALOGD("indexBuffer i %d, indexBuffer[i] %d", i, indexBuffer[i]);
|
|
}
|
|
#endif
|
|
|
|
// At the end, update the real index and vertex buffer size.
|
|
shadowTriangleStrip.updateVertexCount(vertexBufferIndex);
|
|
shadowTriangleStrip.updateIndexCount(indexBufferIndex);
|
|
ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Spot Vertex Buffer");
|
|
ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Spot Index Buffer");
|
|
|
|
shadowTriangleStrip.setMode(VertexBuffer::kIndices);
|
|
shadowTriangleStrip.computeBounds<AlphaVertex>();
|
|
}
|
|
|
|
#if DEBUG_SHADOW
|
|
|
|
#define TEST_POINT_NUMBER 128
|
|
/**
|
|
* Calculate the bounds for generating random test points.
|
|
*/
|
|
void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound,
|
|
Vector2& upperBound) {
|
|
if (inVector.x < lowerBound.x) {
|
|
lowerBound.x = inVector.x;
|
|
}
|
|
|
|
if (inVector.y < lowerBound.y) {
|
|
lowerBound.y = inVector.y;
|
|
}
|
|
|
|
if (inVector.x > upperBound.x) {
|
|
upperBound.x = inVector.x;
|
|
}
|
|
|
|
if (inVector.y > upperBound.y) {
|
|
upperBound.y = inVector.y;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* For debug purpose, when things go wrong, dump the whole polygon data.
|
|
*/
|
|
void SpotShadow::dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
|
|
for (int i = 0; i < polyLength; i++) {
|
|
ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* For debug purpose, when things go wrong, dump the whole polygon data.
|
|
*/
|
|
void SpotShadow::dumpPolygon(const Vector3* poly, int polyLength, const char* polyName) {
|
|
for (int i = 0; i < polyLength; i++) {
|
|
ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Test whether the polygon is convex.
|
|
*/
|
|
bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength,
|
|
const char* name) {
|
|
bool isConvex = true;
|
|
for (int i = 0; i < polygonLength; i++) {
|
|
Vector2 start = polygon[i];
|
|
Vector2 middle = polygon[(i + 1) % polygonLength];
|
|
Vector2 end = polygon[(i + 2) % polygonLength];
|
|
|
|
double delta = (double(middle.x) - start.x) * (double(end.y) - start.y) -
|
|
(double(middle.y) - start.y) * (double(end.x) - start.x);
|
|
bool isCCWOrCoLinear = (delta >= EPSILON);
|
|
|
|
if (isCCWOrCoLinear) {
|
|
ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
|
|
"middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
|
|
name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
|
|
isConvex = false;
|
|
break;
|
|
}
|
|
}
|
|
return isConvex;
|
|
}
|
|
|
|
/**
|
|
* Test whether or not the polygon (intersection) is within the 2 input polygons.
|
|
* Using Marte Carlo method, we generate a random point, and if it is inside the
|
|
* intersection, then it must be inside both source polygons.
|
|
*/
|
|
void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length,
|
|
const Vector2* poly2, int poly2Length,
|
|
const Vector2* intersection, int intersectionLength) {
|
|
// Find the min and max of x and y.
|
|
Vector2 lowerBound = {FLT_MAX, FLT_MAX};
|
|
Vector2 upperBound = {-FLT_MAX, -FLT_MAX};
|
|
for (int i = 0; i < poly1Length; i++) {
|
|
updateBound(poly1[i], lowerBound, upperBound);
|
|
}
|
|
for (int i = 0; i < poly2Length; i++) {
|
|
updateBound(poly2[i], lowerBound, upperBound);
|
|
}
|
|
|
|
bool dumpPoly = false;
|
|
for (int k = 0; k < TEST_POINT_NUMBER; k++) {
|
|
// Generate a random point between minX, minY and maxX, maxY.
|
|
double randomX = rand() / double(RAND_MAX);
|
|
double randomY = rand() / double(RAND_MAX);
|
|
|
|
Vector2 testPoint;
|
|
testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
|
|
testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
|
|
|
|
// If the random point is in both poly 1 and 2, then it must be intersection.
|
|
if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
|
|
if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
|
|
dumpPoly = true;
|
|
ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
|
|
" not in the poly1",
|
|
testPoint.x, testPoint.y);
|
|
}
|
|
|
|
if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
|
|
dumpPoly = true;
|
|
ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
|
|
" not in the poly2",
|
|
testPoint.x, testPoint.y);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dumpPoly) {
|
|
dumpPolygon(intersection, intersectionLength, "intersection");
|
|
for (int i = 1; i < intersectionLength; i++) {
|
|
Vector2 delta = intersection[i] - intersection[i - 1];
|
|
ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
|
|
}
|
|
|
|
dumpPolygon(poly1, poly1Length, "poly 1");
|
|
dumpPolygon(poly2, poly2Length, "poly 2");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
}; // namespace uirenderer
|
|
}; // namespace android
|