Add a tracing API and instrument key functions in order to profile aapt2 bottleneck. The API allows to generate systrace fragment files. Impact on performance is neglibible with each Trace requiring less than 1us and the final Flush operation at the end of a command requiring around 40us. Bug: None Test: None Change-Id: I51b564d3694e9384679f43b878b32295527dddf6
747 lines
26 KiB
C++
747 lines
26 KiB
C++
/*
|
|
* Copyright (C) 2016 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "compile/Png.h"
|
|
|
|
#include <png.h>
|
|
#include <zlib.h>
|
|
|
|
#include <algorithm>
|
|
#include <unordered_map>
|
|
#include <unordered_set>
|
|
|
|
#include "android-base/errors.h"
|
|
#include "android-base/logging.h"
|
|
#include "android-base/macros.h"
|
|
|
|
#include "trace/TraceBuffer.h"
|
|
|
|
namespace aapt {
|
|
|
|
// Custom deleter that destroys libpng read and info structs.
|
|
class PngReadStructDeleter {
|
|
public:
|
|
PngReadStructDeleter(png_structp read_ptr, png_infop info_ptr)
|
|
: read_ptr_(read_ptr), info_ptr_(info_ptr) {}
|
|
|
|
~PngReadStructDeleter() {
|
|
png_destroy_read_struct(&read_ptr_, &info_ptr_, nullptr);
|
|
}
|
|
|
|
private:
|
|
png_structp read_ptr_;
|
|
png_infop info_ptr_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(PngReadStructDeleter);
|
|
};
|
|
|
|
// Custom deleter that destroys libpng write and info structs.
|
|
class PngWriteStructDeleter {
|
|
public:
|
|
PngWriteStructDeleter(png_structp write_ptr, png_infop info_ptr)
|
|
: write_ptr_(write_ptr), info_ptr_(info_ptr) {}
|
|
|
|
~PngWriteStructDeleter() {
|
|
png_destroy_write_struct(&write_ptr_, &info_ptr_);
|
|
}
|
|
|
|
private:
|
|
png_structp write_ptr_;
|
|
png_infop info_ptr_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(PngWriteStructDeleter);
|
|
};
|
|
|
|
// Custom warning logging method that uses IDiagnostics.
|
|
static void LogWarning(png_structp png_ptr, png_const_charp warning_msg) {
|
|
IDiagnostics* diag = (IDiagnostics*)png_get_error_ptr(png_ptr);
|
|
diag->Warn(DiagMessage() << warning_msg);
|
|
}
|
|
|
|
// Custom error logging method that uses IDiagnostics.
|
|
static void LogError(png_structp png_ptr, png_const_charp error_msg) {
|
|
IDiagnostics* diag = (IDiagnostics*)png_get_error_ptr(png_ptr);
|
|
diag->Error(DiagMessage() << error_msg);
|
|
|
|
// Causes libpng to longjmp to the spot where setjmp was set. This is how libpng does
|
|
// error handling. If this custom error handler method were to return, libpng would, by
|
|
// default, print the error message to stdout and call the same png_longjmp method.
|
|
png_longjmp(png_ptr, 1);
|
|
}
|
|
|
|
static void ReadDataFromStream(png_structp png_ptr, png_bytep buffer, png_size_t len) {
|
|
io::InputStream* in = (io::InputStream*)png_get_io_ptr(png_ptr);
|
|
|
|
const void* in_buffer;
|
|
size_t in_len;
|
|
if (!in->Next(&in_buffer, &in_len)) {
|
|
if (in->HadError()) {
|
|
std::stringstream error_msg_builder;
|
|
error_msg_builder << "failed reading from input";
|
|
if (!in->GetError().empty()) {
|
|
error_msg_builder << ": " << in->GetError();
|
|
}
|
|
std::string err = error_msg_builder.str();
|
|
png_error(png_ptr, err.c_str());
|
|
}
|
|
return;
|
|
}
|
|
|
|
const size_t bytes_read = std::min(in_len, len);
|
|
memcpy(buffer, in_buffer, bytes_read);
|
|
if (bytes_read != in_len) {
|
|
in->BackUp(in_len - bytes_read);
|
|
}
|
|
}
|
|
|
|
static void WriteDataToStream(png_structp png_ptr, png_bytep buffer, png_size_t len) {
|
|
io::OutputStream* out = (io::OutputStream*)png_get_io_ptr(png_ptr);
|
|
|
|
void* out_buffer;
|
|
size_t out_len;
|
|
while (len > 0) {
|
|
if (!out->Next(&out_buffer, &out_len)) {
|
|
if (out->HadError()) {
|
|
std::stringstream err_msg_builder;
|
|
err_msg_builder << "failed writing to output";
|
|
if (!out->GetError().empty()) {
|
|
err_msg_builder << ": " << out->GetError();
|
|
}
|
|
std::string err = out->GetError();
|
|
png_error(png_ptr, err.c_str());
|
|
}
|
|
return;
|
|
}
|
|
|
|
const size_t bytes_written = std::min(out_len, len);
|
|
memcpy(out_buffer, buffer, bytes_written);
|
|
|
|
// Advance the input buffer.
|
|
buffer += bytes_written;
|
|
len -= bytes_written;
|
|
|
|
// Advance the output buffer.
|
|
out_len -= bytes_written;
|
|
}
|
|
|
|
// If the entire output buffer wasn't used, backup.
|
|
if (out_len > 0) {
|
|
out->BackUp(out_len);
|
|
}
|
|
}
|
|
|
|
std::unique_ptr<Image> ReadPng(IAaptContext* context, const Source& source, io::InputStream* in) {
|
|
TRACE_CALL();
|
|
// Create a diagnostics that has the source information encoded.
|
|
SourcePathDiagnostics source_diag(source, context->GetDiagnostics());
|
|
|
|
// Read the first 8 bytes of the file looking for the PNG signature.
|
|
// Bail early if it does not match.
|
|
const png_byte* signature;
|
|
size_t buffer_size;
|
|
if (!in->Next((const void**)&signature, &buffer_size)) {
|
|
if (in->HadError()) {
|
|
source_diag.Error(DiagMessage() << "failed to read PNG signature: " << in->GetError());
|
|
} else {
|
|
source_diag.Error(DiagMessage() << "not enough data for PNG signature");
|
|
}
|
|
return {};
|
|
}
|
|
|
|
if (buffer_size < kPngSignatureSize || png_sig_cmp(signature, 0, kPngSignatureSize) != 0) {
|
|
source_diag.Error(DiagMessage() << "file signature does not match PNG signature");
|
|
return {};
|
|
}
|
|
|
|
// Start at the beginning of the first chunk.
|
|
in->BackUp(buffer_size - kPngSignatureSize);
|
|
|
|
// Create and initialize the png_struct with the default error and warning handlers.
|
|
// The header version is also passed in to ensure that this was built against the same
|
|
// version of libpng.
|
|
png_structp read_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
|
|
if (read_ptr == nullptr) {
|
|
source_diag.Error(DiagMessage() << "failed to create libpng read png_struct");
|
|
return {};
|
|
}
|
|
|
|
// Create and initialize the memory for image header and data.
|
|
png_infop info_ptr = png_create_info_struct(read_ptr);
|
|
if (info_ptr == nullptr) {
|
|
source_diag.Error(DiagMessage() << "failed to create libpng read png_info");
|
|
png_destroy_read_struct(&read_ptr, nullptr, nullptr);
|
|
return {};
|
|
}
|
|
|
|
// Automatically release PNG resources at end of scope.
|
|
PngReadStructDeleter png_read_deleter(read_ptr, info_ptr);
|
|
|
|
// libpng uses longjmp to jump to an error handling routine.
|
|
// setjmp will only return true if it was jumped to, aka there was
|
|
// an error.
|
|
if (setjmp(png_jmpbuf(read_ptr))) {
|
|
return {};
|
|
}
|
|
|
|
// Handle warnings ourselves via IDiagnostics.
|
|
png_set_error_fn(read_ptr, (png_voidp)&source_diag, LogError, LogWarning);
|
|
|
|
// Set up the read functions which read from our custom data sources.
|
|
png_set_read_fn(read_ptr, (png_voidp)in, ReadDataFromStream);
|
|
|
|
// Skip the signature that we already read.
|
|
png_set_sig_bytes(read_ptr, kPngSignatureSize);
|
|
|
|
// Read the chunk headers.
|
|
png_read_info(read_ptr, info_ptr);
|
|
|
|
// Extract image meta-data from the various chunk headers.
|
|
uint32_t width, height;
|
|
int bit_depth, color_type, interlace_method, compression_method, filter_method;
|
|
png_get_IHDR(read_ptr, info_ptr, &width, &height, &bit_depth, &color_type,
|
|
&interlace_method, &compression_method, &filter_method);
|
|
|
|
// When the image is read, expand it so that it is in RGBA 8888 format
|
|
// so that image handling is uniform.
|
|
|
|
if (color_type == PNG_COLOR_TYPE_PALETTE) {
|
|
png_set_palette_to_rgb(read_ptr);
|
|
}
|
|
|
|
if (color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8) {
|
|
png_set_expand_gray_1_2_4_to_8(read_ptr);
|
|
}
|
|
|
|
if (png_get_valid(read_ptr, info_ptr, PNG_INFO_tRNS)) {
|
|
png_set_tRNS_to_alpha(read_ptr);
|
|
}
|
|
|
|
if (bit_depth == 16) {
|
|
png_set_strip_16(read_ptr);
|
|
}
|
|
|
|
if (!(color_type & PNG_COLOR_MASK_ALPHA)) {
|
|
png_set_add_alpha(read_ptr, 0xFF, PNG_FILLER_AFTER);
|
|
}
|
|
|
|
if (color_type == PNG_COLOR_TYPE_GRAY ||
|
|
color_type == PNG_COLOR_TYPE_GRAY_ALPHA) {
|
|
png_set_gray_to_rgb(read_ptr);
|
|
}
|
|
|
|
if (interlace_method != PNG_INTERLACE_NONE) {
|
|
png_set_interlace_handling(read_ptr);
|
|
}
|
|
|
|
// Once all the options for reading have been set, we need to flush
|
|
// them to libpng.
|
|
png_read_update_info(read_ptr, info_ptr);
|
|
|
|
// 9-patch uses int32_t to index images, so we cap the image dimensions to
|
|
// something
|
|
// that can always be represented by 9-patch.
|
|
if (width > std::numeric_limits<int32_t>::max() || height > std::numeric_limits<int32_t>::max()) {
|
|
source_diag.Error(DiagMessage()
|
|
<< "PNG image dimensions are too large: " << width << "x" << height);
|
|
return {};
|
|
}
|
|
|
|
std::unique_ptr<Image> output_image = util::make_unique<Image>();
|
|
output_image->width = static_cast<int32_t>(width);
|
|
output_image->height = static_cast<int32_t>(height);
|
|
|
|
const size_t row_bytes = png_get_rowbytes(read_ptr, info_ptr);
|
|
CHECK(row_bytes == 4 * width); // RGBA
|
|
|
|
// Allocate one large block to hold the image.
|
|
output_image->data = std::unique_ptr<uint8_t[]>(new uint8_t[height * row_bytes]);
|
|
|
|
// Create an array of rows that index into the data block.
|
|
output_image->rows = std::unique_ptr<uint8_t* []>(new uint8_t*[height]);
|
|
for (uint32_t h = 0; h < height; h++) {
|
|
output_image->rows[h] = output_image->data.get() + (h * row_bytes);
|
|
}
|
|
|
|
// Actually read the image pixels.
|
|
png_read_image(read_ptr, output_image->rows.get());
|
|
|
|
// Finish reading. This will read any other chunks after the image data.
|
|
png_read_end(read_ptr, info_ptr);
|
|
|
|
return output_image;
|
|
}
|
|
|
|
// Experimentally chosen constant to be added to the overhead of using color type
|
|
// PNG_COLOR_TYPE_PALETTE to account for the uncompressability of the palette chunk.
|
|
// Without this, many small PNGs encoded with palettes are larger after compression than
|
|
// the same PNGs encoded as RGBA.
|
|
constexpr static const size_t kPaletteOverheadConstant = 1024u * 10u;
|
|
|
|
// Pick a color type by which to encode the image, based on which color type will take
|
|
// the least amount of disk space.
|
|
//
|
|
// 9-patch images traditionally have not been encoded with palettes.
|
|
// The original rationale was to avoid dithering until after scaling,
|
|
// but I don't think this would be an issue with palettes. Either way,
|
|
// our naive size estimation tends to be wrong for small images like 9-patches
|
|
// and using palettes balloons the size of the resulting 9-patch.
|
|
// In order to not regress in size, restrict 9-patch to not use palettes.
|
|
|
|
// The options are:
|
|
//
|
|
// - RGB
|
|
// - RGBA
|
|
// - RGB + cheap alpha
|
|
// - Color palette
|
|
// - Color palette + cheap alpha
|
|
// - Color palette + alpha palette
|
|
// - Grayscale
|
|
// - Grayscale + cheap alpha
|
|
// - Grayscale + alpha
|
|
//
|
|
static int PickColorType(int32_t width, int32_t height, bool grayscale,
|
|
bool convertible_to_grayscale, bool has_nine_patch,
|
|
size_t color_palette_size, size_t alpha_palette_size) {
|
|
const size_t palette_chunk_size = 16 + color_palette_size * 3;
|
|
const size_t alpha_chunk_size = 16 + alpha_palette_size;
|
|
const size_t color_alpha_data_chunk_size = 16 + 4 * width * height;
|
|
const size_t color_data_chunk_size = 16 + 3 * width * height;
|
|
const size_t grayscale_alpha_data_chunk_size = 16 + 2 * width * height;
|
|
const size_t palette_data_chunk_size = 16 + width * height;
|
|
|
|
if (grayscale) {
|
|
if (alpha_palette_size == 0) {
|
|
// This is the smallest the data can be.
|
|
return PNG_COLOR_TYPE_GRAY;
|
|
} else if (color_palette_size <= 256 && !has_nine_patch) {
|
|
// This grayscale has alpha and can fit within a palette.
|
|
// See if it is worth fitting into a palette.
|
|
const size_t palette_threshold = palette_chunk_size + alpha_chunk_size +
|
|
palette_data_chunk_size +
|
|
kPaletteOverheadConstant;
|
|
if (grayscale_alpha_data_chunk_size > palette_threshold) {
|
|
return PNG_COLOR_TYPE_PALETTE;
|
|
}
|
|
}
|
|
return PNG_COLOR_TYPE_GRAY_ALPHA;
|
|
}
|
|
|
|
if (color_palette_size <= 256 && !has_nine_patch) {
|
|
// This image can fit inside a palette. Let's see if it is worth it.
|
|
size_t total_size_with_palette =
|
|
palette_data_chunk_size + palette_chunk_size;
|
|
size_t total_size_without_palette = color_data_chunk_size;
|
|
if (alpha_palette_size > 0) {
|
|
total_size_with_palette += alpha_palette_size;
|
|
total_size_without_palette = color_alpha_data_chunk_size;
|
|
}
|
|
|
|
if (total_size_without_palette >
|
|
total_size_with_palette + kPaletteOverheadConstant) {
|
|
return PNG_COLOR_TYPE_PALETTE;
|
|
}
|
|
}
|
|
|
|
if (convertible_to_grayscale) {
|
|
if (alpha_palette_size == 0) {
|
|
return PNG_COLOR_TYPE_GRAY;
|
|
} else {
|
|
return PNG_COLOR_TYPE_GRAY_ALPHA;
|
|
}
|
|
}
|
|
|
|
if (alpha_palette_size == 0) {
|
|
return PNG_COLOR_TYPE_RGB;
|
|
}
|
|
return PNG_COLOR_TYPE_RGBA;
|
|
}
|
|
|
|
// Assigns indices to the color and alpha palettes, encodes them, and then invokes
|
|
// png_set_PLTE/png_set_tRNS.
|
|
// This must be done before writing image data.
|
|
// Image data must be transformed to use the indices assigned within the palette.
|
|
static void WritePalette(png_structp write_ptr, png_infop write_info_ptr,
|
|
std::unordered_map<uint32_t, int>* color_palette,
|
|
std::unordered_set<uint32_t>* alpha_palette) {
|
|
CHECK(color_palette->size() <= 256);
|
|
CHECK(alpha_palette->size() <= 256);
|
|
|
|
// Populate the PNG palette struct and assign indices to the color palette.
|
|
|
|
// Colors in the alpha palette should have smaller indices.
|
|
// This will ensure that we can truncate the alpha palette if it is
|
|
// smaller than the color palette.
|
|
int index = 0;
|
|
for (uint32_t color : *alpha_palette) {
|
|
(*color_palette)[color] = index++;
|
|
}
|
|
|
|
// Assign the rest of the entries.
|
|
for (auto& entry : *color_palette) {
|
|
if (entry.second == -1) {
|
|
entry.second = index++;
|
|
}
|
|
}
|
|
|
|
// Create the PNG color palette struct.
|
|
auto color_palette_bytes = std::unique_ptr<png_color[]>(new png_color[color_palette->size()]);
|
|
|
|
std::unique_ptr<png_byte[]> alpha_palette_bytes;
|
|
if (!alpha_palette->empty()) {
|
|
alpha_palette_bytes = std::unique_ptr<png_byte[]>(new png_byte[alpha_palette->size()]);
|
|
}
|
|
|
|
for (const auto& entry : *color_palette) {
|
|
const uint32_t color = entry.first;
|
|
const int index = entry.second;
|
|
CHECK(index >= 0);
|
|
CHECK(static_cast<size_t>(index) < color_palette->size());
|
|
|
|
png_colorp slot = color_palette_bytes.get() + index;
|
|
slot->red = color >> 24;
|
|
slot->green = color >> 16;
|
|
slot->blue = color >> 8;
|
|
|
|
const png_byte alpha = color & 0x000000ff;
|
|
if (alpha != 0xff && alpha_palette_bytes) {
|
|
CHECK(static_cast<size_t>(index) < alpha_palette->size());
|
|
alpha_palette_bytes[index] = alpha;
|
|
}
|
|
}
|
|
|
|
// The bytes get copied here, so it is safe to release color_palette_bytes at
|
|
// the end of function
|
|
// scope.
|
|
png_set_PLTE(write_ptr, write_info_ptr, color_palette_bytes.get(), color_palette->size());
|
|
|
|
if (alpha_palette_bytes) {
|
|
png_set_tRNS(write_ptr, write_info_ptr, alpha_palette_bytes.get(), alpha_palette->size(),
|
|
nullptr);
|
|
}
|
|
}
|
|
|
|
// Write the 9-patch custom PNG chunks to write_info_ptr. This must be done
|
|
// before writing image data.
|
|
static void WriteNinePatch(png_structp write_ptr, png_infop write_info_ptr,
|
|
const NinePatch* nine_patch) {
|
|
// The order of the chunks is important.
|
|
// 9-patch code in older platforms expects the 9-patch chunk to be last.
|
|
|
|
png_unknown_chunk unknown_chunks[3];
|
|
memset(unknown_chunks, 0, sizeof(unknown_chunks));
|
|
|
|
size_t index = 0;
|
|
size_t chunk_len = 0;
|
|
|
|
std::unique_ptr<uint8_t[]> serialized_outline =
|
|
nine_patch->SerializeRoundedRectOutline(&chunk_len);
|
|
strcpy((char*)unknown_chunks[index].name, "npOl");
|
|
unknown_chunks[index].size = chunk_len;
|
|
unknown_chunks[index].data = (png_bytep)serialized_outline.get();
|
|
unknown_chunks[index].location = PNG_HAVE_PLTE;
|
|
index++;
|
|
|
|
std::unique_ptr<uint8_t[]> serialized_layout_bounds;
|
|
if (nine_patch->layout_bounds.nonZero()) {
|
|
serialized_layout_bounds = nine_patch->SerializeLayoutBounds(&chunk_len);
|
|
strcpy((char*)unknown_chunks[index].name, "npLb");
|
|
unknown_chunks[index].size = chunk_len;
|
|
unknown_chunks[index].data = (png_bytep)serialized_layout_bounds.get();
|
|
unknown_chunks[index].location = PNG_HAVE_PLTE;
|
|
index++;
|
|
}
|
|
|
|
std::unique_ptr<uint8_t[]> serialized_nine_patch = nine_patch->SerializeBase(&chunk_len);
|
|
strcpy((char*)unknown_chunks[index].name, "npTc");
|
|
unknown_chunks[index].size = chunk_len;
|
|
unknown_chunks[index].data = (png_bytep)serialized_nine_patch.get();
|
|
unknown_chunks[index].location = PNG_HAVE_PLTE;
|
|
index++;
|
|
|
|
// Handle all unknown chunks. We are manually setting the chunks here,
|
|
// so we will only ever handle our custom chunks.
|
|
png_set_keep_unknown_chunks(write_ptr, PNG_HANDLE_CHUNK_ALWAYS, nullptr, 0);
|
|
|
|
// Set the actual chunks here. The data gets copied, so our buffers can
|
|
// safely go out of scope.
|
|
png_set_unknown_chunks(write_ptr, write_info_ptr, unknown_chunks, index);
|
|
}
|
|
|
|
bool WritePng(IAaptContext* context, const Image* image,
|
|
const NinePatch* nine_patch, io::OutputStream* out,
|
|
const PngOptions& options) {
|
|
TRACE_CALL();
|
|
// Create and initialize the write png_struct with the default error and
|
|
// warning handlers.
|
|
// The header version is also passed in to ensure that this was built against the same
|
|
// version of libpng.
|
|
png_structp write_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
|
|
if (write_ptr == nullptr) {
|
|
context->GetDiagnostics()->Error(DiagMessage() << "failed to create libpng write png_struct");
|
|
return false;
|
|
}
|
|
|
|
// Allocate memory to store image header data.
|
|
png_infop write_info_ptr = png_create_info_struct(write_ptr);
|
|
if (write_info_ptr == nullptr) {
|
|
context->GetDiagnostics()->Error(DiagMessage() << "failed to create libpng write png_info");
|
|
png_destroy_write_struct(&write_ptr, nullptr);
|
|
return false;
|
|
}
|
|
|
|
// Automatically release PNG resources at end of scope.
|
|
PngWriteStructDeleter png_write_deleter(write_ptr, write_info_ptr);
|
|
|
|
// libpng uses longjmp to jump to error handling routines.
|
|
// setjmp will return true only if it was jumped to, aka, there was an error.
|
|
if (setjmp(png_jmpbuf(write_ptr))) {
|
|
return false;
|
|
}
|
|
|
|
// Handle warnings with our IDiagnostics.
|
|
png_set_error_fn(write_ptr, (png_voidp)context->GetDiagnostics(), LogError, LogWarning);
|
|
|
|
// Set up the write functions which write to our custom data sources.
|
|
png_set_write_fn(write_ptr, (png_voidp)out, WriteDataToStream, nullptr);
|
|
|
|
// We want small files and can take the performance hit to achieve this goal.
|
|
png_set_compression_level(write_ptr, Z_BEST_COMPRESSION);
|
|
|
|
// Begin analysis of the image data.
|
|
// Scan the entire image and determine if:
|
|
// 1. Every pixel has R == G == B (grayscale)
|
|
// 2. Every pixel has A == 255 (opaque)
|
|
// 3. There are no more than 256 distinct RGBA colors (palette).
|
|
std::unordered_map<uint32_t, int> color_palette;
|
|
std::unordered_set<uint32_t> alpha_palette;
|
|
bool needs_to_zero_rgb_channels_of_transparent_pixels = false;
|
|
bool grayscale = true;
|
|
int max_gray_deviation = 0;
|
|
|
|
for (int32_t y = 0; y < image->height; y++) {
|
|
const uint8_t* row = image->rows[y];
|
|
for (int32_t x = 0; x < image->width; x++) {
|
|
int red = *row++;
|
|
int green = *row++;
|
|
int blue = *row++;
|
|
int alpha = *row++;
|
|
|
|
if (alpha == 0) {
|
|
// The color is completely transparent.
|
|
// For purposes of palettes and grayscale optimization,
|
|
// treat all channels as 0x00.
|
|
needs_to_zero_rgb_channels_of_transparent_pixels =
|
|
needs_to_zero_rgb_channels_of_transparent_pixels ||
|
|
(red != 0 || green != 0 || blue != 0);
|
|
red = green = blue = 0;
|
|
}
|
|
|
|
// Insert the color into the color palette.
|
|
const uint32_t color = red << 24 | green << 16 | blue << 8 | alpha;
|
|
color_palette[color] = -1;
|
|
|
|
// If the pixel has non-opaque alpha, insert it into the
|
|
// alpha palette.
|
|
if (alpha != 0xff) {
|
|
alpha_palette.insert(color);
|
|
}
|
|
|
|
// Check if the image is indeed grayscale.
|
|
if (grayscale) {
|
|
if (red != green || red != blue) {
|
|
grayscale = false;
|
|
}
|
|
}
|
|
|
|
// Calculate the gray scale deviation so that it can be compared
|
|
// with the threshold.
|
|
max_gray_deviation = std::max(std::abs(red - green), max_gray_deviation);
|
|
max_gray_deviation = std::max(std::abs(green - blue), max_gray_deviation);
|
|
max_gray_deviation = std::max(std::abs(blue - red), max_gray_deviation);
|
|
}
|
|
}
|
|
|
|
if (context->IsVerbose()) {
|
|
DiagMessage msg;
|
|
msg << " paletteSize=" << color_palette.size()
|
|
<< " alphaPaletteSize=" << alpha_palette.size()
|
|
<< " maxGrayDeviation=" << max_gray_deviation
|
|
<< " grayScale=" << (grayscale ? "true" : "false");
|
|
context->GetDiagnostics()->Note(msg);
|
|
}
|
|
|
|
const bool convertible_to_grayscale = max_gray_deviation <= options.grayscale_tolerance;
|
|
|
|
const int new_color_type = PickColorType(
|
|
image->width, image->height, grayscale, convertible_to_grayscale,
|
|
nine_patch != nullptr, color_palette.size(), alpha_palette.size());
|
|
|
|
if (context->IsVerbose()) {
|
|
DiagMessage msg;
|
|
msg << "encoding PNG ";
|
|
if (nine_patch) {
|
|
msg << "(with 9-patch) as ";
|
|
}
|
|
switch (new_color_type) {
|
|
case PNG_COLOR_TYPE_GRAY:
|
|
msg << "GRAY";
|
|
break;
|
|
case PNG_COLOR_TYPE_GRAY_ALPHA:
|
|
msg << "GRAY + ALPHA";
|
|
break;
|
|
case PNG_COLOR_TYPE_RGB:
|
|
msg << "RGB";
|
|
break;
|
|
case PNG_COLOR_TYPE_RGB_ALPHA:
|
|
msg << "RGBA";
|
|
break;
|
|
case PNG_COLOR_TYPE_PALETTE:
|
|
msg << "PALETTE";
|
|
break;
|
|
default:
|
|
msg << "unknown type " << new_color_type;
|
|
break;
|
|
}
|
|
context->GetDiagnostics()->Note(msg);
|
|
}
|
|
|
|
png_set_IHDR(write_ptr, write_info_ptr, image->width, image->height, 8,
|
|
new_color_type, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT,
|
|
PNG_FILTER_TYPE_DEFAULT);
|
|
|
|
if (new_color_type & PNG_COLOR_MASK_PALETTE) {
|
|
// Assigns indices to the palette, and writes the encoded palette to the
|
|
// libpng writePtr.
|
|
WritePalette(write_ptr, write_info_ptr, &color_palette, &alpha_palette);
|
|
png_set_filter(write_ptr, 0, PNG_NO_FILTERS);
|
|
} else {
|
|
png_set_filter(write_ptr, 0, PNG_ALL_FILTERS);
|
|
}
|
|
|
|
if (nine_patch) {
|
|
WriteNinePatch(write_ptr, write_info_ptr, nine_patch);
|
|
}
|
|
|
|
// Flush our updates to the header.
|
|
png_write_info(write_ptr, write_info_ptr);
|
|
|
|
// Write out each row of image data according to its encoding.
|
|
if (new_color_type == PNG_COLOR_TYPE_PALETTE) {
|
|
// 1 byte/pixel.
|
|
auto out_row = std::unique_ptr<png_byte[]>(new png_byte[image->width]);
|
|
|
|
for (int32_t y = 0; y < image->height; y++) {
|
|
png_const_bytep in_row = image->rows[y];
|
|
for (int32_t x = 0; x < image->width; x++) {
|
|
int rr = *in_row++;
|
|
int gg = *in_row++;
|
|
int bb = *in_row++;
|
|
int aa = *in_row++;
|
|
if (aa == 0) {
|
|
// Zero out color channels when transparent.
|
|
rr = gg = bb = 0;
|
|
}
|
|
|
|
const uint32_t color = rr << 24 | gg << 16 | bb << 8 | aa;
|
|
const int idx = color_palette[color];
|
|
CHECK(idx != -1);
|
|
out_row[x] = static_cast<png_byte>(idx);
|
|
}
|
|
png_write_row(write_ptr, out_row.get());
|
|
}
|
|
} else if (new_color_type == PNG_COLOR_TYPE_GRAY ||
|
|
new_color_type == PNG_COLOR_TYPE_GRAY_ALPHA) {
|
|
const size_t bpp = new_color_type == PNG_COLOR_TYPE_GRAY ? 1 : 2;
|
|
auto out_row =
|
|
std::unique_ptr<png_byte[]>(new png_byte[image->width * bpp]);
|
|
|
|
for (int32_t y = 0; y < image->height; y++) {
|
|
png_const_bytep in_row = image->rows[y];
|
|
for (int32_t x = 0; x < image->width; x++) {
|
|
int rr = in_row[x * 4];
|
|
int gg = in_row[x * 4 + 1];
|
|
int bb = in_row[x * 4 + 2];
|
|
int aa = in_row[x * 4 + 3];
|
|
if (aa == 0) {
|
|
// Zero out the gray channel when transparent.
|
|
rr = gg = bb = 0;
|
|
}
|
|
|
|
if (grayscale) {
|
|
// The image was already grayscale, red == green == blue.
|
|
out_row[x * bpp] = in_row[x * 4];
|
|
} else {
|
|
// The image is convertible to grayscale, use linear-luminance of
|
|
// sRGB colorspace:
|
|
// https://en.wikipedia.org/wiki/Grayscale#Colorimetric_.28luminance-preserving.29_conversion_to_grayscale
|
|
out_row[x * bpp] =
|
|
(png_byte)(rr * 0.2126f + gg * 0.7152f + bb * 0.0722f);
|
|
}
|
|
|
|
if (bpp == 2) {
|
|
// Write out alpha if we have it.
|
|
out_row[x * bpp + 1] = aa;
|
|
}
|
|
}
|
|
png_write_row(write_ptr, out_row.get());
|
|
}
|
|
} else if (new_color_type == PNG_COLOR_TYPE_RGB || new_color_type == PNG_COLOR_TYPE_RGBA) {
|
|
const size_t bpp = new_color_type == PNG_COLOR_TYPE_RGB ? 3 : 4;
|
|
if (needs_to_zero_rgb_channels_of_transparent_pixels) {
|
|
// The source RGBA data can't be used as-is, because we need to zero out
|
|
// the RGB values of transparent pixels.
|
|
auto out_row = std::unique_ptr<png_byte[]>(new png_byte[image->width * bpp]);
|
|
|
|
for (int32_t y = 0; y < image->height; y++) {
|
|
png_const_bytep in_row = image->rows[y];
|
|
for (int32_t x = 0; x < image->width; x++) {
|
|
int rr = *in_row++;
|
|
int gg = *in_row++;
|
|
int bb = *in_row++;
|
|
int aa = *in_row++;
|
|
if (aa == 0) {
|
|
// Zero out the RGB channels when transparent.
|
|
rr = gg = bb = 0;
|
|
}
|
|
out_row[x * bpp] = rr;
|
|
out_row[x * bpp + 1] = gg;
|
|
out_row[x * bpp + 2] = bb;
|
|
if (bpp == 4) {
|
|
out_row[x * bpp + 3] = aa;
|
|
}
|
|
}
|
|
png_write_row(write_ptr, out_row.get());
|
|
}
|
|
} else {
|
|
// The source image can be used as-is, just tell libpng whether or not to
|
|
// ignore the alpha channel.
|
|
if (new_color_type == PNG_COLOR_TYPE_RGB) {
|
|
// Delete the extraneous alpha values that we appended to our buffer
|
|
// when reading the original values.
|
|
png_set_filler(write_ptr, 0, PNG_FILLER_AFTER);
|
|
}
|
|
png_write_image(write_ptr, image->rows.get());
|
|
}
|
|
} else {
|
|
LOG(FATAL) << "unreachable";
|
|
}
|
|
|
|
png_write_end(write_ptr, write_info_ptr);
|
|
return true;
|
|
}
|
|
|
|
} // namespace aapt
|