Ryan Mitchell efcdb95fa7 Aapt2 ValueTransformer
For future macro support, aapt2 must be able to convert Reference
values into other Value types. Currently a DescendingValueVisitor is
used to visit all of the References in a ResourceTable or a compiled
XML file to set their resource ids during the link phase. This was fine
since we were only mutating the resource id of the visited Reference.

A macro may reference a String, BinaryPrimitive, or any other Item
type. During the link phase, we will need to transform references to
macros into the values of the macros.

The only parameter in the methods of the ValueVisitor interface is a
raw pointer to the type being visited. The visitor interface does not
support reassigning the visited type to a different type.

ValueTransformer is a new interface for consuming a Value type and
transforming it into a compatible Value type. This change refactors
Value::Clone to use this interface.

Bug: 175616308
Test: aapt2_tests
Change-Id: Ic1b9d718b932c208764114cd9c74d880e189ccb0
2021-04-21 08:32:30 -07:00

288 lines
11 KiB
C++

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "split/TableSplitter.h"
#include <algorithm>
#include <map>
#include <set>
#include <unordered_set>
#include <unordered_map>
#include <vector>
#include "android-base/logging.h"
#include "androidfw/ConfigDescription.h"
#include "ResourceTable.h"
#include "trace/TraceBuffer.h"
#include "util/Util.h"
using ::android::ConfigDescription;
namespace aapt {
using ConfigClaimedMap = std::unordered_map<ResourceConfigValue*, bool>;
using ConfigDensityGroups = std::map<ConfigDescription, std::vector<ResourceConfigValue*>>;
static ConfigDescription CopyWithoutDensity(const ConfigDescription& config) {
ConfigDescription without_density = config;
without_density.density = 0;
return without_density;
}
/**
* Selects values that match exactly the constraints given.
*/
class SplitValueSelector {
public:
explicit SplitValueSelector(const SplitConstraints& constraints) {
for (const ConfigDescription& config : constraints.configs) {
if (config.density == 0) {
density_independent_configs_.insert(config);
} else {
density_dependent_config_to_density_map_[CopyWithoutDensity(config)] = config.density;
}
}
}
std::vector<ResourceConfigValue*> SelectValues(
const ConfigDensityGroups& density_groups,
ConfigClaimedMap* claimed_values) {
std::vector<ResourceConfigValue*> selected;
// Select the regular values.
for (auto& entry : *claimed_values) {
// Check if the entry has a density.
ResourceConfigValue* config_value = entry.first;
if (config_value->config.density == 0 && !entry.second) {
// This is still available.
if (density_independent_configs_.find(config_value->config) !=
density_independent_configs_.end()) {
selected.push_back(config_value);
// Mark the entry as taken.
entry.second = true;
}
}
}
// Now examine the densities
for (auto& entry : density_groups) {
// We do not care if the value is claimed, since density values can be
// in multiple splits.
const ConfigDescription& config = entry.first;
const std::vector<ResourceConfigValue*>& related_values = entry.second;
auto density_value_iter =
density_dependent_config_to_density_map_.find(config);
if (density_value_iter !=
density_dependent_config_to_density_map_.end()) {
// Select the best one!
ConfigDescription target_density = config;
target_density.density = density_value_iter->second;
ResourceConfigValue* best_value = nullptr;
for (ResourceConfigValue* this_value : related_values) {
if (!best_value || this_value->config.isBetterThan(best_value->config, &target_density)) {
best_value = this_value;
}
}
CHECK(best_value != nullptr);
// When we select one of these, they are all claimed such that the base
// doesn't include any anymore.
(*claimed_values)[best_value] = true;
selected.push_back(best_value);
}
}
return selected;
}
private:
DISALLOW_COPY_AND_ASSIGN(SplitValueSelector);
std::set<ConfigDescription> density_independent_configs_;
std::map<ConfigDescription, uint16_t>
density_dependent_config_to_density_map_;
};
/**
* Marking non-preferred densities as claimed will make sure the base doesn't include them, leaving
* only the preferred density behind.
*/
static void MarkNonPreferredDensitiesAsClaimed(
const std::vector<uint16_t>& preferred_densities, const ConfigDensityGroups& density_groups,
ConfigClaimedMap* config_claimed_map) {
for (auto& entry : density_groups) {
const ConfigDescription& config = entry.first;
const std::vector<ResourceConfigValue*>& related_values = entry.second;
// There can be multiple best values if there are multiple preferred densities.
std::unordered_set<ResourceConfigValue*> best_values;
// For each preferred density, find the value that is the best.
for (uint16_t preferred_density : preferred_densities) {
ConfigDescription target_density = config;
target_density.density = preferred_density;
ResourceConfigValue* best_value = nullptr;
for (ResourceConfigValue* this_value : related_values) {
if (!best_value || this_value->config.isBetterThan(best_value->config, &target_density)) {
best_value = this_value;
}
}
CHECK(best_value != nullptr);
best_values.insert(best_value);
}
// Claim all the values that aren't the best so that they will be removed from the base.
for (ResourceConfigValue* this_value : related_values) {
if (best_values.find(this_value) == best_values.end()) {
(*config_claimed_map)[this_value] = true;
}
}
}
}
bool TableSplitter::VerifySplitConstraints(IAaptContext* context) {
TRACE_CALL();
bool error = false;
for (size_t i = 0; i < split_constraints_.size(); i++) {
if (split_constraints_[i].configs.size() == 0) {
// For now, treat this as a warning. We may consider aborting processing.
context->GetDiagnostics()->Warn(DiagMessage()
<< "no configurations for constraint '"
<< split_constraints_[i].name << "'");
}
for (size_t j = i + 1; j < split_constraints_.size(); j++) {
for (const ConfigDescription& config : split_constraints_[i].configs) {
if (split_constraints_[j].configs.find(config) != split_constraints_[j].configs.end()) {
context->GetDiagnostics()->Error(DiagMessage()
<< "config '" << config
<< "' appears in multiple splits, "
<< "target split ambiguous");
error = true;
}
}
}
}
return !error;
}
void TableSplitter::SplitTable(ResourceTable* original_table) {
const size_t split_count = split_constraints_.size();
for (auto& pkg : original_table->packages) {
// Initialize all packages for splits.
for (size_t idx = 0; idx < split_count; idx++) {
ResourceTable* split_table = splits_[idx].get();
split_table->FindOrCreatePackage(pkg->name);
}
for (auto& type : pkg->types) {
if (type->type == ResourceType::kMipmap) {
// Always keep mipmaps.
continue;
}
for (auto& entry : type->entries) {
if (options_.config_filter) {
// First eliminate any resource that we definitely don't want.
for (std::unique_ptr<ResourceConfigValue>& config_value : entry->values) {
if (!options_.config_filter->Match(config_value->config)) {
// null out the entry. We will clean up and remove nulls at the end for performance
// reasons.
config_value.reset();
}
}
}
// Organize the values into two separate buckets. Those that are density-dependent and those
// that are density-independent. One density technically matches all density, it's just that
// some densities match better. So we need to be aware of the full set of densities to make
// this decision.
ConfigDensityGroups density_groups;
ConfigClaimedMap config_claimed_map;
for (const std::unique_ptr<ResourceConfigValue>& config_value : entry->values) {
if (config_value) {
config_claimed_map[config_value.get()] = false;
if (config_value->config.density != 0) {
// Create a bucket for this density-dependent config.
density_groups[CopyWithoutDensity(config_value->config)]
.push_back(config_value.get());
}
}
}
// First we check all the splits. If it doesn't match one of the splits, we leave it in the
// base.
for (size_t idx = 0; idx < split_count; idx++) {
const SplitConstraints& split_constraint = split_constraints_[idx];
ResourceTable* split_table = splits_[idx].get();
CloningValueTransformer cloner(&split_table->string_pool);
// Select the values we want from this entry for this split.
SplitValueSelector selector(split_constraint);
std::vector<ResourceConfigValue*> selected_values =
selector.SelectValues(density_groups, &config_claimed_map);
// No need to do any work if we selected nothing.
if (!selected_values.empty()) {
// Create the same resource structure in the split. We do this lazily because we might
// not have actual values for each type/entry.
ResourceTablePackage* split_pkg = split_table->FindPackage(pkg->name);
ResourceTableType* split_type = split_pkg->FindOrCreateType(type->type);
split_type->visibility_level = type->visibility_level;
ResourceEntry* split_entry = split_type->FindOrCreateEntry(entry->name);
if (!split_entry->id) {
split_entry->id = entry->id;
split_entry->visibility = entry->visibility;
split_entry->overlayable_item = entry->overlayable_item;
}
// Copy the selected values into the new Split Entry.
for (ResourceConfigValue* config_value : selected_values) {
ResourceConfigValue* new_config_value =
split_entry->FindOrCreateValue(config_value->config, config_value->product);
new_config_value->value = config_value->value->Transform(cloner);
}
}
}
if (!options_.preferred_densities.empty()) {
MarkNonPreferredDensitiesAsClaimed(options_.preferred_densities,
density_groups,
&config_claimed_map);
}
// All splits are handled, now check to see what wasn't claimed and remove whatever exists
// in other splits.
for (std::unique_ptr<ResourceConfigValue>& config_value : entry->values) {
if (config_value && config_claimed_map[config_value.get()]) {
// Claimed, remove from base.
config_value.reset();
}
}
// Now erase all nullptrs.
entry->values.erase(
std::remove(entry->values.begin(), entry->values.end(), nullptr),
entry->values.end());
}
}
}
}
} // namespace aapt