512e643ce8
Fix the valid umbra detection. This looks better b/c every vertex will have one ray shooting at it, such that we don't miss the corner. This performs better too, due to the polygon intersection is removed and less ray intersection. 2x performance for rect and circle for spot shadow in test app. b/17288227 b/15598793 b/16712006 Change-Id: I4a5ee397b9e192e93c8e35e6260b499e3e38a6f4
281 lines
9.4 KiB
C++
281 lines
9.4 KiB
C++
/*
|
|
* Copyright (C) 2013 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "OpenGLRenderer"
|
|
#define ATRACE_TAG ATRACE_TAG_VIEW
|
|
|
|
#include <math.h>
|
|
#include <utils/Log.h>
|
|
#include <utils/Trace.h>
|
|
|
|
#include "AmbientShadow.h"
|
|
#include "Caches.h"
|
|
#include "ShadowTessellator.h"
|
|
#include "SpotShadow.h"
|
|
|
|
namespace android {
|
|
namespace uirenderer {
|
|
|
|
void ShadowTessellator::tessellateAmbientShadow(bool isCasterOpaque,
|
|
const Vector3* casterPolygon, int casterVertexCount,
|
|
const Vector3& centroid3d, const Rect& casterBounds,
|
|
const Rect& localClip, float maxZ, VertexBuffer& shadowVertexBuffer) {
|
|
ATRACE_CALL();
|
|
|
|
// A bunch of parameters to tweak the shadow.
|
|
// TODO: Allow some of these changable by debug settings or APIs.
|
|
float heightFactor = 1.0f / 128;
|
|
const float geomFactor = 64;
|
|
|
|
Caches& caches = Caches::getInstance();
|
|
if (CC_UNLIKELY(caches.propertyAmbientRatio > 0.0f)) {
|
|
heightFactor *= caches.propertyAmbientRatio;
|
|
}
|
|
|
|
Rect ambientShadowBounds(casterBounds);
|
|
ambientShadowBounds.outset(maxZ * geomFactor * heightFactor);
|
|
|
|
if (!localClip.intersects(ambientShadowBounds)) {
|
|
#if DEBUG_SHADOW
|
|
ALOGD("Ambient shadow is out of clip rect!");
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
AmbientShadow::createAmbientShadow(isCasterOpaque, casterPolygon,
|
|
casterVertexCount, centroid3d, heightFactor, geomFactor,
|
|
shadowVertexBuffer);
|
|
}
|
|
|
|
void ShadowTessellator::tessellateSpotShadow(bool isCasterOpaque,
|
|
const Vector3* casterPolygon, int casterVertexCount, const Vector3& casterCentroid,
|
|
const mat4& receiverTransform, const Vector3& lightCenter, int lightRadius,
|
|
const Rect& casterBounds, const Rect& localClip, VertexBuffer& shadowVertexBuffer) {
|
|
ATRACE_CALL();
|
|
|
|
Caches& caches = Caches::getInstance();
|
|
|
|
Vector3 adjustedLightCenter(lightCenter);
|
|
if (CC_UNLIKELY(caches.propertyLightPosY > 0)) {
|
|
adjustedLightCenter.y = - caches.propertyLightPosY; // negated since this shifts up
|
|
}
|
|
if (CC_UNLIKELY(caches.propertyLightPosZ > 0)) {
|
|
adjustedLightCenter.z = caches.propertyLightPosZ;
|
|
}
|
|
|
|
#if DEBUG_SHADOW
|
|
ALOGD("light center %f %f %f",
|
|
adjustedLightCenter.x, adjustedLightCenter.y, adjustedLightCenter.z);
|
|
#endif
|
|
|
|
// light position (because it's in local space) needs to compensate for receiver transform
|
|
// TODO: should apply to light orientation, not just position
|
|
Matrix4 reverseReceiverTransform;
|
|
reverseReceiverTransform.loadInverse(receiverTransform);
|
|
reverseReceiverTransform.mapPoint3d(adjustedLightCenter);
|
|
|
|
const int lightVertexCount = 8;
|
|
if (CC_UNLIKELY(caches.propertyLightDiameter > 0)) {
|
|
lightRadius = caches.propertyLightDiameter;
|
|
}
|
|
|
|
// Now light and caster are both in local space, we will check whether
|
|
// the shadow is within the clip area.
|
|
Rect lightRect = Rect(adjustedLightCenter.x - lightRadius, adjustedLightCenter.y - lightRadius,
|
|
adjustedLightCenter.x + lightRadius, adjustedLightCenter.y + lightRadius);
|
|
lightRect.unionWith(localClip);
|
|
if (!lightRect.intersects(casterBounds)) {
|
|
#if DEBUG_SHADOW
|
|
ALOGD("Spot shadow is out of clip rect!");
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
SpotShadow::createSpotShadow(isCasterOpaque, adjustedLightCenter, lightRadius,
|
|
casterPolygon, casterVertexCount, casterCentroid, shadowVertexBuffer);
|
|
|
|
#if DEBUG_SHADOW
|
|
if(shadowVertexBuffer.getVertexCount() <= 0) {
|
|
ALOGD("Spot shadow generation failed %d", shadowVertexBuffer.getVertexCount());
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void ShadowTessellator::generateShadowIndices(uint16_t* shadowIndices) {
|
|
int currentIndex = 0;
|
|
const int rays = SHADOW_RAY_COUNT;
|
|
// For the penumbra area.
|
|
for (int layer = 0; layer < 2; layer ++) {
|
|
int baseIndex = layer * rays;
|
|
for (int i = 0; i < rays; i++) {
|
|
shadowIndices[currentIndex++] = i + baseIndex;
|
|
shadowIndices[currentIndex++] = rays + i + baseIndex;
|
|
}
|
|
// To close the loop, back to the ray 0.
|
|
shadowIndices[currentIndex++] = 0 + baseIndex;
|
|
// Note this is the same as the first index of next layer loop.
|
|
shadowIndices[currentIndex++] = rays + baseIndex;
|
|
}
|
|
|
|
#if DEBUG_SHADOW
|
|
if (currentIndex != MAX_SHADOW_INDEX_COUNT) {
|
|
ALOGW("vertex index count is wrong. current %d, expected %d",
|
|
currentIndex, MAX_SHADOW_INDEX_COUNT);
|
|
}
|
|
for (int i = 0; i < MAX_SHADOW_INDEX_COUNT; i++) {
|
|
ALOGD("vertex index is (%d, %d)", i, shadowIndices[i]);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Calculate the centroid of a 2d polygon.
|
|
*
|
|
* @param poly The polygon, which is represented in a Vector2 array.
|
|
* @param polyLength The length of the polygon in terms of number of vertices.
|
|
* @return the centroid of the polygon.
|
|
*/
|
|
Vector2 ShadowTessellator::centroid2d(const Vector2* poly, int polyLength) {
|
|
double sumx = 0;
|
|
double sumy = 0;
|
|
int p1 = polyLength - 1;
|
|
double area = 0;
|
|
for (int p2 = 0; p2 < polyLength; p2++) {
|
|
double x1 = poly[p1].x;
|
|
double y1 = poly[p1].y;
|
|
double x2 = poly[p2].x;
|
|
double y2 = poly[p2].y;
|
|
double a = (x1 * y2 - x2 * y1);
|
|
sumx += (x1 + x2) * a;
|
|
sumy += (y1 + y2) * a;
|
|
area += a;
|
|
p1 = p2;
|
|
}
|
|
|
|
Vector2 centroid = poly[0];
|
|
if (area != 0) {
|
|
centroid = (Vector2){static_cast<float>(sumx / (3 * area)),
|
|
static_cast<float>(sumy / (3 * area))};
|
|
} else {
|
|
ALOGW("Area is 0 while computing centroid!");
|
|
}
|
|
return centroid;
|
|
}
|
|
|
|
// Make sure p1 -> p2 is going CW around the poly.
|
|
Vector2 ShadowTessellator::calculateNormal(const Vector2& p1, const Vector2& p2) {
|
|
Vector2 result = p2 - p1;
|
|
if (result.x != 0 || result.y != 0) {
|
|
result.normalize();
|
|
// Calculate the normal , which is CCW 90 rotate to the delta.
|
|
float tempy = result.y;
|
|
result.y = result.x;
|
|
result.x = -tempy;
|
|
}
|
|
return result;
|
|
}
|
|
/**
|
|
* Test whether the polygon is order in clockwise.
|
|
*
|
|
* @param polygon the polygon as a Vector2 array
|
|
* @param len the number of points of the polygon
|
|
*/
|
|
bool ShadowTessellator::isClockwise(const Vector2* polygon, int len) {
|
|
if (len < 2 || polygon == NULL) {
|
|
return true;
|
|
}
|
|
double sum = 0;
|
|
double p1x = polygon[len - 1].x;
|
|
double p1y = polygon[len - 1].y;
|
|
for (int i = 0; i < len; i++) {
|
|
|
|
double p2x = polygon[i].x;
|
|
double p2y = polygon[i].y;
|
|
sum += p1x * p2y - p2x * p1y;
|
|
p1x = p2x;
|
|
p1y = p2y;
|
|
}
|
|
return sum < 0;
|
|
}
|
|
|
|
bool ShadowTessellator::isClockwisePath(const SkPath& path) {
|
|
SkPath::Iter iter(path, false);
|
|
SkPoint pts[4];
|
|
SkPath::Verb v;
|
|
|
|
Vector<Vector2> arrayForDirection;
|
|
while (SkPath::kDone_Verb != (v = iter.next(pts))) {
|
|
switch (v) {
|
|
case SkPath::kMove_Verb:
|
|
arrayForDirection.add((Vector2){pts[0].x(), pts[0].y()});
|
|
break;
|
|
case SkPath::kLine_Verb:
|
|
arrayForDirection.add((Vector2){pts[1].x(), pts[1].y()});
|
|
break;
|
|
case SkPath::kQuad_Verb:
|
|
arrayForDirection.add((Vector2){pts[1].x(), pts[1].y()});
|
|
arrayForDirection.add((Vector2){pts[2].x(), pts[2].y()});
|
|
break;
|
|
case SkPath::kCubic_Verb:
|
|
arrayForDirection.add((Vector2){pts[1].x(), pts[1].y()});
|
|
arrayForDirection.add((Vector2){pts[2].x(), pts[2].y()});
|
|
arrayForDirection.add((Vector2){pts[3].x(), pts[3].y()});
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return isClockwise(arrayForDirection.array(), arrayForDirection.size());
|
|
}
|
|
|
|
void ShadowTessellator::reverseVertexArray(Vertex* polygon, int len) {
|
|
int n = len / 2;
|
|
for (int i = 0; i < n; i++) {
|
|
Vertex tmp = polygon[i];
|
|
int k = len - 1 - i;
|
|
polygon[i] = polygon[k];
|
|
polygon[k] = tmp;
|
|
}
|
|
}
|
|
|
|
int ShadowTessellator::getExtraVertexNumber(const Vector2& vector1,
|
|
const Vector2& vector2, float divisor) {
|
|
// When there is no distance difference, there is no need for extra vertices.
|
|
if (vector1.lengthSquared() == 0 || vector2.lengthSquared() == 0) {
|
|
return 0;
|
|
}
|
|
// The formula is :
|
|
// extraNumber = floor(acos(dot(n1, n2)) / (M_PI / EXTRA_VERTEX_PER_PI))
|
|
// The value ranges for each step are:
|
|
// dot( ) --- [-1, 1]
|
|
// acos( ) --- [0, M_PI]
|
|
// floor(...) --- [0, EXTRA_VERTEX_PER_PI]
|
|
float dotProduct = vector1.dot(vector2);
|
|
// TODO: Use look up table for the dotProduct to extraVerticesNumber
|
|
// computation, if needed.
|
|
float angle = acosf(dotProduct);
|
|
return (int) floor(angle / divisor);
|
|
}
|
|
|
|
void ShadowTessellator::checkOverflow(int used, int total, const char* bufferName) {
|
|
LOG_ALWAYS_FATAL_IF(used > total, "Error: %s overflow!!! used %d, total %d",
|
|
bufferName, used, total);
|
|
}
|
|
|
|
}; // namespace uirenderer
|
|
}; // namespace android
|