1e19674107
Turn on -Wall -Werror in libs/hwui. Fix errors. Change-Id: I74962d08c889712dacbd0d86d6760fc10802b6bd
280 lines
9.4 KiB
C++
280 lines
9.4 KiB
C++
/*
|
|
* Copyright (C) 2013 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "OpenGLRenderer"
|
|
#define ATRACE_TAG ATRACE_TAG_VIEW
|
|
|
|
#include <math.h>
|
|
#include <utils/Log.h>
|
|
#include <utils/Trace.h>
|
|
|
|
#include "AmbientShadow.h"
|
|
#include "Caches.h"
|
|
#include "ShadowTessellator.h"
|
|
#include "SpotShadow.h"
|
|
|
|
namespace android {
|
|
namespace uirenderer {
|
|
|
|
void ShadowTessellator::tessellateAmbientShadow(bool isCasterOpaque,
|
|
const Vector3* casterPolygon, int casterVertexCount,
|
|
const Vector3& centroid3d, const Rect& casterBounds,
|
|
const Rect& localClip, float maxZ, VertexBuffer& shadowVertexBuffer) {
|
|
ATRACE_CALL();
|
|
|
|
// A bunch of parameters to tweak the shadow.
|
|
// TODO: Allow some of these changable by debug settings or APIs.
|
|
float heightFactor = 1.0f / 128;
|
|
const float geomFactor = 64;
|
|
|
|
Caches& caches = Caches::getInstance();
|
|
if (CC_UNLIKELY(caches.propertyAmbientRatio > 0.0f)) {
|
|
heightFactor *= caches.propertyAmbientRatio;
|
|
}
|
|
|
|
Rect ambientShadowBounds(casterBounds);
|
|
ambientShadowBounds.outset(maxZ * geomFactor * heightFactor);
|
|
|
|
if (!localClip.intersects(ambientShadowBounds)) {
|
|
#if DEBUG_SHADOW
|
|
ALOGD("Ambient shadow is out of clip rect!");
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
AmbientShadow::createAmbientShadow(isCasterOpaque, casterPolygon,
|
|
casterVertexCount, centroid3d, heightFactor, geomFactor,
|
|
shadowVertexBuffer);
|
|
}
|
|
|
|
void ShadowTessellator::tessellateSpotShadow(bool isCasterOpaque,
|
|
const Vector3* casterPolygon, int casterVertexCount, const Vector3& casterCentroid,
|
|
const mat4& receiverTransform, const Vector3& lightCenter, int lightRadius,
|
|
const Rect& casterBounds, const Rect& localClip, VertexBuffer& shadowVertexBuffer) {
|
|
ATRACE_CALL();
|
|
|
|
Caches& caches = Caches::getInstance();
|
|
|
|
Vector3 adjustedLightCenter(lightCenter);
|
|
if (CC_UNLIKELY(caches.propertyLightPosY > 0)) {
|
|
adjustedLightCenter.y = - caches.propertyLightPosY; // negated since this shifts up
|
|
}
|
|
if (CC_UNLIKELY(caches.propertyLightPosZ > 0)) {
|
|
adjustedLightCenter.z = caches.propertyLightPosZ;
|
|
}
|
|
|
|
#if DEBUG_SHADOW
|
|
ALOGD("light center %f %f %f",
|
|
adjustedLightCenter.x, adjustedLightCenter.y, adjustedLightCenter.z);
|
|
#endif
|
|
|
|
// light position (because it's in local space) needs to compensate for receiver transform
|
|
// TODO: should apply to light orientation, not just position
|
|
Matrix4 reverseReceiverTransform;
|
|
reverseReceiverTransform.loadInverse(receiverTransform);
|
|
reverseReceiverTransform.mapPoint3d(adjustedLightCenter);
|
|
|
|
if (CC_UNLIKELY(caches.propertyLightDiameter > 0)) {
|
|
lightRadius = caches.propertyLightDiameter;
|
|
}
|
|
|
|
// Now light and caster are both in local space, we will check whether
|
|
// the shadow is within the clip area.
|
|
Rect lightRect = Rect(adjustedLightCenter.x - lightRadius, adjustedLightCenter.y - lightRadius,
|
|
adjustedLightCenter.x + lightRadius, adjustedLightCenter.y + lightRadius);
|
|
lightRect.unionWith(localClip);
|
|
if (!lightRect.intersects(casterBounds)) {
|
|
#if DEBUG_SHADOW
|
|
ALOGD("Spot shadow is out of clip rect!");
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
SpotShadow::createSpotShadow(isCasterOpaque, adjustedLightCenter, lightRadius,
|
|
casterPolygon, casterVertexCount, casterCentroid, shadowVertexBuffer);
|
|
|
|
#if DEBUG_SHADOW
|
|
if(shadowVertexBuffer.getVertexCount() <= 0) {
|
|
ALOGD("Spot shadow generation failed %d", shadowVertexBuffer.getVertexCount());
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void ShadowTessellator::generateShadowIndices(uint16_t* shadowIndices) {
|
|
int currentIndex = 0;
|
|
const int rays = SHADOW_RAY_COUNT;
|
|
// For the penumbra area.
|
|
for (int layer = 0; layer < 2; layer ++) {
|
|
int baseIndex = layer * rays;
|
|
for (int i = 0; i < rays; i++) {
|
|
shadowIndices[currentIndex++] = i + baseIndex;
|
|
shadowIndices[currentIndex++] = rays + i + baseIndex;
|
|
}
|
|
// To close the loop, back to the ray 0.
|
|
shadowIndices[currentIndex++] = 0 + baseIndex;
|
|
// Note this is the same as the first index of next layer loop.
|
|
shadowIndices[currentIndex++] = rays + baseIndex;
|
|
}
|
|
|
|
#if DEBUG_SHADOW
|
|
if (currentIndex != MAX_SHADOW_INDEX_COUNT) {
|
|
ALOGW("vertex index count is wrong. current %d, expected %d",
|
|
currentIndex, MAX_SHADOW_INDEX_COUNT);
|
|
}
|
|
for (int i = 0; i < MAX_SHADOW_INDEX_COUNT; i++) {
|
|
ALOGD("vertex index is (%d, %d)", i, shadowIndices[i]);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Calculate the centroid of a 2d polygon.
|
|
*
|
|
* @param poly The polygon, which is represented in a Vector2 array.
|
|
* @param polyLength The length of the polygon in terms of number of vertices.
|
|
* @return the centroid of the polygon.
|
|
*/
|
|
Vector2 ShadowTessellator::centroid2d(const Vector2* poly, int polyLength) {
|
|
double sumx = 0;
|
|
double sumy = 0;
|
|
int p1 = polyLength - 1;
|
|
double area = 0;
|
|
for (int p2 = 0; p2 < polyLength; p2++) {
|
|
double x1 = poly[p1].x;
|
|
double y1 = poly[p1].y;
|
|
double x2 = poly[p2].x;
|
|
double y2 = poly[p2].y;
|
|
double a = (x1 * y2 - x2 * y1);
|
|
sumx += (x1 + x2) * a;
|
|
sumy += (y1 + y2) * a;
|
|
area += a;
|
|
p1 = p2;
|
|
}
|
|
|
|
Vector2 centroid = poly[0];
|
|
if (area != 0) {
|
|
centroid = (Vector2){static_cast<float>(sumx / (3 * area)),
|
|
static_cast<float>(sumy / (3 * area))};
|
|
} else {
|
|
ALOGW("Area is 0 while computing centroid!");
|
|
}
|
|
return centroid;
|
|
}
|
|
|
|
// Make sure p1 -> p2 is going CW around the poly.
|
|
Vector2 ShadowTessellator::calculateNormal(const Vector2& p1, const Vector2& p2) {
|
|
Vector2 result = p2 - p1;
|
|
if (result.x != 0 || result.y != 0) {
|
|
result.normalize();
|
|
// Calculate the normal , which is CCW 90 rotate to the delta.
|
|
float tempy = result.y;
|
|
result.y = result.x;
|
|
result.x = -tempy;
|
|
}
|
|
return result;
|
|
}
|
|
/**
|
|
* Test whether the polygon is order in clockwise.
|
|
*
|
|
* @param polygon the polygon as a Vector2 array
|
|
* @param len the number of points of the polygon
|
|
*/
|
|
bool ShadowTessellator::isClockwise(const Vector2* polygon, int len) {
|
|
if (len < 2 || polygon == NULL) {
|
|
return true;
|
|
}
|
|
double sum = 0;
|
|
double p1x = polygon[len - 1].x;
|
|
double p1y = polygon[len - 1].y;
|
|
for (int i = 0; i < len; i++) {
|
|
|
|
double p2x = polygon[i].x;
|
|
double p2y = polygon[i].y;
|
|
sum += p1x * p2y - p2x * p1y;
|
|
p1x = p2x;
|
|
p1y = p2y;
|
|
}
|
|
return sum < 0;
|
|
}
|
|
|
|
bool ShadowTessellator::isClockwisePath(const SkPath& path) {
|
|
SkPath::Iter iter(path, false);
|
|
SkPoint pts[4];
|
|
SkPath::Verb v;
|
|
|
|
Vector<Vector2> arrayForDirection;
|
|
while (SkPath::kDone_Verb != (v = iter.next(pts))) {
|
|
switch (v) {
|
|
case SkPath::kMove_Verb:
|
|
arrayForDirection.add((Vector2){pts[0].x(), pts[0].y()});
|
|
break;
|
|
case SkPath::kLine_Verb:
|
|
arrayForDirection.add((Vector2){pts[1].x(), pts[1].y()});
|
|
break;
|
|
case SkPath::kQuad_Verb:
|
|
arrayForDirection.add((Vector2){pts[1].x(), pts[1].y()});
|
|
arrayForDirection.add((Vector2){pts[2].x(), pts[2].y()});
|
|
break;
|
|
case SkPath::kCubic_Verb:
|
|
arrayForDirection.add((Vector2){pts[1].x(), pts[1].y()});
|
|
arrayForDirection.add((Vector2){pts[2].x(), pts[2].y()});
|
|
arrayForDirection.add((Vector2){pts[3].x(), pts[3].y()});
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return isClockwise(arrayForDirection.array(), arrayForDirection.size());
|
|
}
|
|
|
|
void ShadowTessellator::reverseVertexArray(Vertex* polygon, int len) {
|
|
int n = len / 2;
|
|
for (int i = 0; i < n; i++) {
|
|
Vertex tmp = polygon[i];
|
|
int k = len - 1 - i;
|
|
polygon[i] = polygon[k];
|
|
polygon[k] = tmp;
|
|
}
|
|
}
|
|
|
|
int ShadowTessellator::getExtraVertexNumber(const Vector2& vector1,
|
|
const Vector2& vector2, float divisor) {
|
|
// When there is no distance difference, there is no need for extra vertices.
|
|
if (vector1.lengthSquared() == 0 || vector2.lengthSquared() == 0) {
|
|
return 0;
|
|
}
|
|
// The formula is :
|
|
// extraNumber = floor(acos(dot(n1, n2)) / (M_PI / EXTRA_VERTEX_PER_PI))
|
|
// The value ranges for each step are:
|
|
// dot( ) --- [-1, 1]
|
|
// acos( ) --- [0, M_PI]
|
|
// floor(...) --- [0, EXTRA_VERTEX_PER_PI]
|
|
float dotProduct = vector1.dot(vector2);
|
|
// TODO: Use look up table for the dotProduct to extraVerticesNumber
|
|
// computation, if needed.
|
|
float angle = acosf(dotProduct);
|
|
return (int) floor(angle / divisor);
|
|
}
|
|
|
|
void ShadowTessellator::checkOverflow(int used, int total, const char* bufferName) {
|
|
LOG_ALWAYS_FATAL_IF(used > total, "Error: %s overflow!!! used %d, total %d",
|
|
bufferName, used, total);
|
|
}
|
|
|
|
}; // namespace uirenderer
|
|
}; // namespace android
|