/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "rsContext.h" #include "rsScriptC.h" #include "rsMatrix4x4.h" #include "rsMatrix3x3.h" #include "rsMatrix2x2.h" #include "rsdCore.h" #include "rsdRuntime.h" using namespace android; using namespace android::renderscript; static float SC_exp10(float v) { return pow(10.f, v); } static float SC_fract(float v, int *iptr) { int i = (int)floor(v); iptr[0] = i; return fmin(v - i, 0x1.fffffep-1f); } static float SC_log2(float v) { return log10(v) / log10(2.f); } static float SC_mad(float v1, float v2, float v3) { return v1 * v2 + v3; } #if 0 static float SC_pown(float v, int p) { return powf(v, (float)p); } static float SC_powr(float v, float p) { return powf(v, p); } #endif float SC_rootn(float v, int r) { return pow(v, 1.f / r); } float SC_rsqrt(float v) { return 1.f / sqrtf(v); } float SC_sincos(float v, float *cosptr) { *cosptr = cosf(v); return sinf(v); } ////////////////////////////////////////////////////////////////////////////// // Integer ////////////////////////////////////////////////////////////////////////////// static uint32_t SC_abs_i32(int32_t v) {return abs(v);} static uint16_t SC_abs_i16(int16_t v) {return (uint16_t)abs(v);} static uint8_t SC_abs_i8(int8_t v) {return (uint8_t)abs(v);} static uint32_t SC_clz_u32(uint32_t v) {return __builtin_clz(v);} static uint16_t SC_clz_u16(uint16_t v) {return (uint16_t)__builtin_clz(v);} static uint8_t SC_clz_u8(uint8_t v) {return (uint8_t)__builtin_clz(v);} static int32_t SC_clz_i32(int32_t v) {return (int32_t)__builtin_clz((uint32_t)v);} static int16_t SC_clz_i16(int16_t v) {return (int16_t)__builtin_clz(v);} static int8_t SC_clz_i8(int8_t v) {return (int8_t)__builtin_clz(v);} static uint32_t SC_max_u32(uint32_t v, uint32_t v2) {return rsMax(v, v2);} static uint16_t SC_max_u16(uint16_t v, uint16_t v2) {return rsMax(v, v2);} static uint8_t SC_max_u8(uint8_t v, uint8_t v2) {return rsMax(v, v2);} static int32_t SC_max_i32(int32_t v, int32_t v2) {return rsMax(v, v2);} static int16_t SC_max_i16(int16_t v, int16_t v2) {return rsMax(v, v2);} static int8_t SC_max_i8(int8_t v, int8_t v2) {return rsMax(v, v2);} static uint32_t SC_min_u32(uint32_t v, uint32_t v2) {return rsMin(v, v2);} static uint16_t SC_min_u16(uint16_t v, uint16_t v2) {return rsMin(v, v2);} static uint8_t SC_min_u8(uint8_t v, uint8_t v2) {return rsMin(v, v2);} static int32_t SC_min_i32(int32_t v, int32_t v2) {return rsMin(v, v2);} static int16_t SC_min_i16(int16_t v, int16_t v2) {return rsMin(v, v2);} static int8_t SC_min_i8(int8_t v, int8_t v2) {return rsMin(v, v2);} ////////////////////////////////////////////////////////////////////////////// // Float util ////////////////////////////////////////////////////////////////////////////// static float SC_clamp_f32(float amount, float low, float high) { return amount < low ? low : (amount > high ? high : amount); } static float SC_degrees(float radians) { return radians * (180.f / M_PI); } static float SC_max_f32(float v, float v2) { return rsMax(v, v2); } static float SC_min_f32(float v, float v2) { return rsMin(v, v2); } static float SC_mix_f32(float start, float stop, float amount) { //LOGE("lerpf %f %f %f", start, stop, amount); return start + (stop - start) * amount; } static float SC_radians(float degrees) { return degrees * (M_PI / 180.f); } static float SC_step_f32(float edge, float v) { if (v < edge) return 0.f; return 1.f; } static float SC_sign_f32(float value) { if (value > 0) return 1.f; if (value < 0) return -1.f; return value; } static void SC_MatrixLoadIdentity_4x4(Matrix4x4 *m) { m->loadIdentity(); } static void SC_MatrixLoadIdentity_3x3(Matrix3x3 *m) { m->loadIdentity(); } static void SC_MatrixLoadIdentity_2x2(Matrix2x2 *m) { m->loadIdentity(); } static void SC_MatrixLoad_4x4_f(Matrix4x4 *m, const float *f) { m->load(f); } static void SC_MatrixLoad_3x3_f(Matrix3x3 *m, const float *f) { m->load(f); } static void SC_MatrixLoad_2x2_f(Matrix2x2 *m, const float *f) { m->load(f); } static void SC_MatrixLoad_4x4_4x4(Matrix4x4 *m, const Matrix4x4 *s) { m->load(s); } static void SC_MatrixLoad_4x4_3x3(Matrix4x4 *m, const Matrix3x3 *s) { m->load(s); } static void SC_MatrixLoad_4x4_2x2(Matrix4x4 *m, const Matrix2x2 *s) { m->load(s); } static void SC_MatrixLoad_3x3_3x3(Matrix3x3 *m, const Matrix3x3 *s) { m->load(s); } static void SC_MatrixLoad_2x2_2x2(Matrix2x2 *m, const Matrix2x2 *s) { m->load(s); } static void SC_MatrixLoadRotate(Matrix4x4 *m, float rot, float x, float y, float z) { m->loadRotate(rot, x, y, z); } static void SC_MatrixLoadScale(Matrix4x4 *m, float x, float y, float z) { m->loadScale(x, y, z); } static void SC_MatrixLoadTranslate(Matrix4x4 *m, float x, float y, float z) { m->loadTranslate(x, y, z); } static void SC_MatrixRotate(Matrix4x4 *m, float rot, float x, float y, float z) { m->rotate(rot, x, y, z); } static void SC_MatrixScale(Matrix4x4 *m, float x, float y, float z) { m->scale(x, y, z); } static void SC_MatrixTranslate(Matrix4x4 *m, float x, float y, float z) { m->translate(x, y, z); } static void SC_MatrixLoadMultiply_4x4_4x4_4x4(Matrix4x4 *m, const Matrix4x4 *lhs, const Matrix4x4 *rhs) { m->loadMultiply(lhs, rhs); } static void SC_MatrixLoadMultiply_3x3_3x3_3x3(Matrix3x3 *m, const Matrix3x3 *lhs, const Matrix3x3 *rhs) { m->loadMultiply(lhs, rhs); } static void SC_MatrixLoadMultiply_2x2_2x2_2x2(Matrix2x2 *m, const Matrix2x2 *lhs, const Matrix2x2 *rhs) { m->loadMultiply(lhs, rhs); } static void SC_MatrixMultiply_4x4_4x4(Matrix4x4 *m, const Matrix4x4 *rhs) { m->multiply(rhs); } static void SC_MatrixMultiply_3x3_3x3(Matrix3x3 *m, const Matrix3x3 *rhs) { m->multiply(rhs); } static void SC_MatrixMultiply_2x2_2x2(Matrix2x2 *m, const Matrix2x2 *rhs) { m->multiply(rhs); } static void SC_MatrixLoadOrtho(Matrix4x4 *m, float l, float r, float b, float t, float n, float f) { m->loadOrtho(l, r, b, t, n, f); } static void SC_MatrixLoadFrustum(Matrix4x4 *m, float l, float r, float b, float t, float n, float f) { m->loadFrustum(l, r, b, t, n, f); } static void SC_MatrixLoadPerspective(Matrix4x4 *m, float fovy, float aspect, float near, float far) { m->loadPerspective(fovy, aspect, near, far); } static bool SC_MatrixInverse_4x4(Matrix4x4 *m) { return m->inverse(); } static bool SC_MatrixInverseTranspose_4x4(Matrix4x4 *m) { return m->inverseTranspose(); } static void SC_MatrixTranspose_4x4(Matrix4x4 *m) { m->transpose(); } static void SC_MatrixTranspose_3x3(Matrix3x3 *m) { m->transpose(); } static void SC_MatrixTranspose_2x2(Matrix2x2 *m) { m->transpose(); } static float SC_randf(float max) { float r = (float)rand(); r *= max; r /= RAND_MAX; return r; } static float SC_randf2(float min, float max) { float r = (float)rand(); r /= RAND_MAX; r = r * (max - min) + min; return r; } static int SC_randi(int max) { return (int)SC_randf(max); } static int SC_randi2(int min, int max) { return (int)SC_randf2(min, max); } static float SC_frac(float v) { int i = (int)floor(v); return fmin(v - i, 0x1.fffffep-1f); } static int32_t SC_AtomicCas(volatile int32_t *ptr, int32_t expectedValue, int32_t newValue) { int32_t prev; do { int32_t ret = android_atomic_release_cas(expectedValue, newValue, ptr); if (!ret) { // The android cas return 0 if it wrote the value. This means the // previous value was the expected value and we can return. return expectedValue; } // We didn't write the value and need to load the "previous" value. prev = *ptr; // A race condition exists where the expected value could appear after our cas failed // above. In this case loop until we have a legit previous value or the // write passes. } while (prev == expectedValue); return prev; } static int32_t SC_AtomicInc(volatile int32_t *ptr) { return android_atomic_inc(ptr); } static int32_t SC_AtomicDec(volatile int32_t *ptr) { return android_atomic_dec(ptr); } static int32_t SC_AtomicAdd(volatile int32_t *ptr, int32_t value) { return android_atomic_add(value, ptr); } static int32_t SC_AtomicSub(volatile int32_t *ptr, int32_t value) { int32_t prev, status; do { prev = *ptr; status = android_atomic_release_cas(prev, prev - value, ptr); } while (__builtin_expect(status != 0, 0)); return prev; } static int32_t SC_AtomicAnd(volatile int32_t *ptr, int32_t value) { return android_atomic_and(value, ptr); } static int32_t SC_AtomicOr(volatile int32_t *ptr, int32_t value) { return android_atomic_or(value, ptr); } static int32_t SC_AtomicXor(volatile int32_t *ptr, int32_t value) { int32_t prev, status; do { prev = *ptr; status = android_atomic_release_cas(prev, prev ^ value, ptr); } while (__builtin_expect(status != 0, 0)); return prev; } static int32_t SC_AtomicMin(volatile int32_t *ptr, int32_t value) { int32_t prev, status; do { prev = *ptr; int32_t n = rsMin(value, prev); status = android_atomic_release_cas(prev, n, ptr); } while (__builtin_expect(status != 0, 0)); return prev; } static int32_t SC_AtomicMax(volatile int32_t *ptr, int32_t value) { int32_t prev, status; do { prev = *ptr; int32_t n = rsMax(value, prev); status = android_atomic_release_cas(prev, n, ptr); } while (__builtin_expect(status != 0, 0)); return prev; } ////////////////////////////////////////////////////////////////////////////// // Class implementation ////////////////////////////////////////////////////////////////////////////// // llvm name mangling ref // ::= v # void // ::= b # bool // ::= c # char // ::= a # signed char // ::= h # unsigned char // ::= s # short // ::= t # unsigned short // ::= i # int // ::= j # unsigned int // ::= l # long // ::= m # unsigned long // ::= x # long long, __int64 // ::= y # unsigned long long, __int64 // ::= f # float // ::= d # double static RsdSymbolTable gSyms[] = { { "_Z4acosf", (void *)&acosf, true }, { "_Z5acoshf", (void *)&acoshf, true }, { "_Z4asinf", (void *)&asinf, true }, { "_Z5asinhf", (void *)&asinhf, true }, { "_Z4atanf", (void *)&atanf, true }, { "_Z5atan2ff", (void *)&atan2f, true }, { "_Z5atanhf", (void *)&atanhf, true }, { "_Z4cbrtf", (void *)&cbrtf, true }, { "_Z4ceilf", (void *)&ceilf, true }, { "_Z8copysignff", (void *)©signf, true }, { "_Z3cosf", (void *)&cosf, true }, { "_Z4coshf", (void *)&coshf, true }, { "_Z4erfcf", (void *)&erfcf, true }, { "_Z3erff", (void *)&erff, true }, { "_Z3expf", (void *)&expf, true }, { "_Z4exp2f", (void *)&exp2f, true }, { "_Z5exp10f", (void *)&SC_exp10, true }, { "_Z5expm1f", (void *)&expm1f, true }, { "_Z4fabsf", (void *)&fabsf, true }, { "_Z4fdimff", (void *)&fdimf, true }, { "_Z5floorf", (void *)&floorf, true }, { "_Z3fmafff", (void *)&fmaf, true }, { "_Z4fmaxff", (void *)&fmaxf, true }, { "_Z4fminff", (void *)&fminf, true }, // float fmin(float, float) { "_Z4fmodff", (void *)&fmodf, true }, { "_Z5fractfPf", (void *)&SC_fract, true }, { "_Z5frexpfPi", (void *)&frexpf, true }, { "_Z5hypotff", (void *)&hypotf, true }, { "_Z5ilogbf", (void *)&ilogbf, true }, { "_Z5ldexpfi", (void *)&ldexpf, true }, { "_Z6lgammaf", (void *)&lgammaf, true }, { "_Z6lgammafPi", (void *)&lgammaf_r, true }, { "_Z3logf", (void *)&logf, true }, { "_Z4log2f", (void *)&SC_log2, true }, { "_Z5log10f", (void *)&log10f, true }, { "_Z5log1pf", (void *)&log1pf, true }, { "_Z4logbf", (void *)&logbf, true }, { "_Z3madfff", (void *)&SC_mad, true }, { "_Z4modffPf", (void *)&modff, true }, //{ "_Z3nanj", (void *)&SC_nan, true }, { "_Z9nextafterff", (void *)&nextafterf, true }, { "_Z3powff", (void *)&powf, true }, { "_Z9remainderff", (void *)&remainderf, true }, { "_Z6remquoffPi", (void *)&remquof, true }, { "_Z4rintf", (void *)&rintf, true }, { "_Z5rootnfi", (void *)&SC_rootn, true }, { "_Z5roundf", (void *)&roundf, true }, { "_Z5rsqrtf", (void *)&SC_rsqrt, true }, { "_Z3sinf", (void *)&sinf, true }, { "_Z6sincosfPf", (void *)&SC_sincos, true }, { "_Z4sinhf", (void *)&sinhf, true }, { "_Z4sqrtf", (void *)&sqrtf, true }, { "_Z3tanf", (void *)&tanf, true }, { "_Z4tanhf", (void *)&tanhf, true }, { "_Z6tgammaf", (void *)&tgammaf, true }, { "_Z5truncf", (void *)&truncf, true }, { "_Z3absi", (void *)&SC_abs_i32, true }, { "_Z3abss", (void *)&SC_abs_i16, true }, { "_Z3absc", (void *)&SC_abs_i8, true }, { "_Z3clzj", (void *)&SC_clz_u32, true }, { "_Z3clzt", (void *)&SC_clz_u16, true }, { "_Z3clzh", (void *)&SC_clz_u8, true }, { "_Z3clzi", (void *)&SC_clz_i32, true }, { "_Z3clzs", (void *)&SC_clz_i16, true }, { "_Z3clzc", (void *)&SC_clz_i8, true }, { "_Z3maxjj", (void *)&SC_max_u32, true }, { "_Z3maxtt", (void *)&SC_max_u16, true }, { "_Z3maxhh", (void *)&SC_max_u8, true }, { "_Z3maxii", (void *)&SC_max_i32, true }, { "_Z3maxss", (void *)&SC_max_i16, true }, { "_Z3maxcc", (void *)&SC_max_i8, true }, { "_Z3minjj", (void *)&SC_min_u32, true }, { "_Z3mintt", (void *)&SC_min_u16, true }, { "_Z3minhh", (void *)&SC_min_u8, true }, { "_Z3minii", (void *)&SC_min_i32, true }, { "_Z3minss", (void *)&SC_min_i16, true }, { "_Z3mincc", (void *)&SC_min_i8, true }, { "_Z5clampfff", (void *)&SC_clamp_f32, true }, { "_Z7degreesf", (void *)&SC_degrees, true }, { "_Z3maxff", (void *)&SC_max_f32, true }, { "_Z3minff", (void *)&SC_min_f32, true }, { "_Z3mixfff", (void *)&SC_mix_f32, true }, { "_Z7radiansf", (void *)&SC_radians, true }, { "_Z4stepff", (void *)&SC_step_f32, true }, //{ "smoothstep", (void *)&, true }, { "_Z4signf", (void *)&SC_sign_f32, true }, // matrix { "_Z20rsMatrixLoadIdentityP12rs_matrix4x4", (void *)&SC_MatrixLoadIdentity_4x4, true }, { "_Z20rsMatrixLoadIdentityP12rs_matrix3x3", (void *)&SC_MatrixLoadIdentity_3x3, true }, { "_Z20rsMatrixLoadIdentityP12rs_matrix2x2", (void *)&SC_MatrixLoadIdentity_2x2, true }, { "_Z12rsMatrixLoadP12rs_matrix4x4PKf", (void *)&SC_MatrixLoad_4x4_f, true }, { "_Z12rsMatrixLoadP12rs_matrix3x3PKf", (void *)&SC_MatrixLoad_3x3_f, true }, { "_Z12rsMatrixLoadP12rs_matrix2x2PKf", (void *)&SC_MatrixLoad_2x2_f, true }, { "_Z12rsMatrixLoadP12rs_matrix4x4PKS_", (void *)&SC_MatrixLoad_4x4_4x4, true }, { "_Z12rsMatrixLoadP12rs_matrix4x4PK12rs_matrix3x3", (void *)&SC_MatrixLoad_4x4_3x3, true }, { "_Z12rsMatrixLoadP12rs_matrix4x4PK12rs_matrix2x2", (void *)&SC_MatrixLoad_4x4_2x2, true }, { "_Z12rsMatrixLoadP12rs_matrix3x3PKS_", (void *)&SC_MatrixLoad_3x3_3x3, true }, { "_Z12rsMatrixLoadP12rs_matrix2x2PKS_", (void *)&SC_MatrixLoad_2x2_2x2, true }, { "_Z18rsMatrixLoadRotateP12rs_matrix4x4ffff", (void *)&SC_MatrixLoadRotate, true }, { "_Z17rsMatrixLoadScaleP12rs_matrix4x4fff", (void *)&SC_MatrixLoadScale, true }, { "_Z21rsMatrixLoadTranslateP12rs_matrix4x4fff", (void *)&SC_MatrixLoadTranslate, true }, { "_Z14rsMatrixRotateP12rs_matrix4x4ffff", (void *)&SC_MatrixRotate, true }, { "_Z13rsMatrixScaleP12rs_matrix4x4fff", (void *)&SC_MatrixScale, true }, { "_Z17rsMatrixTranslateP12rs_matrix4x4fff", (void *)&SC_MatrixTranslate, true }, { "_Z20rsMatrixLoadMultiplyP12rs_matrix4x4PKS_S2_", (void *)&SC_MatrixLoadMultiply_4x4_4x4_4x4, true }, { "_Z16rsMatrixMultiplyP12rs_matrix4x4PKS_", (void *)&SC_MatrixMultiply_4x4_4x4, true }, { "_Z20rsMatrixLoadMultiplyP12rs_matrix3x3PKS_S2_", (void *)&SC_MatrixLoadMultiply_3x3_3x3_3x3, true }, { "_Z16rsMatrixMultiplyP12rs_matrix3x3PKS_", (void *)&SC_MatrixMultiply_3x3_3x3, true }, { "_Z20rsMatrixLoadMultiplyP12rs_matrix2x2PKS_S2_", (void *)&SC_MatrixLoadMultiply_2x2_2x2_2x2, true }, { "_Z16rsMatrixMultiplyP12rs_matrix2x2PKS_", (void *)&SC_MatrixMultiply_2x2_2x2, true }, { "_Z17rsMatrixLoadOrthoP12rs_matrix4x4ffffff", (void *)&SC_MatrixLoadOrtho, true }, { "_Z19rsMatrixLoadFrustumP12rs_matrix4x4ffffff", (void *)&SC_MatrixLoadFrustum, true }, { "_Z23rsMatrixLoadPerspectiveP12rs_matrix4x4ffff", (void *)&SC_MatrixLoadPerspective, true }, { "_Z15rsMatrixInverseP12rs_matrix4x4", (void *)&SC_MatrixInverse_4x4, true }, { "_Z24rsMatrixInverseTransposeP12rs_matrix4x4", (void *)&SC_MatrixInverseTranspose_4x4, true }, { "_Z17rsMatrixTransposeP12rs_matrix4x4", (void *)&SC_MatrixTranspose_4x4, true }, { "_Z17rsMatrixTransposeP12rs_matrix4x4", (void *)&SC_MatrixTranspose_3x3, true }, { "_Z17rsMatrixTransposeP12rs_matrix4x4", (void *)&SC_MatrixTranspose_2x2, true }, // RS Math { "_Z6rsRandi", (void *)&SC_randi, true }, { "_Z6rsRandii", (void *)&SC_randi2, true }, { "_Z6rsRandf", (void *)&SC_randf, true }, { "_Z6rsRandff", (void *)&SC_randf2, true }, { "_Z6rsFracf", (void *)&SC_frac, true }, // Atomics { "_Z11rsAtomicIncPVi", (void *)&SC_AtomicInc, true }, { "_Z11rsAtomicIncPVj", (void *)&SC_AtomicInc, true }, { "_Z11rsAtomicDecPVi", (void *)&SC_AtomicDec, true }, { "_Z11rsAtomicDecPVj", (void *)&SC_AtomicDec, true }, { "_Z11rsAtomicAddPVii", (void *)&SC_AtomicAdd, true }, { "_Z11rsAtomicAddPVjj", (void *)&SC_AtomicAdd, true }, { "_Z11rsAtomicSubPVii", (void *)&SC_AtomicSub, true }, { "_Z11rsAtomicSubPVjj", (void *)&SC_AtomicSub, true }, { "_Z11rsAtomicAndPVii", (void *)&SC_AtomicAnd, true }, { "_Z11rsAtomicAndPVjj", (void *)&SC_AtomicAnd, true }, { "_Z10rsAtomicOrPVii", (void *)&SC_AtomicOr, true }, { "_Z10rsAtomicOrPVjj", (void *)&SC_AtomicOr, true }, { "_Z11rsAtomicXorPVii", (void *)&SC_AtomicXor, true }, { "_Z11rsAtomicXorPVjj", (void *)&SC_AtomicXor, true }, { "_Z11rsAtomicMinPVii", (void *)&SC_AtomicMin, true }, { "_Z11rsAtomicMinPVjj", (void *)&SC_AtomicMin, true }, { "_Z11rsAtomicMaxPVii", (void *)&SC_AtomicMax, true }, { "_Z11rsAtomicMaxPVjj", (void *)&SC_AtomicMax, true }, { "_Z11rsAtomicCasPViii", (void *)&SC_AtomicCas, true }, { "_Z11rsAtomicCasPVjjj", (void *)&SC_AtomicCas, true }, { NULL, NULL, false } }; const RsdSymbolTable * rsdLookupSymbolMath(const char *sym) { const RsdSymbolTable *syms = gSyms; while (syms->mPtr) { if (!strcmp(syms->mName, sym)) { return syms; } syms++; } return NULL; }