/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "VectorDrawable.h" #include "PathParser.h" #include "SkImageInfo.h" #include "SkShader.h" #include #include "utils/Macros.h" #include "utils/VectorDrawableUtils.h" #include #include namespace android { namespace uirenderer { namespace VectorDrawable { const int Tree::MAX_CACHED_BITMAP_SIZE = 2048; void Path::draw(SkCanvas* outCanvas, const SkMatrix& groupStackedMatrix, float scaleX, float scaleY) { float matrixScale = getMatrixScale(groupStackedMatrix); if (matrixScale == 0) { // When either x or y is scaled to 0, we don't need to draw anything. return; } const SkPath updatedPath = getUpdatedPath(); SkMatrix pathMatrix(groupStackedMatrix); pathMatrix.postScale(scaleX, scaleY); //TODO: try apply the path matrix to the canvas instead of creating a new path. SkPath renderPath; renderPath.reset(); renderPath.addPath(updatedPath, pathMatrix); float minScale = fmin(scaleX, scaleY); float strokeScale = minScale * matrixScale; drawPath(outCanvas, renderPath, strokeScale, pathMatrix); } void Path::setPathData(const Data& data) { if (mData == data) { return; } // Updates the path data. Note that we don't generate a new Skia path right away // because there are cases where the animation is changing the path data, but the view // that hosts the VD has gone off screen, in which case we won't even draw. So we // postpone the Skia path generation to the draw time. mData = data; mSkPathDirty = true; } void Path::dump() { ALOGD("Path: %s has %zu points", mName.c_str(), mData.points.size()); } float Path::getMatrixScale(const SkMatrix& groupStackedMatrix) { // Given unit vectors A = (0, 1) and B = (1, 0). // After matrix mapping, we got A' and B'. Let theta = the angel b/t A' and B'. // Therefore, the final scale we want is min(|A'| * sin(theta), |B'| * sin(theta)), // which is (|A'| * |B'| * sin(theta)) / max (|A'|, |B'|); // If max (|A'|, |B'|) = 0, that means either x or y has a scale of 0. // // For non-skew case, which is most of the cases, matrix scale is computing exactly the // scale on x and y axis, and take the minimal of these two. // For skew case, an unit square will mapped to a parallelogram. And this function will // return the minimal height of the 2 bases. SkVector skVectors[2]; skVectors[0].set(0, 1); skVectors[1].set(1, 0); groupStackedMatrix.mapVectors(skVectors, 2); float scaleX = hypotf(skVectors[0].fX, skVectors[0].fY); float scaleY = hypotf(skVectors[1].fX, skVectors[1].fY); float crossProduct = skVectors[0].cross(skVectors[1]); float maxScale = fmax(scaleX, scaleY); float matrixScale = 0; if (maxScale > 0) { matrixScale = fabs(crossProduct) / maxScale; } return matrixScale; } Path::Path(const char* pathStr, size_t strLength) { PathParser::ParseResult result; PathParser::getPathDataFromString(&mData, &result, pathStr, strLength); if (!result.failureOccurred) { VectorDrawableUtils::verbsToPath(&mSkPath, mData); } } Path::Path(const Data& data) { mData = data; // Now we need to construct a path VectorDrawableUtils::verbsToPath(&mSkPath, data); } Path::Path(const Path& path) : Node(path) { mData = path.mData; VectorDrawableUtils::verbsToPath(&mSkPath, mData); } bool Path::canMorph(const Data& morphTo) { return VectorDrawableUtils::canMorph(mData, morphTo); } bool Path::canMorph(const Path& path) { return canMorph(path.mData); } const SkPath& Path::getUpdatedPath() { if (mSkPathDirty) { mSkPath.reset(); VectorDrawableUtils::verbsToPath(&mSkPath, mData); mSkPathDirty = false; } return mSkPath; } void Path::setPath(const char* pathStr, size_t strLength) { PathParser::ParseResult result; mSkPathDirty = true; PathParser::getPathDataFromString(&mData, &result, pathStr, strLength); } FullPath::FullPath(const FullPath& path) : Path(path) { mProperties = path.mProperties; SkRefCnt_SafeAssign(mStrokeGradient, path.mStrokeGradient); SkRefCnt_SafeAssign(mFillGradient, path.mFillGradient); } const SkPath& FullPath::getUpdatedPath() { if (!mSkPathDirty && !mTrimDirty) { return mTrimmedSkPath; } Path::getUpdatedPath(); if (mProperties.trimPathStart != 0.0f || mProperties.trimPathEnd != 1.0f) { applyTrim(); return mTrimmedSkPath; } else { return mSkPath; } } void FullPath::updateProperties(float strokeWidth, SkColor strokeColor, float strokeAlpha, SkColor fillColor, float fillAlpha, float trimPathStart, float trimPathEnd, float trimPathOffset, float strokeMiterLimit, int strokeLineCap, int strokeLineJoin) { mProperties.strokeWidth = strokeWidth; mProperties.strokeColor = strokeColor; mProperties.strokeAlpha = strokeAlpha; mProperties.fillColor = fillColor; mProperties.fillAlpha = fillAlpha; mProperties.strokeMiterLimit = strokeMiterLimit; mProperties.strokeLineCap = strokeLineCap; mProperties.strokeLineJoin = strokeLineJoin; // If any trim property changes, mark trim dirty and update the trim path setTrimPathStart(trimPathStart); setTrimPathEnd(trimPathEnd); setTrimPathOffset(trimPathOffset); } inline SkColor applyAlpha(SkColor color, float alpha) { int alphaBytes = SkColorGetA(color); return SkColorSetA(color, alphaBytes * alpha); } void FullPath::drawPath(SkCanvas* outCanvas, const SkPath& renderPath, float strokeScale, const SkMatrix& matrix){ // Draw path's fill, if fill color or gradient is valid bool needsFill = false; if (mFillGradient != nullptr) { mPaint.setColor(applyAlpha(SK_ColorBLACK, mProperties.fillAlpha)); SkShader* newShader = mFillGradient->newWithLocalMatrix(matrix); mPaint.setShader(newShader); needsFill = true; } else if (mProperties.fillColor != SK_ColorTRANSPARENT) { mPaint.setColor(applyAlpha(mProperties.fillColor, mProperties.fillAlpha)); needsFill = true; } if (needsFill) { mPaint.setStyle(SkPaint::Style::kFill_Style); mPaint.setAntiAlias(true); outCanvas->drawPath(renderPath, mPaint); } // Draw path's stroke, if stroke color or gradient is valid bool needsStroke = false; if (mStrokeGradient != nullptr) { mPaint.setColor(applyAlpha(SK_ColorBLACK, mProperties.strokeAlpha)); SkShader* newShader = mStrokeGradient->newWithLocalMatrix(matrix); mPaint.setShader(newShader); needsStroke = true; } else if (mProperties.strokeColor != SK_ColorTRANSPARENT) { mPaint.setColor(applyAlpha(mProperties.strokeColor, mProperties.strokeAlpha)); needsStroke = true; } if (needsStroke) { mPaint.setStyle(SkPaint::Style::kStroke_Style); mPaint.setAntiAlias(true); mPaint.setStrokeJoin(SkPaint::Join(mProperties.strokeLineJoin)); mPaint.setStrokeCap(SkPaint::Cap(mProperties.strokeLineCap)); mPaint.setStrokeMiter(mProperties.strokeMiterLimit); mPaint.setStrokeWidth(mProperties.strokeWidth * strokeScale); outCanvas->drawPath(renderPath, mPaint); } } /** * Applies trimming to the specified path. */ void FullPath::applyTrim() { if (mProperties.trimPathStart == 0.0f && mProperties.trimPathEnd == 1.0f) { // No trimming necessary. return; } SkPathMeasure measure(mSkPath, false); float len = SkScalarToFloat(measure.getLength()); float start = len * fmod((mProperties.trimPathStart + mProperties.trimPathOffset), 1.0f); float end = len * fmod((mProperties.trimPathEnd + mProperties.trimPathOffset), 1.0f); mTrimmedSkPath.reset(); if (start > end) { measure.getSegment(start, len, &mTrimmedSkPath, true); measure.getSegment(0, end, &mTrimmedSkPath, true); } else { measure.getSegment(start, end, &mTrimmedSkPath, true); } mTrimDirty = false; } REQUIRE_COMPATIBLE_LAYOUT(FullPath::Properties); static_assert(sizeof(float) == sizeof(int32_t), "float is not the same size as int32_t"); static_assert(sizeof(SkColor) == sizeof(int32_t), "SkColor is not the same size as int32_t"); bool FullPath::getProperties(int8_t* outProperties, int length) { int propertyDataSize = sizeof(Properties); if (length != propertyDataSize) { LOG_ALWAYS_FATAL("Properties needs exactly %d bytes, a byte array of size %d is provided", propertyDataSize, length); return false; } Properties* out = reinterpret_cast(outProperties); *out = mProperties; return true; } void FullPath::setColorPropertyValue(int propertyId, int32_t value) { Property currentProperty = static_cast(propertyId); if (currentProperty == Property::StrokeColor) { mProperties.strokeColor = value; } else if (currentProperty == Property::FillColor) { mProperties.fillColor = value; } else { LOG_ALWAYS_FATAL("Error setting color property on FullPath: No valid property with id: %d", propertyId); } } void FullPath::setPropertyValue(int propertyId, float value) { Property property = static_cast(propertyId); switch (property) { case Property::StrokeWidth: setStrokeWidth(value); break; case Property::StrokeAlpha: setStrokeAlpha(value); break; case Property::FillAlpha: setFillAlpha(value); break; case Property::TrimPathStart: setTrimPathStart(value); break; case Property::TrimPathEnd: setTrimPathEnd(value); break; case Property::TrimPathOffset: setTrimPathOffset(value); break; default: LOG_ALWAYS_FATAL("Invalid property id: %d for animation", propertyId); break; } } void ClipPath::drawPath(SkCanvas* outCanvas, const SkPath& renderPath, float strokeScale, const SkMatrix& matrix){ outCanvas->clipPath(renderPath, SkRegion::kIntersect_Op); } Group::Group(const Group& group) : Node(group) { mProperties = group.mProperties; } void Group::draw(SkCanvas* outCanvas, const SkMatrix& currentMatrix, float scaleX, float scaleY) { // TODO: Try apply the matrix to the canvas instead of passing it down the tree // Calculate current group's matrix by preConcat the parent's and // and the current one on the top of the stack. // Basically the Mfinal = Mviewport * M0 * M1 * M2; // Mi the local matrix at level i of the group tree. SkMatrix stackedMatrix; getLocalMatrix(&stackedMatrix); stackedMatrix.postConcat(currentMatrix); // Save the current clip information, which is local to this group. outCanvas->save(); // Draw the group tree in the same order as the XML file. for (auto& child : mChildren) { child->draw(outCanvas, stackedMatrix, scaleX, scaleY); } // Restore the previous clip information. outCanvas->restore(); } void Group::dump() { ALOGD("Group %s has %zu children: ", mName.c_str(), mChildren.size()); for (size_t i = 0; i < mChildren.size(); i++) { mChildren[i]->dump(); } } void Group::updateLocalMatrix(float rotate, float pivotX, float pivotY, float scaleX, float scaleY, float translateX, float translateY) { setRotation(rotate); setPivotX(pivotX); setPivotY(pivotY); setScaleX(scaleX); setScaleY(scaleY); setTranslateX(translateX); setTranslateY(translateY); } void Group::getLocalMatrix(SkMatrix* outMatrix) { outMatrix->reset(); // TODO: use rotate(mRotate, mPivotX, mPivotY) and scale with pivot point, instead of // translating to pivot for rotating and scaling, then translating back. outMatrix->postTranslate(-mProperties.pivotX, -mProperties.pivotY); outMatrix->postScale(mProperties.scaleX, mProperties.scaleY); outMatrix->postRotate(mProperties.rotate, 0, 0); outMatrix->postTranslate(mProperties.translateX + mProperties.pivotX, mProperties.translateY + mProperties.pivotY); } void Group::addChild(Node* child) { mChildren.emplace_back(child); } bool Group::getProperties(float* outProperties, int length) { int propertyCount = static_cast(Property::Count); if (length != propertyCount) { LOG_ALWAYS_FATAL("Properties needs exactly %d bytes, a byte array of size %d is provided", propertyCount, length); return false; } Properties* out = reinterpret_cast(outProperties); *out = mProperties; return true; } // TODO: Consider animating the properties as float pointers float Group::getPropertyValue(int propertyId) const { Property currentProperty = static_cast(propertyId); switch (currentProperty) { case Property::Rotate: return mProperties.rotate; case Property::PivotX: return mProperties.pivotX; case Property::PivotY: return mProperties.pivotY; case Property::ScaleX: return mProperties.scaleX; case Property::ScaleY: return mProperties.scaleY; case Property::TranslateX: return mProperties.translateX; case Property::TranslateY: return mProperties.translateY; default: LOG_ALWAYS_FATAL("Invalid property index: %d", propertyId); return 0; } } void Group::setPropertyValue(int propertyId, float value) { Property currentProperty = static_cast(propertyId); switch (currentProperty) { case Property::Rotate: mProperties.rotate = value; break; case Property::PivotX: mProperties.pivotX = value; break; case Property::PivotY: mProperties.pivotY = value; break; case Property::ScaleX: mProperties.scaleX = value; break; case Property::ScaleY: mProperties.scaleY = value; break; case Property::TranslateX: mProperties.translateX = value; break; case Property::TranslateY: mProperties.translateY = value; break; default: LOG_ALWAYS_FATAL("Invalid property index: %d", propertyId); } } bool Group::isValidProperty(int propertyId) { return propertyId >= 0 && propertyId < static_cast(Property::Count); } void Tree::draw(Canvas* outCanvas, SkColorFilter* colorFilter, const SkRect& bounds, bool needsMirroring, bool canReuseCache) { // The imageView can scale the canvas in different ways, in order to // avoid blurry scaling, we have to draw into a bitmap with exact pixel // size first. This bitmap size is determined by the bounds and the // canvas scale. outCanvas->getMatrix(&mCanvasMatrix); mBounds = bounds; float canvasScaleX = 1.0f; float canvasScaleY = 1.0f; if (mCanvasMatrix.getSkewX() == 0 && mCanvasMatrix.getSkewY() == 0) { // Only use the scale value when there's no skew or rotation in the canvas matrix. // TODO: Add a cts test for drawing VD on a canvas with negative scaling factors. canvasScaleX = fabs(mCanvasMatrix.getScaleX()); canvasScaleY = fabs(mCanvasMatrix.getScaleY()); } int scaledWidth = (int) (mBounds.width() * canvasScaleX); int scaledHeight = (int) (mBounds.height() * canvasScaleY); scaledWidth = std::min(Tree::MAX_CACHED_BITMAP_SIZE, scaledWidth); scaledHeight = std::min(Tree::MAX_CACHED_BITMAP_SIZE, scaledHeight); if (scaledWidth <= 0 || scaledHeight <= 0) { return; } mPaint.setColorFilter(colorFilter); int saveCount = outCanvas->save(SaveFlags::MatrixClip); outCanvas->translate(mBounds.fLeft, mBounds.fTop); // Handle RTL mirroring. if (needsMirroring) { outCanvas->translate(mBounds.width(), 0); outCanvas->scale(-1.0f, 1.0f); } // At this point, canvas has been translated to the right position. // And we use this bound for the destination rect for the drawBitmap, so // we offset to (0, 0); mBounds.offsetTo(0, 0); createCachedBitmapIfNeeded(scaledWidth, scaledHeight); outCanvas->drawVectorDrawable(this); outCanvas->restoreToCount(saveCount); } SkPaint* Tree::getPaint() { SkPaint* paint; if (mRootAlpha == 1.0f && mPaint.getColorFilter() == NULL) { paint = NULL; } else { mPaint.setFilterQuality(kLow_SkFilterQuality); mPaint.setAlpha(mRootAlpha * 255); paint = &mPaint; } return paint; } const SkBitmap& Tree::getBitmapUpdateIfDirty() { mCachedBitmap.eraseColor(SK_ColorTRANSPARENT); SkCanvas outCanvas(mCachedBitmap); float scaleX = (float) mCachedBitmap.width() / mViewportWidth; float scaleY = (float) mCachedBitmap.height() / mViewportHeight; mRootNode->draw(&outCanvas, SkMatrix::I(), scaleX, scaleY); mCacheDirty = false; return mCachedBitmap; } void Tree::createCachedBitmapIfNeeded(int width, int height) { if (!canReuseBitmap(width, height)) { SkImageInfo info = SkImageInfo::Make(width, height, kN32_SkColorType, kPremul_SkAlphaType); mCachedBitmap.setInfo(info); // TODO: Count the bitmap cache against app's java heap mCachedBitmap.allocPixels(info); mCacheDirty = true; } } bool Tree::canReuseBitmap(int width, int height) { return width == mCachedBitmap.width() && height == mCachedBitmap.height(); } }; // namespace VectorDrawable }; // namespace uirenderer }; // namespace android