/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "VelocityTracker" //#define LOG_NDEBUG 0 // Log debug messages about velocity tracking. #define DEBUG_VELOCITY 0 // Log debug messages about least squares fitting. #define DEBUG_LEAST_SQUARES 0 #include #include #include #include #include #include namespace android { // Nanoseconds per milliseconds. static const nsecs_t NANOS_PER_MS = 1000000; // Threshold for determining that a pointer has stopped moving. // Some input devices do not send ACTION_MOVE events in the case where a pointer has // stopped. We need to detect this case so that we can accurately predict the // velocity after the pointer starts moving again. static const nsecs_t ASSUME_POINTER_STOPPED_TIME = 40 * NANOS_PER_MS; static float vectorDot(const float* a, const float* b, uint32_t m) { float r = 0; while (m--) { r += *(a++) * *(b++); } return r; } static float vectorNorm(const float* a, uint32_t m) { float r = 0; while (m--) { float t = *(a++); r += t * t; } return sqrtf(r); } #if DEBUG_LEAST_SQUARES || DEBUG_VELOCITY static String8 vectorToString(const float* a, uint32_t m) { String8 str; str.append("["); while (m--) { str.appendFormat(" %f", *(a++)); if (m) { str.append(","); } } str.append(" ]"); return str; } static String8 matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) { String8 str; str.append("["); for (size_t i = 0; i < m; i++) { if (i) { str.append(","); } str.append(" ["); for (size_t j = 0; j < n; j++) { if (j) { str.append(","); } str.appendFormat(" %f", a[rowMajor ? i * n + j : j * m + i]); } str.append(" ]"); } str.append(" ]"); return str; } #endif // --- VelocityTracker --- VelocityTracker::VelocityTracker() : mLastEventTime(0), mCurrentPointerIdBits(0), mActivePointerId(-1), mStrategy(new LeastSquaresVelocityTrackerStrategy()) { } VelocityTracker::~VelocityTracker() { delete mStrategy; } void VelocityTracker::clear() { mCurrentPointerIdBits.clear(); mActivePointerId = -1; mStrategy->clear(); } void VelocityTracker::clearPointers(BitSet32 idBits) { BitSet32 remainingIdBits(mCurrentPointerIdBits.value & ~idBits.value); mCurrentPointerIdBits = remainingIdBits; if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) { mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1; } mStrategy->clearPointers(idBits); } void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) { while (idBits.count() > MAX_POINTERS) { idBits.clearLastMarkedBit(); } if ((mCurrentPointerIdBits.value & idBits.value) && eventTime >= mLastEventTime + ASSUME_POINTER_STOPPED_TIME) { #if DEBUG_VELOCITY ALOGD("VelocityTracker: stopped for %0.3f ms, clearing state.", (eventTime - mLastEventTime) * 0.000001f); #endif // We have not received any movements for too long. Assume that all pointers // have stopped. mStrategy->clear(); } mLastEventTime = eventTime; mCurrentPointerIdBits = idBits; if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) { mActivePointerId = idBits.isEmpty() ? -1 : idBits.firstMarkedBit(); } mStrategy->addMovement(eventTime, idBits, positions); #if DEBUG_VELOCITY ALOGD("VelocityTracker: addMovement eventTime=%lld, idBits=0x%08x, activePointerId=%d", eventTime, idBits.value, mActivePointerId); for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) { uint32_t id = iterBits.firstMarkedBit(); uint32_t index = idBits.getIndexOfBit(id); iterBits.clearBit(id); Estimator estimator; getEstimator(id, &estimator); ALOGD(" %d: position (%0.3f, %0.3f), " "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)", id, positions[index].x, positions[index].y, int(estimator.degree), vectorToString(estimator.xCoeff, estimator.degree + 1).string(), vectorToString(estimator.yCoeff, estimator.degree + 1).string(), estimator.confidence); } #endif } void VelocityTracker::addMovement(const MotionEvent* event) { int32_t actionMasked = event->getActionMasked(); switch (actionMasked) { case AMOTION_EVENT_ACTION_DOWN: case AMOTION_EVENT_ACTION_HOVER_ENTER: // Clear all pointers on down before adding the new movement. clear(); break; case AMOTION_EVENT_ACTION_POINTER_DOWN: { // Start a new movement trace for a pointer that just went down. // We do this on down instead of on up because the client may want to query the // final velocity for a pointer that just went up. BitSet32 downIdBits; downIdBits.markBit(event->getPointerId(event->getActionIndex())); clearPointers(downIdBits); break; } case AMOTION_EVENT_ACTION_MOVE: case AMOTION_EVENT_ACTION_HOVER_MOVE: break; default: // Ignore all other actions because they do not convey any new information about // pointer movement. We also want to preserve the last known velocity of the pointers. // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position // of the pointers that went up. ACTION_POINTER_UP does include the new position of // pointers that remained down but we will also receive an ACTION_MOVE with this // information if any of them actually moved. Since we don't know how many pointers // will be going up at once it makes sense to just wait for the following ACTION_MOVE // before adding the movement. return; } size_t pointerCount = event->getPointerCount(); if (pointerCount > MAX_POINTERS) { pointerCount = MAX_POINTERS; } BitSet32 idBits; for (size_t i = 0; i < pointerCount; i++) { idBits.markBit(event->getPointerId(i)); } uint32_t pointerIndex[MAX_POINTERS]; for (size_t i = 0; i < pointerCount; i++) { pointerIndex[i] = idBits.getIndexOfBit(event->getPointerId(i)); } nsecs_t eventTime; Position positions[pointerCount]; size_t historySize = event->getHistorySize(); for (size_t h = 0; h < historySize; h++) { eventTime = event->getHistoricalEventTime(h); for (size_t i = 0; i < pointerCount; i++) { uint32_t index = pointerIndex[i]; positions[index].x = event->getHistoricalX(i, h); positions[index].y = event->getHistoricalY(i, h); } addMovement(eventTime, idBits, positions); } eventTime = event->getEventTime(); for (size_t i = 0; i < pointerCount; i++) { uint32_t index = pointerIndex[i]; positions[index].x = event->getX(i); positions[index].y = event->getY(i); } addMovement(eventTime, idBits, positions); } bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const { Estimator estimator; if (getEstimator(id, &estimator) && estimator.degree >= 1) { *outVx = estimator.xCoeff[1]; *outVy = estimator.yCoeff[1]; return true; } *outVx = 0; *outVy = 0; return false; } bool VelocityTracker::getEstimator(uint32_t id, Estimator* outEstimator) const { return mStrategy->getEstimator(id, outEstimator); } // --- LeastSquaresVelocityTrackerStrategy --- const uint32_t LeastSquaresVelocityTrackerStrategy::DEGREE; const nsecs_t LeastSquaresVelocityTrackerStrategy::HORIZON; const uint32_t LeastSquaresVelocityTrackerStrategy::HISTORY_SIZE; LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy() { clear(); } LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() { } void LeastSquaresVelocityTrackerStrategy::clear() { mIndex = 0; mMovements[0].idBits.clear(); } void LeastSquaresVelocityTrackerStrategy::clearPointers(BitSet32 idBits) { BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value); mMovements[mIndex].idBits = remainingIdBits; } void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits, const VelocityTracker::Position* positions) { if (++mIndex == HISTORY_SIZE) { mIndex = 0; } Movement& movement = mMovements[mIndex]; movement.eventTime = eventTime; movement.idBits = idBits; uint32_t count = idBits.count(); for (uint32_t i = 0; i < count; i++) { movement.positions[i] = positions[i]; } } /** * Solves a linear least squares problem to obtain a N degree polynomial that fits * the specified input data as nearly as possible. * * Returns true if a solution is found, false otherwise. * * The input consists of two vectors of data points X and Y with indices 0..m-1. * The output is a vector B with indices 0..n-1 that describes a polynomial * that fits the data, such the sum of abs(Y[i] - (B[0] + B[1] X[i] + B[2] X[i]^2 ... B[n] X[i]^n)) * for all i between 0 and m-1 is minimized. * * That is to say, the function that generated the input data can be approximated * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n. * * The coefficient of determination (R^2) is also returned to describe the goodness * of fit of the model for the given data. It is a value between 0 and 1, where 1 * indicates perfect correspondence. * * This function first expands the X vector to a m by n matrix A such that * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n. * * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q * and an m by n upper triangular matrix R. Because R is upper triangular (lower * part is all zeroes), we can simplify the decomposition into an m by n matrix * Q1 and a n by n matrix R1 such that A = Q1 R1. * * Finally we solve the system of linear equations given by R1 B = (Qtranspose Y) * to find B. * * For efficiency, we lay out A and Q column-wise in memory because we frequently * operate on the column vectors. Conversely, we lay out R row-wise. * * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares * http://en.wikipedia.org/wiki/Gram-Schmidt */ static bool solveLeastSquares(const float* x, const float* y, uint32_t m, uint32_t n, float* outB, float* outDet) { #if DEBUG_LEAST_SQUARES ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s", int(m), int(n), vectorToString(x, m).string(), vectorToString(y, m).string()); #endif // Expand the X vector to a matrix A. float a[n][m]; // column-major order for (uint32_t h = 0; h < m; h++) { a[0][h] = 1; for (uint32_t i = 1; i < n; i++) { a[i][h] = a[i - 1][h] * x[h]; } } #if DEBUG_LEAST_SQUARES ALOGD(" - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).string()); #endif // Apply the Gram-Schmidt process to A to obtain its QR decomposition. float q[n][m]; // orthonormal basis, column-major order float r[n][n]; // upper triangular matrix, row-major order for (uint32_t j = 0; j < n; j++) { for (uint32_t h = 0; h < m; h++) { q[j][h] = a[j][h]; } for (uint32_t i = 0; i < j; i++) { float dot = vectorDot(&q[j][0], &q[i][0], m); for (uint32_t h = 0; h < m; h++) { q[j][h] -= dot * q[i][h]; } } float norm = vectorNorm(&q[j][0], m); if (norm < 0.000001f) { // vectors are linearly dependent or zero so no solution #if DEBUG_LEAST_SQUARES ALOGD(" - no solution, norm=%f", norm); #endif return false; } float invNorm = 1.0f / norm; for (uint32_t h = 0; h < m; h++) { q[j][h] *= invNorm; } for (uint32_t i = 0; i < n; i++) { r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m); } } #if DEBUG_LEAST_SQUARES ALOGD(" - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).string()); ALOGD(" - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).string()); // calculate QR, if we factored A correctly then QR should equal A float qr[n][m]; for (uint32_t h = 0; h < m; h++) { for (uint32_t i = 0; i < n; i++) { qr[i][h] = 0; for (uint32_t j = 0; j < n; j++) { qr[i][h] += q[j][h] * r[j][i]; } } } ALOGD(" - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).string()); #endif // Solve R B = Qt Y to find B. This is easy because R is upper triangular. // We just work from bottom-right to top-left calculating B's coefficients. for (uint32_t i = n; i-- != 0; ) { outB[i] = vectorDot(&q[i][0], y, m); for (uint32_t j = n - 1; j > i; j--) { outB[i] -= r[i][j] * outB[j]; } outB[i] /= r[i][i]; } #if DEBUG_LEAST_SQUARES ALOGD(" - b=%s", vectorToString(outB, n).string()); #endif // Calculate the coefficient of determination as 1 - (SSerr / SStot) where // SSerr is the residual sum of squares (squared variance of the error), // and SStot is the total sum of squares (squared variance of the data). float ymean = 0; for (uint32_t h = 0; h < m; h++) { ymean += y[h]; } ymean /= m; float sserr = 0; float sstot = 0; for (uint32_t h = 0; h < m; h++) { float err = y[h] - outB[0]; float term = 1; for (uint32_t i = 1; i < n; i++) { term *= x[h]; err -= term * outB[i]; } sserr += err * err; float var = y[h] - ymean; sstot += var * var; } *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1; #if DEBUG_LEAST_SQUARES ALOGD(" - sserr=%f", sserr); ALOGD(" - sstot=%f", sstot); ALOGD(" - det=%f", *outDet); #endif return true; } bool LeastSquaresVelocityTrackerStrategy::getEstimator(uint32_t id, VelocityTracker::Estimator* outEstimator) const { outEstimator->clear(); // Iterate over movement samples in reverse time order and collect samples. float x[HISTORY_SIZE]; float y[HISTORY_SIZE]; float time[HISTORY_SIZE]; uint32_t m = 0; uint32_t index = mIndex; const Movement& newestMovement = mMovements[mIndex]; do { const Movement& movement = mMovements[index]; if (!movement.idBits.hasBit(id)) { break; } nsecs_t age = newestMovement.eventTime - movement.eventTime; if (age > HORIZON) { break; } const VelocityTracker::Position& position = movement.getPosition(id); x[m] = position.x; y[m] = position.y; time[m] = -age * 0.000000001f; index = (index == 0 ? HISTORY_SIZE : index) - 1; } while (++m < HISTORY_SIZE); if (m == 0) { return false; // no data } // Calculate a least squares polynomial fit. uint32_t degree = DEGREE; if (degree > m - 1) { degree = m - 1; } if (degree >= 1) { float xdet, ydet; uint32_t n = degree + 1; if (solveLeastSquares(time, x, m, n, outEstimator->xCoeff, &xdet) && solveLeastSquares(time, y, m, n, outEstimator->yCoeff, &ydet)) { outEstimator->time = newestMovement.eventTime; outEstimator->degree = degree; outEstimator->confidence = xdet * ydet; #if DEBUG_LEAST_SQUARES ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f", int(outEstimator->degree), vectorToString(outEstimator->xCoeff, n).string(), vectorToString(outEstimator->yCoeff, n).string(), outEstimator->confidence); #endif return true; } } // No velocity data available for this pointer, but we do have its current position. outEstimator->xCoeff[0] = x[0]; outEstimator->yCoeff[0] = y[0]; outEstimator->time = newestMovement.eventTime; outEstimator->degree = 0; outEstimator->confidence = 1; return true; } } // namespace android