/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "ResourceTable.h" #include "ResourceValues.h" #include "ValueVisitor.h" #include "flatten/ChunkWriter.h" #include "flatten/ResourceTypeExtensions.h" #include "flatten/TableFlattener.h" #include "util/BigBuffer.h" #include #include #include using namespace android; namespace aapt { namespace { template static bool cmpIds(const T* a, const T* b) { return a->id.value() < b->id.value(); } static void strcpy16_htod(uint16_t* dst, size_t len, const StringPiece16& src) { if (len == 0) { return; } size_t i; const char16_t* srcData = src.data(); for (i = 0; i < len - 1 && i < src.size(); i++) { dst[i] = util::hostToDevice16((uint16_t) srcData[i]); } dst[i] = 0; } struct FlatEntry { ResourceEntry* entry; Value* value; uint32_t entryKey; uint32_t sourcePathKey; uint32_t sourceLine; }; class SymbolWriter { public: struct Entry { StringPool::Ref name; size_t offset; }; std::vector symbols; explicit SymbolWriter(StringPool* pool) : mPool(pool) { } void addSymbol(const ResourceNameRef& name, size_t offset) { symbols.push_back(Entry{ mPool->makeRef(name.package.toString() + u":" + toString(name.type).toString() + u"/" + name.entry.toString()), offset }); } void shiftAllOffsets(size_t offset) { for (Entry& entry : symbols) { entry.offset += offset; } } private: StringPool* mPool; }; struct MapFlattenVisitor : public RawValueVisitor { using RawValueVisitor::visit; SymbolWriter* mSymbols; FlatEntry* mEntry; BigBuffer* mBuffer; size_t mEntryCount = 0; Maybe mParentIdent; Maybe mParentName; MapFlattenVisitor(SymbolWriter* symbols, FlatEntry* entry, BigBuffer* buffer) : mSymbols(symbols), mEntry(entry), mBuffer(buffer) { } void flattenKey(Reference* key, ResTable_map* outEntry) { if (!key->id) { assert(key->name && "reference must have a name"); outEntry->name.ident = util::hostToDevice32(0); mSymbols->addSymbol(key->name.value(), (mBuffer->size() - sizeof(ResTable_map)) + offsetof(ResTable_map, name)); } else { outEntry->name.ident = util::hostToDevice32(key->id.value().id); } } void flattenValue(Item* value, ResTable_map* outEntry) { if (Reference* ref = valueCast(value)) { if (!ref->id) { assert(ref->name && "reference must have a name"); mSymbols->addSymbol(ref->name.value(), (mBuffer->size() - sizeof(ResTable_map)) + offsetof(ResTable_map, value) + offsetof(Res_value, data)); } } bool result = value->flatten(&outEntry->value); assert(result && "flatten failed"); } void flattenEntry(Reference* key, Item* value) { ResTable_map* outEntry = mBuffer->nextBlock(); flattenKey(key, outEntry); flattenValue(value, outEntry); outEntry->value.size = util::hostToDevice16(sizeof(outEntry->value)); mEntryCount++; } void visit(Attribute* attr) override { { Reference key(ResourceId{ ResTable_map::ATTR_TYPE }); BinaryPrimitive val(Res_value::TYPE_INT_DEC, attr->typeMask); flattenEntry(&key, &val); } for (Attribute::Symbol& s : attr->symbols) { BinaryPrimitive val(Res_value::TYPE_INT_DEC, s.value); flattenEntry(&s.symbol, &val); } } static bool cmpStyleEntries(const Style::Entry& a, const Style::Entry& b) { if (a.key.id) { if (b.key.id) { return a.key.id.value() < b.key.id.value(); } return true; } else if (!b.key.id) { return a.key.name.value() < b.key.name.value(); } return false; } void visit(Style* style) override { if (style->parent) { if (!style->parent.value().id) { assert(style->parent.value().name && "reference must have a name"); mParentName = style->parent.value().name; } else { mParentIdent = style->parent.value().id.value().id; } } // Sort the style. std::sort(style->entries.begin(), style->entries.end(), cmpStyleEntries); for (Style::Entry& entry : style->entries) { flattenEntry(&entry.key, entry.value.get()); } } void visit(Styleable* styleable) override { for (auto& attrRef : styleable->entries) { BinaryPrimitive val(Res_value{}); flattenEntry(&attrRef, &val); } } void visit(Array* array) override { for (auto& item : array->items) { ResTable_map* outEntry = mBuffer->nextBlock(); flattenValue(item.get(), outEntry); outEntry->value.size = util::hostToDevice16(sizeof(outEntry->value)); mEntryCount++; } } void visit(Plural* plural) override { const size_t count = plural->values.size(); for (size_t i = 0; i < count; i++) { if (!plural->values[i]) { continue; } ResourceId q; switch (i) { case Plural::Zero: q.id = android::ResTable_map::ATTR_ZERO; break; case Plural::One: q.id = android::ResTable_map::ATTR_ONE; break; case Plural::Two: q.id = android::ResTable_map::ATTR_TWO; break; case Plural::Few: q.id = android::ResTable_map::ATTR_FEW; break; case Plural::Many: q.id = android::ResTable_map::ATTR_MANY; break; case Plural::Other: q.id = android::ResTable_map::ATTR_OTHER; break; default: assert(false); break; } Reference key(q); flattenEntry(&key, plural->values[i].get()); } } }; class PackageFlattener { public: PackageFlattener(IDiagnostics* diag, TableFlattenerOptions options, ResourceTablePackage* package, SymbolWriter* symbolWriter, StringPool* sourcePool) : mDiag(diag), mOptions(options), mPackage(package), mSymbols(symbolWriter), mSourcePool(sourcePool) { } bool flattenPackage(BigBuffer* buffer) { ChunkWriter pkgWriter(buffer); ResTable_package* pkgHeader = pkgWriter.startChunk( RES_TABLE_PACKAGE_TYPE); pkgHeader->id = util::hostToDevice32(mPackage->id.value()); if (mPackage->name.size() >= arraysize(pkgHeader->name)) { mDiag->error(DiagMessage() << "package name '" << mPackage->name << "' is too long"); return false; } // Copy the package name in device endianness. strcpy16_htod(pkgHeader->name, arraysize(pkgHeader->name), mPackage->name); // Serialize the types. We do this now so that our type and key strings // are populated. We write those first. BigBuffer typeBuffer(1024); flattenTypes(&typeBuffer); pkgHeader->typeStrings = util::hostToDevice32(pkgWriter.size()); StringPool::flattenUtf16(pkgWriter.getBuffer(), mTypePool); pkgHeader->keyStrings = util::hostToDevice32(pkgWriter.size()); StringPool::flattenUtf16(pkgWriter.getBuffer(), mKeyPool); // Add the ResTable_package header/type/key strings to the offset. mSymbols->shiftAllOffsets(pkgWriter.size()); // Append the types. buffer->appendBuffer(std::move(typeBuffer)); pkgWriter.finish(); return true; } private: IDiagnostics* mDiag; TableFlattenerOptions mOptions; ResourceTablePackage* mPackage; StringPool mTypePool; StringPool mKeyPool; SymbolWriter* mSymbols; StringPool* mSourcePool; template T* writeEntry(FlatEntry* entry, BigBuffer* buffer) { static_assert(std::is_same::value || std::is_same::value, "T must be ResTable_entry or ResTable_entry_ext"); T* result = buffer->nextBlock(); ResTable_entry* outEntry = (ResTable_entry*)(result); if (entry->entry->symbolStatus.state == SymbolState::kPublic) { outEntry->flags |= ResTable_entry::FLAG_PUBLIC; } if (entry->value->isWeak()) { outEntry->flags |= ResTable_entry::FLAG_WEAK; } if (!entry->value->isItem()) { outEntry->flags |= ResTable_entry::FLAG_COMPLEX; } outEntry->key.index = util::hostToDevice32(entry->entryKey); outEntry->size = sizeof(T); if (mOptions.useExtendedChunks) { // Write the extra source block. This will be ignored by the Android runtime. ResTable_entry_source* sourceBlock = buffer->nextBlock(); sourceBlock->pathIndex = util::hostToDevice32(entry->sourcePathKey); sourceBlock->line = util::hostToDevice32(entry->sourceLine); outEntry->size += sizeof(*sourceBlock); } outEntry->flags = util::hostToDevice16(outEntry->flags); outEntry->size = util::hostToDevice16(outEntry->size); return result; } bool flattenValue(FlatEntry* entry, BigBuffer* buffer) { if (entry->value->isItem()) { writeEntry(entry, buffer); if (Reference* ref = valueCast(entry->value)) { if (!ref->id) { assert(ref->name && "reference must have at least a name"); mSymbols->addSymbol(ref->name.value(), buffer->size() + offsetof(Res_value, data)); } } Res_value* outValue = buffer->nextBlock(); bool result = static_cast(entry->value)->flatten(outValue); assert(result && "flatten failed"); outValue->size = util::hostToDevice16(sizeof(*outValue)); } else { const size_t beforeEntry = buffer->size(); ResTable_entry_ext* outEntry = writeEntry(entry, buffer); MapFlattenVisitor visitor(mSymbols, entry, buffer); entry->value->accept(&visitor); outEntry->count = util::hostToDevice32(visitor.mEntryCount); if (visitor.mParentName) { mSymbols->addSymbol(visitor.mParentName.value(), beforeEntry + offsetof(ResTable_entry_ext, parent)); } else if (visitor.mParentIdent) { outEntry->parent.ident = util::hostToDevice32(visitor.mParentIdent.value()); } } return true; } bool flattenConfig(const ResourceTableType* type, const ConfigDescription& config, std::vector* entries, BigBuffer* buffer) { ChunkWriter typeWriter(buffer); ResTable_type* typeHeader = typeWriter.startChunk(RES_TABLE_TYPE_TYPE); typeHeader->id = type->id.value(); typeHeader->config = config; typeHeader->config.swapHtoD(); auto maxAccum = [](uint32_t max, const std::unique_ptr& a) -> uint32_t { return std::max(max, (uint32_t) a->id.value()); }; // Find the largest entry ID. That is how many entries we will have. const uint32_t entryCount = std::accumulate(type->entries.begin(), type->entries.end(), 0, maxAccum) + 1; typeHeader->entryCount = util::hostToDevice32(entryCount); uint32_t* indices = typeWriter.nextBlock(entryCount); assert((size_t) entryCount <= std::numeric_limits::max() + 1); memset(indices, 0xff, entryCount * sizeof(uint32_t)); typeHeader->entriesStart = util::hostToDevice32(typeWriter.size()); const size_t entryStart = typeWriter.getBuffer()->size(); for (FlatEntry& flatEntry : *entries) { assert(flatEntry.entry->id.value() < entryCount); indices[flatEntry.entry->id.value()] = util::hostToDevice32( typeWriter.getBuffer()->size() - entryStart); if (!flattenValue(&flatEntry, typeWriter.getBuffer())) { mDiag->error(DiagMessage() << "failed to flatten resource '" << ResourceNameRef(mPackage->name, type->type, flatEntry.entry->name) << "' for configuration '" << config << "'"); return false; } } typeWriter.finish(); return true; } std::vector collectAndSortTypes() { std::vector sortedTypes; for (auto& type : mPackage->types) { if (type->type == ResourceType::kStyleable && !mOptions.useExtendedChunks) { // Styleables aren't real Resource Types, they are represented in the R.java // file. continue; } assert(type->id && "type must have an ID set"); sortedTypes.push_back(type.get()); } std::sort(sortedTypes.begin(), sortedTypes.end(), cmpIds); return sortedTypes; } std::vector collectAndSortEntries(ResourceTableType* type) { // Sort the entries by entry ID. std::vector sortedEntries; for (auto& entry : type->entries) { assert(entry->id && "entry must have an ID set"); sortedEntries.push_back(entry.get()); } std::sort(sortedEntries.begin(), sortedEntries.end(), cmpIds); return sortedEntries; } bool flattenTypeSpec(ResourceTableType* type, std::vector* sortedEntries, BigBuffer* buffer) { ChunkWriter typeSpecWriter(buffer); ResTable_typeSpec* specHeader = typeSpecWriter.startChunk( RES_TABLE_TYPE_SPEC_TYPE); specHeader->id = type->id.value(); if (sortedEntries->empty()) { typeSpecWriter.finish(); return true; } // We can't just take the size of the vector. There may be holes in the entry ID space. // Since the entries are sorted by ID, the last one will be the biggest. const size_t numEntries = sortedEntries->back()->id.value() + 1; specHeader->entryCount = util::hostToDevice32(numEntries); // Reserve space for the masks of each resource in this type. These // show for which configuration axis the resource changes. uint32_t* configMasks = typeSpecWriter.nextBlock(numEntries); const size_t actualNumEntries = sortedEntries->size(); for (size_t entryIndex = 0; entryIndex < actualNumEntries; entryIndex++) { ResourceEntry* entry = sortedEntries->at(entryIndex); // Populate the config masks for this entry. if (entry->symbolStatus.state == SymbolState::kPublic) { configMasks[entry->id.value()] |= util::hostToDevice32(ResTable_typeSpec::SPEC_PUBLIC); } const size_t configCount = entry->values.size(); for (size_t i = 0; i < configCount; i++) { const ConfigDescription& config = entry->values[i].config; for (size_t j = i + 1; j < configCount; j++) { configMasks[entry->id.value()] |= util::hostToDevice32( config.diff(entry->values[j].config)); } } } typeSpecWriter.finish(); return true; } bool flattenPublic(ResourceTableType* type, std::vector* sortedEntries, BigBuffer* buffer) { ChunkWriter publicWriter(buffer); Public_header* publicHeader = publicWriter.startChunk(RES_TABLE_PUBLIC_TYPE); publicHeader->typeId = type->id.value(); for (ResourceEntry* entry : *sortedEntries) { if (entry->symbolStatus.state != SymbolState::kUndefined) { // Write the public status of this entry. Public_entry* publicEntry = publicWriter.nextBlock(); publicEntry->entryId = util::hostToDevice32(entry->id.value()); publicEntry->key.index = util::hostToDevice32(mKeyPool.makeRef( entry->name).getIndex()); publicEntry->source.index = util::hostToDevice32(mSourcePool->makeRef( util::utf8ToUtf16(entry->symbolStatus.source.path)).getIndex()); if (entry->symbolStatus.source.line) { publicEntry->sourceLine = util::hostToDevice32( entry->symbolStatus.source.line.value()); } switch (entry->symbolStatus.state) { case SymbolState::kPrivate: publicEntry->state = Public_entry::kPrivate; break; case SymbolState::kPublic: publicEntry->state = Public_entry::kPublic; break; default: assert(false && "should not serialize any other state"); break; } // Don't hostToDevice until the last step. publicHeader->count += 1; } } publicHeader->count = util::hostToDevice32(publicHeader->count); publicWriter.finish(); return true; } bool flattenTypes(BigBuffer* buffer) { // Sort the types by their IDs. They will be inserted into the StringPool in this order. std::vector sortedTypes = collectAndSortTypes(); size_t expectedTypeId = 1; for (ResourceTableType* type : sortedTypes) { // If there is a gap in the type IDs, fill in the StringPool // with empty values until we reach the ID we expect. while (type->id.value() > expectedTypeId) { std::u16string typeName(u"?"); typeName += expectedTypeId; mTypePool.makeRef(typeName); expectedTypeId++; } expectedTypeId++; mTypePool.makeRef(toString(type->type)); std::vector sortedEntries = collectAndSortEntries(type); if (!flattenTypeSpec(type, &sortedEntries, buffer)) { return false; } if (mOptions.useExtendedChunks) { if (!flattenPublic(type, &sortedEntries, buffer)) { return false; } } // The binary resource table lists resource entries for each configuration. // We store them inverted, where a resource entry lists the values for each // configuration available. Here we reverse this to match the binary table. std::map> configToEntryListMap; for (ResourceEntry* entry : sortedEntries) { const size_t keyIndex = mKeyPool.makeRef(entry->name).getIndex(); // Group values by configuration. for (auto& configValue : entry->values) { configToEntryListMap[configValue.config].push_back(FlatEntry{ entry, configValue.value.get(), (uint32_t) keyIndex, (uint32_t)(mSourcePool->makeRef(util::utf8ToUtf16( configValue.source.path)).getIndex()), (uint32_t)(configValue.source.line ? configValue.source.line.value() : 0) }); } } // Flatten a configuration value. for (auto& entry : configToEntryListMap) { if (!flattenConfig(type, entry.first, &entry.second, buffer)) { return false; } } } return true; } }; } // namespace bool TableFlattener::consume(IAaptContext* context, ResourceTable* table) { // We must do this before writing the resources, since the string pool IDs may change. table->stringPool.sort([](const StringPool::Entry& a, const StringPool::Entry& b) -> bool { int diff = a.context.priority - b.context.priority; if (diff < 0) return true; if (diff > 0) return false; diff = a.context.config.compare(b.context.config); if (diff < 0) return true; if (diff > 0) return false; return a.value < b.value; }); table->stringPool.prune(); // Write the ResTable header. ChunkWriter tableWriter(mBuffer); ResTable_header* tableHeader = tableWriter.startChunk(RES_TABLE_TYPE); tableHeader->packageCount = util::hostToDevice32(table->packages.size()); // Flatten the values string pool. StringPool::flattenUtf8(tableWriter.getBuffer(), table->stringPool); // If we have a reference to a symbol that doesn't exist, we don't know its resource ID. // We encode the name of the symbol along with the offset of where to include the resource ID // once it is found. StringPool symbolPool; std::vector symbolOffsets; // String pool holding the source paths of each value. StringPool sourcePool; BigBuffer packageBuffer(1024); // Flatten each package. for (auto& package : table->packages) { const size_t beforePackageSize = packageBuffer.size(); // All packages will share a single global symbol pool. SymbolWriter packageSymbolWriter(&symbolPool); PackageFlattener flattener(context->getDiagnostics(), mOptions, package.get(), &packageSymbolWriter, &sourcePool); if (!flattener.flattenPackage(&packageBuffer)) { return false; } // The symbols are offset only from their own Package start. Offset them from the // start of the packageBuffer. packageSymbolWriter.shiftAllOffsets(beforePackageSize); // Extract all the symbols to offset symbolOffsets.insert(symbolOffsets.end(), std::make_move_iterator(packageSymbolWriter.symbols.begin()), std::make_move_iterator(packageSymbolWriter.symbols.end())); } SymbolTable_entry* symbolEntryData = nullptr; if (mOptions.useExtendedChunks) { if (!symbolOffsets.empty()) { // Sort the offsets so we can scan them linearly. std::sort(symbolOffsets.begin(), symbolOffsets.end(), [](const SymbolWriter::Entry& a, const SymbolWriter::Entry& b) -> bool { return a.offset < b.offset; }); // Write the Symbol header. ChunkWriter symbolWriter(tableWriter.getBuffer()); SymbolTable_header* symbolHeader = symbolWriter.startChunk( RES_TABLE_SYMBOL_TABLE_TYPE); symbolHeader->count = util::hostToDevice32(symbolOffsets.size()); symbolEntryData = symbolWriter.nextBlock(symbolOffsets.size()); StringPool::flattenUtf8(symbolWriter.getBuffer(), symbolPool); symbolWriter.finish(); } if (sourcePool.size() > 0) { // Write out source pool. ChunkWriter srcWriter(tableWriter.getBuffer()); srcWriter.startChunk(RES_TABLE_SOURCE_POOL_TYPE); StringPool::flattenUtf8(srcWriter.getBuffer(), sourcePool); srcWriter.finish(); } } const size_t beforePackagesSize = tableWriter.size(); // Finally merge all the packages into the main buffer. tableWriter.getBuffer()->appendBuffer(std::move(packageBuffer)); // Update the offsets to their final values. if (symbolEntryData) { for (SymbolWriter::Entry& entry : symbolOffsets) { symbolEntryData->stringIndex = util::hostToDevice32(entry.name.getIndex()); // The symbols were all calculated with the packageBuffer offset. We need to // add the beginning of the output buffer. symbolEntryData->offset = util::hostToDevice32(entry.offset + beforePackagesSize); symbolEntryData++; } } tableWriter.finish(); return true; } } // namespace aapt