/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "OpenGLRenderer" #define SHADOW_SHRINK_SCALE 0.1f #include #include #include "SpotShadow.h" #include "Vertex.h" namespace android { namespace uirenderer { /** * Calculate the intersection of a ray with a polygon. * It assumes the ray originates inside the polygon. * * @param poly The polygon, which is represented in a Vector2 array. * @param polyLength The length of caster's polygon in terms of number of * vertices. * @param point the start of the ray * @param dx the x vector of the ray * @param dy the y vector of the ray * @return the distance along the ray if it intersects with the polygon FP_NAN if otherwise */ float SpotShadow::rayIntersectPoly(const Vector2* poly, int polyLength, const Vector2& point, float dx, float dy) { double px = point.x; double py = point.y; int p1 = polyLength - 1; for (int p2 = 0; p2 < polyLength; p2++) { double p1x = poly[p1].x; double p1y = poly[p1].y; double p2x = poly[p2].x; double p2y = poly[p2].y; // The math below is derived from solving this formula, basically the // intersection point should stay on both the ray and the edge of (p1, p2). // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]); double div = (dx * (p1y - p2y) + dy * p2x - dy * p1x); if (div != 0) { double t = (dx * (p1y - py) + dy * px - dy * p1x) / (div); if (t >= 0 && t <= 1) { double t2 = (p1x * (py - p2y) + p2x * (p1y - py) + px * (p2y - p1y)) / div; if (t2 > 0) { return (float)t2; } } } p1 = p2; } return FP_NAN; } /** * Calculate the centroid of a 2d polygon. * * @param poly The polygon, which is represented in a Vector2 array. * @param polyLength The length of the polygon in terms of number of vertices. * @return the centroid of the polygon. */ Vector2 SpotShadow::centroid2d(const Vector2* poly, int polyLength) { double sumx = 0; double sumy = 0; int p1 = polyLength - 1; double area = 0; for (int p2 = 0; p2 < polyLength; p2++) { double x1 = poly[p1].x; double y1 = poly[p1].y; double x2 = poly[p2].x; double y2 = poly[p2].y; double a = (x1 * y2 - x2 * y1); sumx += (x1 + x2) * a; sumy += (y1 + y2) * a; area += a; p1 = p2; } double centroidx = sumx / (3 * area); double centroidy = sumy / (3 * area); return Vector2((float)centroidx, (float)centroidy); } /** * Sort points by their X coordinates * * @param points the points as a Vector2 array. * @param pointsLength the number of vertices of the polygon. */ void SpotShadow::xsort(Vector2* points, int pointsLength) { quicksortX(points, 0, pointsLength - 1); } /** * compute the convex hull of a collection of Points * * @param points the points as a Vector2 array. * @param pointsLength the number of vertices of the polygon. * @param retPoly pre allocated array of floats to put the vertices * @return the number of points in the polygon 0 if no intersection */ int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) { xsort(points, pointsLength); int n = pointsLength; Vector2 lUpper[n]; lUpper[0] = points[0]; lUpper[1] = points[1]; int lUpperSize = 2; for (int i = 2; i < n; i++) { lUpper[lUpperSize] = points[i]; lUpperSize++; while (lUpperSize > 2 && !rightTurn( (double)lUpper[lUpperSize - 3].x, (double)lUpper[lUpperSize - 3].y, (double)lUpper[lUpperSize - 2].x, (double)lUpper[lUpperSize - 2].y, (double)lUpper[lUpperSize - 1].x, (double)lUpper[lUpperSize - 1].y)) { // Remove the middle point of the three last lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x; lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y; lUpperSize--; } } Vector2 lLower[n]; lLower[0] = points[n - 1]; lLower[1] = points[n - 2]; int lLowerSize = 2; for (int i = n - 3; i >= 0; i--) { lLower[lLowerSize] = points[i]; lLowerSize++; while (lLowerSize > 2 && !rightTurn( (double)lLower[lLowerSize - 3].x, (double)lLower[lLowerSize - 3].y, (double)lLower[lLowerSize - 2].x, (double)lLower[lLowerSize - 2].y, (double)lLower[lLowerSize - 1].x, (double)lLower[lLowerSize - 1].y)) { // Remove the middle point of the three last lLower[lLowerSize - 2] = lLower[lLowerSize - 1]; lLowerSize--; } } int count = 0; for (int i = 0; i < lUpperSize; i++) { retPoly[count] = lUpper[i]; count++; } for (int i = 1; i < lLowerSize - 1; i++) { retPoly[count] = lLower[i]; count++; } // TODO: Add test harness which verify that all the points are inside the hull. return count; } /** * Test whether the 3 points form a right hand turn * * @param ax the x coordinate of point a * @param ay the y coordinate of point a * @param bx the x coordinate of point b * @param by the y coordinate of point b * @param cx the x coordinate of point c * @param cy the y coordinate of point c * @return true if a right hand turn */ bool SpotShadow::rightTurn(double ax, double ay, double bx, double by, double cx, double cy) { return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON; } /** * Calculates the intersection of poly1 with poly2 and put in poly2. * * * @param poly1 The 1st polygon, as a Vector2 array. * @param poly1Length The number of vertices of 1st polygon. * @param poly2 The 2nd and output polygon, as a Vector2 array. * @param poly2Length The number of vertices of 2nd polygon. * @return number of vertices in output polygon as poly2. */ int SpotShadow::intersection(Vector2* poly1, int poly1Length, Vector2* poly2, int poly2Length) { makeClockwise(poly1, poly1Length); makeClockwise(poly2, poly2Length); Vector2 poly[poly1Length * poly2Length + 2]; int count = 0; int pcount = 0; // If one vertex from one polygon sits inside another polygon, add it and // count them. for (int i = 0; i < poly1Length; i++) { if (testPointInsidePolygon(poly1[i], poly2, poly2Length)) { poly[count] = poly1[i]; count++; pcount++; } } int insidePoly2 = pcount; for (int i = 0; i < poly2Length; i++) { if (testPointInsidePolygon(poly2[i], poly1, poly1Length)) { poly[count] = poly2[i]; count++; } } int insidePoly1 = count - insidePoly2; // If all vertices from poly1 are inside poly2, then just return poly1. if (insidePoly2 == poly1Length) { memcpy(poly2, poly1, poly1Length * sizeof(Vector2)); return poly1Length; } // If all vertices from poly2 are inside poly1, then just return poly2. if (insidePoly1 == poly2Length) { return poly2Length; } // Since neither polygon fully contain the other one, we need to add all the // intersection points. Vector2 intersection; for (int i = 0; i < poly2Length; i++) { for (int j = 0; j < poly1Length; j++) { int poly2LineStart = i; int poly2LineEnd = ((i + 1) % poly2Length); int poly1LineStart = j; int poly1LineEnd = ((j + 1) % poly1Length); bool found = lineIntersection( poly2[poly2LineStart].x, poly2[poly2LineStart].y, poly2[poly2LineEnd].x, poly2[poly2LineEnd].y, poly1[poly1LineStart].x, poly1[poly1LineStart].y, poly1[poly1LineEnd].x, poly1[poly1LineEnd].y, intersection); if (found) { poly[count].x = intersection.x; poly[count].y = intersection.y; count++; } else { Vector2 delta = poly2[i] - poly1[j]; if (delta.lengthSquared() < 0.01) { poly[count] = poly2[i]; count++; } } } } if (count == 0) { return 0; } // Sort the result polygon around the center. Vector2 center(0.0f, 0.0f); for (int i = 0; i < count; i++) { center += poly[i]; } center /= count; sort(poly, count, center); // TODO: Verify the intersection works correctly, like any random point // inside both poly1 and poly2 should be inside the intersection, and the // result intersection polygon is convex. // Merge the vertices if they are too close. poly2[0] = poly[0]; int resultLength = 1; for (int i = 1; i < count; i++) { Vector2 delta = poly[i] - poly[i - 1]; if (delta.lengthSquared() >= 0.01) { poly2[resultLength] = poly[i]; resultLength++; } } return resultLength; } /** * Sort points about a center point * * @param poly The in and out polyogon as a Vector2 array. * @param polyLength The number of vertices of the polygon. * @param center the center ctr[0] = x , ctr[1] = y to sort around. */ void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) { quicksortCirc(poly, 0, polyLength - 1, center); } /** * Calculate the angle between and x and a y coordinate */ float SpotShadow::angle(const Vector2& point, const Vector2& center) { return -(float)atan2(point.x - center.x, point.y - center.y); } /** * Swap points pointed to by i and j */ void SpotShadow::swap(Vector2* points, int i, int j) { Vector2 temp = points[i]; points[i] = points[j]; points[j] = temp; } /** * quick sort implementation about the center. */ void SpotShadow::quicksortCirc(Vector2* points, int low, int high, const Vector2& center) { int i = low, j = high; int p = low + (high - low) / 2; float pivot = angle(points[p], center); while (i <= j) { while (angle(points[i], center) < pivot) { i++; } while (angle(points[j], center) > pivot) { j--; } if (i <= j) { swap(points, i, j); i++; j--; } } if (low < j) quicksortCirc(points, low, j, center); if (i < high) quicksortCirc(points, i, high, center); } /** * Sort points by x axis * * @param points points to sort * @param low start index * @param high end index */ void SpotShadow::quicksortX(Vector2* points, int low, int high) { int i = low, j = high; int p = low + (high - low) / 2; float pivot = points[p].x; while (i <= j) { while (points[i].x < pivot) { i++; } while (points[j].x > pivot) { j--; } if (i <= j) { swap(points, i, j); i++; j--; } } if (low < j) quicksortX(points, low, j); if (i < high) quicksortX(points, i, high); } /** * Test whether a point is inside the polygon. * * @param testPoint the point to test * @param poly the polygon * @return true if the testPoint is inside the poly. */ bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint, const Vector2* poly, int len) { bool c = false; double testx = testPoint.x; double testy = testPoint.y; for (int i = 0, j = len - 1; i < len; j = i++) { double startX = poly[j].x; double startY = poly[j].y; double endX = poly[i].x; double endY = poly[i].y; if (((endY > testy) != (startY > testy)) && (testx < (startX - endX) * (testy - endY) / (startY - endY) + endX)) { c = !c; } } return c; } /** * Make the polygon turn clockwise. * * @param polygon the polygon as a Vector2 array. * @param len the number of points of the polygon */ void SpotShadow::makeClockwise(Vector2* polygon, int len) { if (polygon == 0 || len == 0) { return; } if (!isClockwise(polygon, len)) { reverse(polygon, len); } } /** * Test whether the polygon is order in clockwise. * * @param polygon the polygon as a Vector2 array * @param len the number of points of the polygon */ bool SpotShadow::isClockwise(Vector2* polygon, int len) { double sum = 0; double p1x = polygon[len - 1].x; double p1y = polygon[len - 1].y; for (int i = 0; i < len; i++) { double p2x = polygon[i].x; double p2y = polygon[i].y; sum += p1x * p2y - p2x * p1y; p1x = p2x; p1y = p2y; } return sum < 0; } /** * Reverse the polygon * * @param polygon the polygon as a Vector2 array * @param len the number of points of the polygon */ void SpotShadow::reverse(Vector2* polygon, int len) { int n = len / 2; for (int i = 0; i < n; i++) { Vector2 tmp = polygon[i]; int k = len - 1 - i; polygon[i] = polygon[k]; polygon[k] = tmp; } } /** * Intersects two lines in parametric form. This function is called in a tight * loop, and we need double precision to get things right. * * @param x1 the x coordinate point 1 of line 1 * @param y1 the y coordinate point 1 of line 1 * @param x2 the x coordinate point 2 of line 1 * @param y2 the y coordinate point 2 of line 1 * @param x3 the x coordinate point 1 of line 2 * @param y3 the y coordinate point 1 of line 2 * @param x4 the x coordinate point 2 of line 2 * @param y4 the y coordinate point 2 of line 2 * @param ret the x,y location of the intersection * @return true if it found an intersection */ inline bool SpotShadow::lineIntersection(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4, Vector2& ret) { double d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4); if (d == 0.0) return false; double dx = (x1 * y2 - y1 * x2); double dy = (x3 * y4 - y3 * x4); double x = (dx * (x3 - x4) - (x1 - x2) * dy) / d; double y = (dx * (y3 - y4) - (y1 - y2) * dy) / d; // The intersection should be in the middle of the point 1 and point 2, // likewise point 3 and point 4. if (((x - x1) * (x - x2) > EPSILON) || ((x - x3) * (x - x4) > EPSILON) || ((y - y1) * (y - y2) > EPSILON) || ((y - y3) * (y - y4) > EPSILON)) { // Not interesected return false; } ret.x = x; ret.y = y; return true; } /** * Compute a horizontal circular polygon about point (x , y , height) of radius * (size) * * @param points number of the points of the output polygon. * @param lightCenter the center of the light. * @param size the light size. * @param ret result polygon. */ void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter, float size, Vector3* ret) { // TODO: Caching all the sin / cos values and store them in a look up table. for (int i = 0; i < points; i++) { double angle = 2 * i * M_PI / points; ret[i].x = sinf(angle) * size + lightCenter.x; ret[i].y = cosf(angle) * size + lightCenter.y; ret[i].z = lightCenter.z; } } /** * Generate the shadow from a spot light. * * @param poly x,y,z vertexes of a convex polygon that occludes the light source * @param polyLength number of vertexes of the occluding polygon * @param lightCenter the center of the light * @param lightSize the radius of the light source * @param lightVertexCount the vertex counter for the light polygon * @param rays the number of vertexes to create along the edges of the shadow * @param layers the number of layers of triangles strips to create * @param strength the "darkness" of the shadow * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return * empty strip if error. * */ void SpotShadow::createSpotShadow(const Vector3* poly, int polyLength, const Vector3& lightCenter, float lightSize, int lightVertexCount, int rays, int layers, float strength, VertexBuffer& retStrips) { Vector3 light[lightVertexCount * 3]; computeLightPolygon(lightVertexCount, lightCenter, lightSize, light); computeSpotShadow(light, lightVertexCount, lightCenter, poly, polyLength, rays, layers, strength, retStrips); } /** * Generate the shadow spot light of shape lightPoly and a object poly * * @param lightPoly x,y,z vertex of a convex polygon that is the light source * @param lightPolyLength number of vertexes of the light source polygon * @param poly x,y,z vertexes of a convex polygon that occludes the light source * @param polyLength number of vertexes of the occluding polygon * @param rays the number of vertexes to create along the edges of the shadow * @param layers the number of layers of triangles strips to create * @param strength the "darkness" of the shadow * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return * empty strip if error. */ void SpotShadow::computeSpotShadow(const Vector3* lightPoly, int lightPolyLength, const Vector3& lightCenter, const Vector3* poly, int polyLength, int rays, int layers, float strength, VertexBuffer& shadowTriangleStrip) { // Point clouds for all the shadowed vertices Vector2 shadowRegion[lightPolyLength * polyLength]; // Shadow polygon from one point light. Vector2 outline[polyLength]; Vector2 umbraMem[polyLength * lightPolyLength]; Vector2* umbra = umbraMem; int umbraLength = 0; // Validate input, receiver is always at z = 0 plane. bool inputPolyPositionValid = true; for (int i = 0; i < polyLength; i++) { if (poly[i].z <= 0.00001) { inputPolyPositionValid = false; ALOGE("polygon below the surface"); break; } if (poly[i].z >= lightPoly[0].z) { inputPolyPositionValid = false; ALOGE("polygon above the light"); break; } } // If the caster's position is invalid, don't draw anything. if (!inputPolyPositionValid) { return; } // Calculate the umbra polygon based on intersections of all outlines int k = 0; for (int j = 0; j < lightPolyLength; j++) { int m = 0; for (int i = 0; i < polyLength; i++) { float t = lightPoly[j].z - poly[i].z; if (t == 0) { return; } t = lightPoly[j].z / t; float x = lightPoly[j].x - t * (lightPoly[j].x - poly[i].x); float y = lightPoly[j].y - t * (lightPoly[j].y - poly[i].y); Vector2 newPoint = Vector2(x, y); shadowRegion[k] = newPoint; outline[m] = newPoint; k++; m++; } // For the first light polygon's vertex, use the outline as the umbra. // Later on, use the intersection of the outline and existing umbra. if (umbraLength == 0) { for (int i = 0; i < polyLength; i++) { umbra[i] = outline[i]; } umbraLength = polyLength; } else { int col = ((j * 255) / lightPolyLength); umbraLength = intersection(outline, polyLength, umbra, umbraLength); if (umbraLength == 0) { break; } } } // Generate the penumbra area using the hull of all shadow regions. int shadowRegionLength = k; Vector2 penumbra[k]; int penumbraLength = hull(shadowRegion, shadowRegionLength, penumbra); // no real umbra make a fake one if (umbraLength < 3) { // The shadow from the centroid of the light polygon. Vector2 centShadow[polyLength]; for (int i = 0; i < polyLength; i++) { float t = lightCenter.z - poly[i].z; if (t == 0) { return; } t = lightCenter.z / t; float x = lightCenter.x - t * (lightCenter.x - poly[i].x); float y = lightCenter.y - t * (lightCenter.y - poly[i].y); centShadow[i].x = x; centShadow[i].y = y; } // Shrink the centroid's shadow by 10%. // TODO: Study the magic number of 10%. Vector2 shadowCentroid = centroid2d(centShadow, polyLength); for (int i = 0; i < polyLength; i++) { centShadow[i] = shadowCentroid * (1.0f - SHADOW_SHRINK_SCALE) + centShadow[i] * SHADOW_SHRINK_SCALE; } #if DEBUG_SHADOW ALOGD("No real umbra make a fake one, centroid2d = %f , %f", shadowCentroid.x, shadowCentroid.y); #endif // Set the fake umbra, whose size is the same as the original polygon. umbra = centShadow; umbraLength = polyLength; } generateTriangleStrip(penumbra, penumbraLength, umbra, umbraLength, rays, layers, strength, shadowTriangleStrip); } /** * Generate a triangle strip given two convex polygons * * @param penumbra The outer polygon x,y vertexes * @param penumbraLength The number of vertexes in the outer polygon * @param umbra The inner outer polygon x,y vertexes * @param umbraLength The number of vertexes in the inner polygon * @param rays The number of points along the polygons to create * @param layers The number of layers of triangle strips between the umbra and penumbra * @param strength The max alpha of the umbra * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return * empty strip if error. **/ void SpotShadow::generateTriangleStrip(const Vector2* penumbra, int penumbraLength, const Vector2* umbra, int umbraLength, int rays, int layers, float strength, VertexBuffer& shadowTriangleStrip) { int rings = layers + 1; int size = rays * rings; float step = M_PI * 2 / rays; // Centroid of the umbra. Vector2 centroid = centroid2d(umbra, umbraLength); #if DEBUG_SHADOW ALOGD("centroid2d = %f , %f", centroid.x, centroid.y); #endif // Intersection to the penumbra. float penumbraDistPerRay[rays]; // Intersection to the umbra. float umbraDistPerRay[rays]; for (int i = 0; i < rays; i++) { // TODO: Setup a lookup table for all the sin/cos. float dx = sinf(step * i); float dy = cosf(step * i); umbraDistPerRay[i] = rayIntersectPoly(umbra, umbraLength, centroid, dx, dy); if (isnan(umbraDistPerRay[i])) { ALOGE("rayIntersectPoly returns NAN"); return; } penumbraDistPerRay[i] = rayIntersectPoly(penumbra, penumbraLength, centroid, dx, dy); if (isnan(umbraDistPerRay[i])) { ALOGE("rayIntersectPoly returns NAN"); return; } } int stripSize = getStripSize(rays, layers); AlphaVertex* shadowVertices = shadowTriangleStrip.alloc(stripSize); int currentIndex = 0; // Calculate the vertex values in the penumbra area. for (int r = 0; r < layers; r++) { int firstInEachLayer = currentIndex; for (int i = 0; i < rays; i++) { float dx = sinf(step * i); float dy = cosf(step * i); for (int j = r; j < (r + 2); j++) { float layerRatio = j / (float)(rings - 1); float deltaDist = layerRatio * (umbraDistPerRay[i] - penumbraDistPerRay[i]); float currentDist = penumbraDistPerRay[i] + deltaDist; float op = calculateOpacity(layerRatio, deltaDist); AlphaVertex::set(&shadowVertices[currentIndex], dx * currentDist + centroid.x, dy * currentDist + centroid.y, layerRatio * op * strength); currentIndex++; } } // Duplicate the vertices from one layer to another one to make triangle // strip. shadowVertices[currentIndex++] = shadowVertices[firstInEachLayer]; firstInEachLayer++; shadowVertices[currentIndex++] = shadowVertices[firstInEachLayer]; } int lastInPenumbra = currentIndex - 1; shadowVertices[currentIndex++] = shadowVertices[lastInPenumbra]; // Preallocate the vertices (index as [firstInUmbra - 1]) for jumping from // the penumbra to umbra. currentIndex++; int firstInUmbra = currentIndex; // traverse the umbra area in a zig zag pattern for strips. for (int k = 0; k < rays; k++) { int i = k / 2; if ((k & 1) == 1) { i = rays - i - 1; } float dx = sinf(step * i); float dy = cosf(step * i); float ratio = 1.0; float deltaDist = ratio * (umbraDistPerRay[i] - penumbraDistPerRay[i]); float currentDist = penumbraDistPerRay[i] + deltaDist; float op = calculateOpacity(ratio, deltaDist); AlphaVertex::set(&shadowVertices[currentIndex], dx * currentDist + centroid.x, dy * currentDist + centroid.y, ratio * op * strength); currentIndex++; } // Back fill the one vertex for jumping from penumbra to umbra. shadowVertices[firstInUmbra - 1] = shadowVertices[firstInUmbra]; #if DEBUG_SHADOW for (int i = 0; i < currentIndex; i++) { ALOGD("shadow value: i %d, (x:%f, y:%f, a:%f)", i, shadowVertices[i].x, shadowVertices[i].y, shadowVertices[i].alpha); } #endif } /** * This is only for experimental purpose. * After intersections are calculated, we could smooth the polygon if needed. * So far, we don't think it is more appealing yet. * * @param level The level of smoothness. * @param rays The total number of rays. * @param rayDist (In and Out) The distance for each ray. * */ void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) { for (int k = 0; k < level; k++) { for (int i = 0; i < rays; i++) { float p1 = rayDist[(rays - 1 + i) % rays]; float p2 = rayDist[i]; float p3 = rayDist[(i + 1) % rays]; rayDist[i] = (p1 + p2 * 2 + p3) / 4; } } } /** * Calculate the opacity according to the distance and falloff ratio. * * @param distRatio The distance ratio of current sample between umbra and * penumbra area. * @param deltaDist The distance between current sample to the penumbra area. * @return The opacity according to the distance between umbra and penumbra. */ float SpotShadow::calculateOpacity(float distRatio, float deltaDist) { // TODO: Experiment on the opacity calculation. float falloffRatio = 1 + deltaDist * deltaDist; return (distRatio + 1 - 1 / falloffRatio) / 2; } /** * Calculate the number of vertex we will create given a number of rays and layers * * @param rays number of points around the polygons you want * @param layers number of layers of triangle strips you need * @return number of vertex (multiply by 3 for number of floats) */ int SpotShadow::getStripSize(int rays, int layers) { return (2 + rays + ((layers) * 2 * (rays + 1))); } }; // namespace uirenderer }; // namespace android