/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "FrameBuilder.h" #include "LayerUpdateQueue.h" #include "RenderNode.h" #include "renderstate/OffscreenBufferPool.h" #include "utils/FatVector.h" #include "utils/PaintUtils.h" #include "utils/TraceUtils.h" #include #include #include namespace android { namespace uirenderer { FrameBuilder::FrameBuilder(const LayerUpdateQueue& layers, const SkRect& clip, uint32_t viewportWidth, uint32_t viewportHeight, const std::vector< sp >& nodes, const Vector3& lightCenter) : mCanvasState(*this) { ATRACE_NAME("prepare drawing commands"); mLayerBuilders.reserve(layers.entries().size()); mLayerStack.reserve(layers.entries().size()); // Prepare to defer Fbo0 auto fbo0 = mAllocator.create(viewportWidth, viewportHeight, Rect(clip)); mLayerBuilders.push_back(fbo0); mLayerStack.push_back(0); mCanvasState.initializeSaveStack(viewportWidth, viewportHeight, clip.fLeft, clip.fTop, clip.fRight, clip.fBottom, lightCenter); // Render all layers to be updated, in order. Defer in reverse order, so that they'll be // updated in the order they're passed in (mLayerBuilders are issued to Renderer in reverse) for (int i = layers.entries().size() - 1; i >= 0; i--) { RenderNode* layerNode = layers.entries()[i].renderNode; // only schedule repaint if node still on layer - possible it may have been // removed during a dropped frame, but layers may still remain scheduled so // as not to lose info on what portion is damaged if (CC_LIKELY(layerNode->getLayer() != nullptr)) { const Rect& layerDamage = layers.entries()[i].damage; layerNode->computeOrdering(); // map current light center into RenderNode's coordinate space Vector3 lightCenter = mCanvasState.currentSnapshot()->getRelativeLightCenter(); layerNode->getLayer()->inverseTransformInWindow.mapPoint3d(lightCenter); saveForLayer(layerNode->getWidth(), layerNode->getHeight(), 0, 0, layerDamage, lightCenter, nullptr, layerNode); if (layerNode->getDisplayList()) { deferNodeOps(*layerNode); } restoreForLayer(); } } // Defer Fbo0 for (const sp& node : nodes) { if (node->nothingToDraw()) continue; node->computeOrdering(); int count = mCanvasState.save(SkCanvas::kClip_SaveFlag | SkCanvas::kMatrix_SaveFlag); deferNodePropsAndOps(*node); mCanvasState.restoreToCount(count); } } void FrameBuilder::onViewportInitialized() {} void FrameBuilder::onSnapshotRestored(const Snapshot& removed, const Snapshot& restored) {} void FrameBuilder::deferNodePropsAndOps(RenderNode& node) { const RenderProperties& properties = node.properties(); const Outline& outline = properties.getOutline(); if (properties.getAlpha() <= 0 || (outline.getShouldClip() && outline.isEmpty()) || properties.getScaleX() == 0 || properties.getScaleY() == 0) { return; // rejected } if (properties.getLeft() != 0 || properties.getTop() != 0) { mCanvasState.translate(properties.getLeft(), properties.getTop()); } if (properties.getStaticMatrix()) { mCanvasState.concatMatrix(*properties.getStaticMatrix()); } else if (properties.getAnimationMatrix()) { mCanvasState.concatMatrix(*properties.getAnimationMatrix()); } if (properties.hasTransformMatrix()) { if (properties.isTransformTranslateOnly()) { mCanvasState.translate(properties.getTranslationX(), properties.getTranslationY()); } else { mCanvasState.concatMatrix(*properties.getTransformMatrix()); } } const int width = properties.getWidth(); const int height = properties.getHeight(); Rect saveLayerBounds; // will be set to non-empty if saveLayer needed const bool isLayer = properties.effectiveLayerType() != LayerType::None; int clipFlags = properties.getClippingFlags(); if (properties.getAlpha() < 1) { if (isLayer) { clipFlags &= ~CLIP_TO_BOUNDS; // bounds clipping done by layer } if (CC_LIKELY(isLayer || !properties.getHasOverlappingRendering())) { // simply scale rendering content's alpha mCanvasState.scaleAlpha(properties.getAlpha()); } else { // schedule saveLayer by initializing saveLayerBounds saveLayerBounds.set(0, 0, width, height); if (clipFlags) { properties.getClippingRectForFlags(clipFlags, &saveLayerBounds); clipFlags = 0; // all clipping done by savelayer } } if (CC_UNLIKELY(ATRACE_ENABLED() && properties.promotedToLayer())) { // pretend alpha always causes savelayer to warn about // performance problem affecting old versions ATRACE_FORMAT("%s alpha caused saveLayer %dx%d", node.getName(), width, height); } } if (clipFlags) { Rect clipRect; properties.getClippingRectForFlags(clipFlags, &clipRect); mCanvasState.clipRect(clipRect.left, clipRect.top, clipRect.right, clipRect.bottom, SkRegion::kIntersect_Op); } if (properties.getRevealClip().willClip()) { Rect bounds; properties.getRevealClip().getBounds(&bounds); mCanvasState.setClippingRoundRect(mAllocator, bounds, properties.getRevealClip().getRadius()); } else if (properties.getOutline().willClip()) { mCanvasState.setClippingOutline(mAllocator, &(properties.getOutline())); } if (!mCanvasState.quickRejectConservative(0, 0, width, height)) { // not rejected, so defer render as either Layer, or direct (possibly wrapped in saveLayer) if (node.getLayer()) { // HW layer LayerOp* drawLayerOp = new (mAllocator) LayerOp(node); BakedOpState* bakedOpState = tryBakeOpState(*drawLayerOp); if (bakedOpState) { // Node's layer already deferred, schedule it to render into parent layer currentLayer().deferUnmergeableOp(mAllocator, bakedOpState, OpBatchType::Bitmap); } } else if (CC_UNLIKELY(!saveLayerBounds.isEmpty())) { // draw DisplayList contents within temporary, since persisted layer could not be used. // (temp layers are clipped to viewport, since they don't persist offscreen content) SkPaint saveLayerPaint; saveLayerPaint.setAlpha(properties.getAlpha()); deferBeginLayerOp(*new (mAllocator) BeginLayerOp( saveLayerBounds, Matrix4::identity(), nullptr, // no record-time clip - need only respect defer-time one &saveLayerPaint)); deferNodeOps(node); deferEndLayerOp(*new (mAllocator) EndLayerOp()); } else { deferNodeOps(node); } } } typedef key_value_pair_t ZRenderNodeOpPair; template static void buildZSortedChildList(V* zTranslatedNodes, const DisplayList& displayList, const DisplayList::Chunk& chunk) { if (chunk.beginChildIndex == chunk.endChildIndex) return; for (size_t i = chunk.beginChildIndex; i < chunk.endChildIndex; i++) { RenderNodeOp* childOp = displayList.getChildren()[i]; RenderNode* child = childOp->renderNode; float childZ = child->properties().getZ(); if (!MathUtils::isZero(childZ) && chunk.reorderChildren) { zTranslatedNodes->push_back(ZRenderNodeOpPair(childZ, childOp)); childOp->skipInOrderDraw = true; } else if (!child->properties().getProjectBackwards()) { // regular, in order drawing DisplayList childOp->skipInOrderDraw = false; } } // Z sort any 3d children (stable-ness makes z compare fall back to standard drawing order) std::stable_sort(zTranslatedNodes->begin(), zTranslatedNodes->end()); } template static size_t findNonNegativeIndex(const V& zTranslatedNodes) { for (size_t i = 0; i < zTranslatedNodes.size(); i++) { if (zTranslatedNodes[i].key >= 0.0f) return i; } return zTranslatedNodes.size(); } template void FrameBuilder::defer3dChildren(ChildrenSelectMode mode, const V& zTranslatedNodes) { const int size = zTranslatedNodes.size(); if (size == 0 || (mode == ChildrenSelectMode::Negative&& zTranslatedNodes[0].key > 0.0f) || (mode == ChildrenSelectMode::Positive && zTranslatedNodes[size - 1].key < 0.0f)) { // no 3d children to draw return; } /** * Draw shadows and (potential) casters mostly in order, but allow the shadows of casters * with very similar Z heights to draw together. * * This way, if Views A & B have the same Z height and are both casting shadows, the shadows are * underneath both, and neither's shadow is drawn on top of the other. */ const size_t nonNegativeIndex = findNonNegativeIndex(zTranslatedNodes); size_t drawIndex, shadowIndex, endIndex; if (mode == ChildrenSelectMode::Negative) { drawIndex = 0; endIndex = nonNegativeIndex; shadowIndex = endIndex; // draw no shadows } else { drawIndex = nonNegativeIndex; endIndex = size; shadowIndex = drawIndex; // potentially draw shadow for each pos Z child } float lastCasterZ = 0.0f; while (shadowIndex < endIndex || drawIndex < endIndex) { if (shadowIndex < endIndex) { const RenderNodeOp* casterNodeOp = zTranslatedNodes[shadowIndex].value; const float casterZ = zTranslatedNodes[shadowIndex].key; // attempt to render the shadow if the caster about to be drawn is its caster, // OR if its caster's Z value is similar to the previous potential caster if (shadowIndex == drawIndex || casterZ - lastCasterZ < 0.1f) { deferShadow(*casterNodeOp); lastCasterZ = casterZ; // must do this even if current caster not casting a shadow shadowIndex++; continue; } } const RenderNodeOp* childOp = zTranslatedNodes[drawIndex].value; deferRenderNodeOpImpl(*childOp); drawIndex++; } } void FrameBuilder::deferShadow(const RenderNodeOp& casterNodeOp) { auto& node = *casterNodeOp.renderNode; auto& properties = node.properties(); if (properties.getAlpha() <= 0.0f || properties.getOutline().getAlpha() <= 0.0f || !properties.getOutline().getPath() || properties.getScaleX() == 0 || properties.getScaleY() == 0) { // no shadow to draw return; } const SkPath* casterOutlinePath = properties.getOutline().getPath(); const SkPath* revealClipPath = properties.getRevealClip().getPath(); if (revealClipPath && revealClipPath->isEmpty()) return; float casterAlpha = properties.getAlpha() * properties.getOutline().getAlpha(); // holds temporary SkPath to store the result of intersections SkPath* frameAllocatedPath = nullptr; const SkPath* casterPath = casterOutlinePath; // intersect the shadow-casting path with the reveal, if present if (revealClipPath) { frameAllocatedPath = createFrameAllocatedPath(); Op(*casterPath, *revealClipPath, kIntersect_SkPathOp, frameAllocatedPath); casterPath = frameAllocatedPath; } // intersect the shadow-casting path with the clipBounds, if present if (properties.getClippingFlags() & CLIP_TO_CLIP_BOUNDS) { if (!frameAllocatedPath) { frameAllocatedPath = createFrameAllocatedPath(); } Rect clipBounds; properties.getClippingRectForFlags(CLIP_TO_CLIP_BOUNDS, &clipBounds); SkPath clipBoundsPath; clipBoundsPath.addRect(clipBounds.left, clipBounds.top, clipBounds.right, clipBounds.bottom); Op(*casterPath, clipBoundsPath, kIntersect_SkPathOp, frameAllocatedPath); casterPath = frameAllocatedPath; } ShadowOp* shadowOp = new (mAllocator) ShadowOp(casterNodeOp, casterAlpha, casterPath, mCanvasState.getLocalClipBounds(), mCanvasState.currentSnapshot()->getRelativeLightCenter()); BakedOpState* bakedOpState = BakedOpState::tryShadowOpConstruct( mAllocator, *mCanvasState.writableSnapshot(), shadowOp); if (CC_LIKELY(bakedOpState)) { currentLayer().deferUnmergeableOp(mAllocator, bakedOpState, OpBatchType::Shadow); } } void FrameBuilder::deferProjectedChildren(const RenderNode& renderNode) { const SkPath* projectionReceiverOutline = renderNode.properties().getOutline().getPath(); int count = mCanvasState.save(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag); // can't be null, since DL=null node rejection happens before deferNodePropsAndOps const DisplayList& displayList = *(renderNode.getDisplayList()); const RecordedOp* op = (displayList.getOps()[displayList.projectionReceiveIndex]); const RenderNodeOp* backgroundOp = static_cast(op); const RenderProperties& backgroundProps = backgroundOp->renderNode->properties(); // Transform renderer to match background we're projecting onto // (by offsetting canvas by translationX/Y of background rendernode, since only those are set) mCanvasState.translate(backgroundProps.getTranslationX(), backgroundProps.getTranslationY()); // If the projection receiver has an outline, we mask projected content to it // (which we know, apriori, are all tessellated paths) mCanvasState.setProjectionPathMask(mAllocator, projectionReceiverOutline); // draw projected nodes for (size_t i = 0; i < renderNode.mProjectedNodes.size(); i++) { RenderNodeOp* childOp = renderNode.mProjectedNodes[i]; int restoreTo = mCanvasState.save(SkCanvas::kMatrix_SaveFlag); mCanvasState.concatMatrix(childOp->transformFromCompositingAncestor); deferRenderNodeOpImpl(*childOp); mCanvasState.restoreToCount(restoreTo); } mCanvasState.restoreToCount(count); } /** * Used to define a list of lambdas referencing private FrameBuilder::onXX::defer() methods. * * This allows opIds embedded in the RecordedOps to be used for dispatching to these lambdas. * E.g. a BitmapOp op then would be dispatched to FrameBuilder::onBitmapOp(const BitmapOp&) */ #define OP_RECEIVER(Type) \ [](FrameBuilder& frameBuilder, const RecordedOp& op) { frameBuilder.defer##Type(static_cast(op)); }, void FrameBuilder::deferNodeOps(const RenderNode& renderNode) { typedef void (*OpDispatcher) (FrameBuilder& frameBuilder, const RecordedOp& op); static OpDispatcher receivers[] = BUILD_DEFERRABLE_OP_LUT(OP_RECEIVER); // can't be null, since DL=null node rejection happens before deferNodePropsAndOps const DisplayList& displayList = *(renderNode.getDisplayList()); for (const DisplayList::Chunk& chunk : displayList.getChunks()) { FatVector zTranslatedNodes; buildZSortedChildList(&zTranslatedNodes, displayList, chunk); defer3dChildren(ChildrenSelectMode::Negative, zTranslatedNodes); for (size_t opIndex = chunk.beginOpIndex; opIndex < chunk.endOpIndex; opIndex++) { const RecordedOp* op = displayList.getOps()[opIndex]; receivers[op->opId](*this, *op); if (CC_UNLIKELY(!renderNode.mProjectedNodes.empty() && displayList.projectionReceiveIndex >= 0 && static_cast(opIndex) == displayList.projectionReceiveIndex)) { deferProjectedChildren(renderNode); } } defer3dChildren(ChildrenSelectMode::Positive, zTranslatedNodes); } } void FrameBuilder::deferRenderNodeOpImpl(const RenderNodeOp& op) { if (op.renderNode->nothingToDraw()) return; int count = mCanvasState.save(SkCanvas::kClip_SaveFlag | SkCanvas::kMatrix_SaveFlag); // apply state from RecordedOp (clip first, since op's clip is transformed by current matrix) mCanvasState.writableSnapshot()->mutateClipArea().applyClip(op.localClip, *mCanvasState.currentSnapshot()->transform); mCanvasState.concatMatrix(op.localMatrix); // then apply state from node properties, and defer ops deferNodePropsAndOps(*op.renderNode); mCanvasState.restoreToCount(count); } void FrameBuilder::deferRenderNodeOp(const RenderNodeOp& op) { if (!op.skipInOrderDraw) { deferRenderNodeOpImpl(op); } } /** * Defers an unmergeable, strokeable op, accounting correctly * for paint's style on the bounds being computed. */ void FrameBuilder::deferStrokeableOp(const RecordedOp& op, batchid_t batchId, BakedOpState::StrokeBehavior strokeBehavior) { // Note: here we account for stroke when baking the op BakedOpState* bakedState = BakedOpState::tryStrokeableOpConstruct( mAllocator, *mCanvasState.writableSnapshot(), op, strokeBehavior); if (!bakedState) return; // quick rejected currentLayer().deferUnmergeableOp(mAllocator, bakedState, batchId); } /** * Returns batch id for tessellatable shapes, based on paint. Checks to see if path effect/AA will * be used, since they trigger significantly different rendering paths. * * Note: not used for lines/points, since they don't currently support path effects. */ static batchid_t tessBatchId(const RecordedOp& op) { const SkPaint& paint = *(op.paint); return paint.getPathEffect() ? OpBatchType::AlphaMaskTexture : (paint.isAntiAlias() ? OpBatchType::AlphaVertices : OpBatchType::Vertices); } void FrameBuilder::deferArcOp(const ArcOp& op) { deferStrokeableOp(op, tessBatchId(op)); } static bool hasMergeableClip(const BakedOpState& state) { return state.computedState.clipState || state.computedState.clipState->mode == ClipMode::Rectangle; } void FrameBuilder::deferBitmapOp(const BitmapOp& op) { BakedOpState* bakedState = tryBakeOpState(op); if (!bakedState) return; // quick rejected // Don't merge non-simply transformed or neg scale ops, SET_TEXTURE doesn't handle rotation // Don't merge A8 bitmaps - the paint's color isn't compared by mergeId, or in // MergingDrawBatch::canMergeWith() if (bakedState->computedState.transform.isSimple() && bakedState->computedState.transform.positiveScale() && PaintUtils::getXfermodeDirect(op.paint) == SkXfermode::kSrcOver_Mode && op.bitmap->colorType() != kAlpha_8_SkColorType && hasMergeableClip(*bakedState)) { mergeid_t mergeId = reinterpret_cast(op.bitmap->getGenerationID()); // TODO: AssetAtlas in mergeId currentLayer().deferMergeableOp(mAllocator, bakedState, OpBatchType::Bitmap, mergeId); } else { currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::Bitmap); } } void FrameBuilder::deferBitmapMeshOp(const BitmapMeshOp& op) { BakedOpState* bakedState = tryBakeOpState(op); if (!bakedState) return; // quick rejected currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::Bitmap); } void FrameBuilder::deferBitmapRectOp(const BitmapRectOp& op) { BakedOpState* bakedState = tryBakeOpState(op); if (!bakedState) return; // quick rejected currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::Bitmap); } void FrameBuilder::deferCirclePropsOp(const CirclePropsOp& op) { // allocate a temporary oval op (with mAllocator, so it persists until render), so the // renderer doesn't have to handle the RoundRectPropsOp type, and so state baking is simple. float x = *(op.x); float y = *(op.y); float radius = *(op.radius); Rect unmappedBounds(x - radius, y - radius, x + radius, y + radius); const OvalOp* resolvedOp = new (mAllocator) OvalOp( unmappedBounds, op.localMatrix, op.localClip, op.paint); deferOvalOp(*resolvedOp); } void FrameBuilder::deferFunctorOp(const FunctorOp& op) { BakedOpState* bakedState = tryBakeOpState(op); if (!bakedState) return; // quick rejected currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::Functor); } void FrameBuilder::deferLinesOp(const LinesOp& op) { batchid_t batch = op.paint->isAntiAlias() ? OpBatchType::AlphaVertices : OpBatchType::Vertices; deferStrokeableOp(op, batch, BakedOpState::StrokeBehavior::Forced); } void FrameBuilder::deferOvalOp(const OvalOp& op) { deferStrokeableOp(op, tessBatchId(op)); } void FrameBuilder::deferPatchOp(const PatchOp& op) { BakedOpState* bakedState = tryBakeOpState(op); if (!bakedState) return; // quick rejected if (bakedState->computedState.transform.isPureTranslate() && PaintUtils::getXfermodeDirect(op.paint) == SkXfermode::kSrcOver_Mode && hasMergeableClip(*bakedState)) { mergeid_t mergeId = reinterpret_cast(op.bitmap->getGenerationID()); // TODO: AssetAtlas in mergeId // Only use the MergedPatch batchId when merged, so Bitmap+Patch don't try to merge together currentLayer().deferMergeableOp(mAllocator, bakedState, OpBatchType::MergedPatch, mergeId); } else { // Use Bitmap batchId since Bitmap+Patch use same shader currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::Bitmap); } } void FrameBuilder::deferPathOp(const PathOp& op) { deferStrokeableOp(op, OpBatchType::Bitmap); } void FrameBuilder::deferPointsOp(const PointsOp& op) { batchid_t batch = op.paint->isAntiAlias() ? OpBatchType::AlphaVertices : OpBatchType::Vertices; deferStrokeableOp(op, batch, BakedOpState::StrokeBehavior::Forced); } void FrameBuilder::deferRectOp(const RectOp& op) { deferStrokeableOp(op, tessBatchId(op)); } void FrameBuilder::deferRoundRectOp(const RoundRectOp& op) { deferStrokeableOp(op, tessBatchId(op)); } void FrameBuilder::deferRoundRectPropsOp(const RoundRectPropsOp& op) { // allocate a temporary round rect op (with mAllocator, so it persists until render), so the // renderer doesn't have to handle the RoundRectPropsOp type, and so state baking is simple. const RoundRectOp* resolvedOp = new (mAllocator) RoundRectOp( Rect(*(op.left), *(op.top), *(op.right), *(op.bottom)), op.localMatrix, op.localClip, op.paint, *op.rx, *op.ry); deferRoundRectOp(*resolvedOp); } void FrameBuilder::deferSimpleRectsOp(const SimpleRectsOp& op) { BakedOpState* bakedState = tryBakeOpState(op); if (!bakedState) return; // quick rejected currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::Vertices); } static batchid_t textBatchId(const SkPaint& paint) { // TODO: better handling of shader (since we won't care about color then) return paint.getColor() == SK_ColorBLACK ? OpBatchType::Text : OpBatchType::ColorText; } void FrameBuilder::deferTextOp(const TextOp& op) { BakedOpState* bakedState = tryBakeOpState(op); if (!bakedState) return; // quick rejected batchid_t batchId = textBatchId(*(op.paint)); if (bakedState->computedState.transform.isPureTranslate() && PaintUtils::getXfermodeDirect(op.paint) == SkXfermode::kSrcOver_Mode && hasMergeableClip(*bakedState)) { mergeid_t mergeId = reinterpret_cast(op.paint->getColor()); currentLayer().deferMergeableOp(mAllocator, bakedState, batchId, mergeId); } else { currentLayer().deferUnmergeableOp(mAllocator, bakedState, batchId); } } void FrameBuilder::deferTextOnPathOp(const TextOnPathOp& op) { BakedOpState* bakedState = tryBakeOpState(op); if (!bakedState) return; // quick rejected currentLayer().deferUnmergeableOp(mAllocator, bakedState, textBatchId(*(op.paint))); } void FrameBuilder::deferTextureLayerOp(const TextureLayerOp& op) { BakedOpState* bakedState = tryBakeOpState(op); if (!bakedState) return; // quick rejected currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::TextureLayer); } void FrameBuilder::saveForLayer(uint32_t layerWidth, uint32_t layerHeight, float contentTranslateX, float contentTranslateY, const Rect& repaintRect, const Vector3& lightCenter, const BeginLayerOp* beginLayerOp, RenderNode* renderNode) { mCanvasState.save(SkCanvas::kClip_SaveFlag | SkCanvas::kMatrix_SaveFlag); mCanvasState.writableSnapshot()->initializeViewport(layerWidth, layerHeight); mCanvasState.writableSnapshot()->roundRectClipState = nullptr; mCanvasState.writableSnapshot()->setRelativeLightCenter(lightCenter); mCanvasState.writableSnapshot()->transform->loadTranslate( contentTranslateX, contentTranslateY, 0); mCanvasState.writableSnapshot()->setClip( repaintRect.left, repaintRect.top, repaintRect.right, repaintRect.bottom); // create a new layer repaint, and push its index on the stack mLayerStack.push_back(mLayerBuilders.size()); auto newFbo = mAllocator.create(layerWidth, layerHeight, repaintRect, beginLayerOp, renderNode); mLayerBuilders.push_back(newFbo); } void FrameBuilder::restoreForLayer() { // restore canvas, and pop finished layer off of the stack mCanvasState.restore(); mLayerStack.pop_back(); } // TODO: defer time rejection (when bounds become empty) + tests // Option - just skip layers with no bounds at playback + defer? void FrameBuilder::deferBeginLayerOp(const BeginLayerOp& op) { uint32_t layerWidth = (uint32_t) op.unmappedBounds.getWidth(); uint32_t layerHeight = (uint32_t) op.unmappedBounds.getHeight(); auto previous = mCanvasState.currentSnapshot(); Vector3 lightCenter = previous->getRelativeLightCenter(); // Combine all transforms used to present saveLayer content: // parent content transform * canvas transform * bounds offset Matrix4 contentTransform(*(previous->transform)); contentTransform.multiply(op.localMatrix); contentTransform.translate(op.unmappedBounds.left, op.unmappedBounds.top); Matrix4 inverseContentTransform; inverseContentTransform.loadInverse(contentTransform); // map the light center into layer-relative space inverseContentTransform.mapPoint3d(lightCenter); // Clip bounds of temporary layer to parent's clip rect, so: Rect saveLayerBounds(layerWidth, layerHeight); // 1) transform Rect(width, height) into parent's space // note: left/top offsets put in contentTransform above contentTransform.mapRect(saveLayerBounds); // 2) intersect with parent's clip saveLayerBounds.doIntersect(previous->getRenderTargetClip()); // 3) and transform back inverseContentTransform.mapRect(saveLayerBounds); saveLayerBounds.doIntersect(Rect(layerWidth, layerHeight)); saveLayerBounds.roundOut(); // if bounds are reduced, will clip the layer's area by reducing required bounds... layerWidth = saveLayerBounds.getWidth(); layerHeight = saveLayerBounds.getHeight(); // ...and shifting drawing content to account for left/top side clipping float contentTranslateX = -saveLayerBounds.left; float contentTranslateY = -saveLayerBounds.top; saveForLayer(layerWidth, layerHeight, contentTranslateX, contentTranslateY, Rect(layerWidth, layerHeight), lightCenter, &op, nullptr); } void FrameBuilder::deferEndLayerOp(const EndLayerOp& /* ignored */) { const BeginLayerOp& beginLayerOp = *currentLayer().beginLayerOp; int finishedLayerIndex = mLayerStack.back(); restoreForLayer(); // record the draw operation into the previous layer's list of draw commands // uses state from the associated beginLayerOp, since it has all the state needed for drawing LayerOp* drawLayerOp = new (mAllocator) LayerOp( beginLayerOp.unmappedBounds, beginLayerOp.localMatrix, beginLayerOp.localClip, beginLayerOp.paint, &(mLayerBuilders[finishedLayerIndex]->offscreenBuffer)); BakedOpState* bakedOpState = tryBakeOpState(*drawLayerOp); if (bakedOpState) { // Layer will be drawn into parent layer (which is now current, since we popped mLayerStack) currentLayer().deferUnmergeableOp(mAllocator, bakedOpState, OpBatchType::Bitmap); } else { // Layer won't be drawn - delete its drawing batches to prevent it from doing any work // TODO: need to prevent any render work from being done // - create layerop earlier for reject purposes? mLayerBuilders[finishedLayerIndex]->clear(); return; } } void FrameBuilder::deferBeginUnclippedLayerOp(const BeginUnclippedLayerOp& op) { Matrix4 boundsTransform(*(mCanvasState.currentSnapshot()->transform)); boundsTransform.multiply(op.localMatrix); Rect dstRect(op.unmappedBounds); boundsTransform.mapRect(dstRect); dstRect.doIntersect(mCanvasState.currentSnapshot()->getRenderTargetClip()); // Allocate a holding position for the layer object (copyTo will produce, copyFrom will consume) OffscreenBuffer** layerHandle = mAllocator.create(nullptr); /** * First, defer an operation to copy out the content from the rendertarget into a layer. */ auto copyToOp = new (mAllocator) CopyToLayerOp(op, layerHandle); BakedOpState* bakedState = BakedOpState::directConstruct(mAllocator, &(currentLayer().viewportClip), dstRect, *copyToOp); currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::CopyToLayer); /** * Defer a clear rect, so that clears from multiple unclipped layers can be drawn * both 1) simultaneously, and 2) as long after the copyToLayer executes as possible */ currentLayer().deferLayerClear(dstRect); /** * And stash an operation to copy that layer back under the rendertarget until * a balanced EndUnclippedLayerOp is seen */ auto copyFromOp = new (mAllocator) CopyFromLayerOp(op, layerHandle); bakedState = BakedOpState::directConstruct(mAllocator, &(currentLayer().viewportClip), dstRect, *copyFromOp); currentLayer().activeUnclippedSaveLayers.push_back(bakedState); } void FrameBuilder::deferEndUnclippedLayerOp(const EndUnclippedLayerOp& /* ignored */) { LOG_ALWAYS_FATAL_IF(currentLayer().activeUnclippedSaveLayers.empty(), "no layer to end!"); BakedOpState* copyFromLayerOp = currentLayer().activeUnclippedSaveLayers.back(); currentLayer().deferUnmergeableOp(mAllocator, copyFromLayerOp, OpBatchType::CopyFromLayer); currentLayer().activeUnclippedSaveLayers.pop_back(); } } // namespace uirenderer } // namespace android