This class can be used to perform occlusion queries. An occlusion query
can be used to test whether an object is entirely hidden or not.
Change-Id: Ida456df81dbe008a64d3ff4cb7879340785c6abf
The eglGetSystemTimeNV extension can be used to enable profiling
in PerfHUD ES. When the delta of two calls to eglGetSystemTimeNV
equals 0, we now cancels display lists updates. This allows the
tool to redraw the same frame several times in a row to run its
analysis.
For better results profiling should only be attempted after
setting viewroot.profile_rendering to true using adb shell
setprop.
Change-Id: I02e3c237418004cff8d6cb0b9a37126efae44c90
When the Android runtime starts, the system preloads a series of assets
in the Zygote process. These assets are shared across all processes.
Unfortunately, each one of these assets is later uploaded in its own
OpenGL texture, once per process. This wastes memory and generates
unnecessary OpenGL state changes.
This CL introduces an asset server that provides an atlas to all processes.
Note: bitmaps used by skia shaders are *not* sampled from the atlas.
It's an uncommon use case and would require extra texture transforms
in the GL shaders.
WHAT IS THE ASSETS ATLAS
The "assets atlas" is a single, shareable graphic buffer that contains
all the system's preloaded bitmap drawables (this includes 9-patches.)
The atlas is made of two distinct objects: the graphic buffer that
contains the actual pixels and the map which indicates where each
preloaded bitmap can be found in the atlas (essentially a pair of
x and y coordinates.)
HOW IS THE ASSETS ATLAS GENERATED
Because we need to support a wide variety of devices and because it
is easy to change the list of preloaded drawables, the atlas is
generated at runtime, during the startup phase of the system process.
There are several steps that lead to the atlas generation:
1. If the device is booting for the first time, or if the device was
updated, we need to find the best atlas configuration. To do so,
the atlas service tries a number of width, height and algorithm
variations that allows us to pack as many assets as possible while
using as little memory as possible. Once a best configuration is found,
it gets written to disk in /data/system/framework_atlas
2. Given a best configuration (algorithm variant, dimensions and
number of bitmaps that can be packed in the atlas), the atlas service
packs all the preloaded bitmaps into a single graphic buffer object.
3. The packing is done using Skia in a temporary native bitmap. The
Skia bitmap is then copied into the graphic buffer using OpenGL ES
to benefit from texture swizzling.
HOW PROCESSES USE THE ATLAS
Whenever a process' hardware renderer initializes its EGL context,
it queries the atlas service for the graphic buffer and the map.
It is important to remember that both the context and the map will
be valid for the lifetime of the hardware renderer (if the system
process goes down, all apps get killed as well.)
Every time the hardware renderer needs to render a bitmap, it first
checks whether the bitmap can be found in the assets atlas. When
the bitmap is part of the atlas, texture coordinates are remapped
appropriately before rendering.
Change-Id: I8eaecf53e7f6a33d90da3d0047c5ceec89ea3af0
Bug #7146141
This change is needed to add a render buffer cache to avoid
creating and destroying stencil buffers on every frame.
This change also allows the renderer to use a 1 bit or 4 bit
stencil buffer whenever possible.
Finally this change fixes a bug introduced by a previous CL
which causes the stencil buffer to not be updated in certain
conditions. The fix relies on a new optional parameter in
drawColorRects() that can be used to avoid performing a
quickReject on rectangles generated by the clip region.
Change-Id: I2f55a8e807009887b276a83cde9f53fd5c01199f
These markers will be used to group the GL commands by View in the
OpenGL ES debugging tool. This will help correlate individual GL
calls to higher level components like Views.
Change-Id: I73607ba2e7224a80ac32527968261ee008f049c6
This optimization is currently disabled until Launcher is
modified to take advantage of it. The optimization can be
enabled by turning on RENDER_LAYERS_AS_REGIONS in the
OpenGLRenderer.h file.
Change-Id: I2fdf59d0f4dc690a3d7f712173ab8db3848b27b1
This adds the ability to blend with the framebuffer using Darken,
Lighten, Add, Multiply, Overlay and Screen.
Change-Id: Iae01a53797d4ad39c373cba6ff2a42293129da1a