This fixes a bug introduced in Change-Id: I34b7db402401a824f463d35d7546c05dc2979243 where
the top-most view was allowed to capture focus in order to ensure the device handled volume
key events.
This resolves the issue by restoring previous behavior and ensures we still handle media keys,
regardless of focus.
Fixes bug 7676996
Change-Id: Id2d1200be81640e4b4b7b5e3a0af099d6fc2d259
If you install a lockscreen widget app on a secondary user, lockscreen fails to find it.
There were several places where the correct context and userId were required under the
covers - AppWidgetHost, AppWidgetHostView and RemoteViewsAdapter.
Set the user id in the required places and use it to query the package information.
Bug: 7662835
Change-Id: Ife482c8ab2a2e601650b7cfe2660e88d3b8f2050
This fixes a regression where ring volume can be changed in keyguard.
Because KeyguardHostView is now being re-created in onScreenTurnedOff(),
it loses focus and the volume keys get handled by the fallback handler.
The fix is to ensure at least one child under KeyguardHostView has focus
whenever we re-create it.
Fixes bug 7546960
Change-Id: I34b7db402401a824f463d35d7546c05dc2979243
1. The screen magnification feature was implemented entirely as a part of the accessibility
manager. To achieve that the window manager had to implement a bunch of hooks for an
external client to observe its internal state. This was problematic since it dilutes
the window manager interface and allows code that is deeply coupled with the window
manager to reside outside of it. Also the observer callbacks were IPCs which cannot
be called with the window manager's lock held. To avoid that the window manager had
to post messages requesting notification of interested parties which makes the code
consuming the callbacks to run asynchronously of the window manager. This causes timing
issues and adds unnecessary complexity.
Now the magnification logic is split in two halves. The first half that is responsible
to track the magnified portion of the screen and serve as a policy which windows can be
magnified and it is a part of the window manager. This part exposes higher level APIs
allowing interested parties with the right permissions to control the magnification
of a given display. The APIs also allow a client to be registered for callbacks on
interesting changes such as resize of the magnified region, etc. This part servers
as a mediator between magnification controllers and the window manager.
The second half is a controller that is responsible to drive the magnification
state based on touch interactions. It also presents a highlight when magnified to
suggest the magnified potion of the screen. The controller is responsible for auto
zooming out in case the user context changes - rotation, new actitivity. The controller
also auto pans if a dialog appears and it does not interesect the magnified frame.
bug:7410464
2. By design screen magnification and touch exploration work separately and together. If
magnification is enabled the user sees a larger version of the widgets and a sub section
of the screen content. Accessibility services use the introspection APIs to "see" what
is on the screen so they can speak it, navigate to the next item in response to a
gesture, etc. Hence, the information returned to accessibility services has to reflect
what a sighted user would see on the screen. Therefore, if the screen is magnified
we need to adjust the bounds and position of the infos describing views in a magnified
window such that the info bounds are equivalent to what the user sees.
To improve performance we keep accessibility node info caches in the client process.
However, when magnification state changes we have to clear these caches since the
bounds of the cached infos no longer reflect the screen content which just got smaller
or larger.
This patch propagates not only the window scale as before but also the X/Y pan and the
bounds of the magnified portion of the screen to the introspected app. This information
is used to adjust the bounds of the node infos coming from this window such that the
reported bounds are the same as the user sees not as the app thinks they are. Note that
if magnification is enabled we zoom the content and pan it along the X and Y axis. Also
recomputed is the isVisibleToUser property of the reported info since in a magnified
state the user sees a subset of the window content and the views not in the magnified
viewport should be reported as not visible to the user.
bug:7344059
Change-Id: I6f7832c7a6a65c5368b390eb1f1518d0c7afd7d2
This was initially about the Clock widget crashing repeatedly on some
devices with multiple users. Turned out that there were race conditions
when switching users that could result in remote views of one user calling
back to the RemoteViewsAdapter in keyguard that in turn sent an incorrect widget id
to a different user's widget, resulting in a crash.
Since KeyguardHostView is instantiated in the same process for different users,
it needs to carry a user identity to pass along to AppWidgetService so that
remote views services were bound to the correct user and callbacks were attached and
detached properly.
Added some aidl calls that take the userId to do the binding properly. A more
complete fix might be needed in the future so that all calls from Keyguard carry
the user id.
Also, there was a problem in comparing host uid for secondary users, since Settings
for a secondary user has a different uid than keyguard. Not an issue on single-user
systems. Changed the host.uid comparison to accomodate for the secondary user.
Bug: 7450247
Change-Id: Idbc36e3c60023cac74174f6cb7f2b2130dd3052c