Remove Clang cutout for unused parameters. Fix warnings.
Remove Clang cutout for deprecated Skia function usage. Has been
fixed in the L push.
Change-Id: I7ea073ff67127cc1e14e798b655e2c50615fe8e7
Ignore warnings about unused parameters and initialization of static
constant float data members.
Change one potential error of allocating variable length
array of non-POD element type on stack.
Fix mismatch of class and struct declaration tags.
BUG: 17512760
Change-Id: I3a09c945fb1c17f27aff74a7e439dd4c35d1fb32
Tweaks animators to have less unnecessary refcounting
Pull animator management out into seperate class
More control to tweak animator lifecycle, such as doing
Java-side handling of start delay by attaching but not
starting the animator
Change-Id: I4ff8207580ca11fb38f45ef0007b406e0097281c
* Now with more native!
* Less matrix math thanks to bulk-property-update support!
* Zero JNI on the View.damageInParent() path!
* Fully aware of RT-driven animators!
* Likely full of new and exciting bugs!
* But it also fixes at least 1 existing invalidate bug!
Change-Id: Ie0773f85a60850ff2668370c58defef2e8aa079f
The libskia target exports all of its public includes directories so
redefining them here is redundant. Also this cleans up and makes it
obvious where the framework is making using of private Skia headers.
Change-Id: Ie7ecc9ddd3df780bed6b9af54ba58ca58274e043
The eventual goal is for the StatefulBaseRenderer to serve as the
common base class between the DisplayListRenderer and OpenGLRenderer.
This will separate DisplayList recording, Snapshot stack management,
and the GL in OpenGLRenderer.
Additionally, avoid sp<> parameters, and use const parameters in
several places, with the intent of greatly reducing the surface area
where renderer subclasses can modify snapshot stack.
Next steps:
-move bulk of clipping logic into StatefulBaseRenderer
-disable direct snapshot access
Change-Id: Ibc3c6747134ec7daf8ea535866239fa73b874390
Basically we compute the shadow as a strip of triangles, whose alpha value
is the strength of the shadow.
We use the normal to extend the geometry.
And we use static function and try to avoid new/malloc in the computation.
Change-Id: I382286f1cad351bd5ff983f76f446c075819dcaf
When the Android runtime starts, the system preloads a series of assets
in the Zygote process. These assets are shared across all processes.
Unfortunately, each one of these assets is later uploaded in its own
OpenGL texture, once per process. This wastes memory and generates
unnecessary OpenGL state changes.
This CL introduces an asset server that provides an atlas to all processes.
Note: bitmaps used by skia shaders are *not* sampled from the atlas.
It's an uncommon use case and would require extra texture transforms
in the GL shaders.
WHAT IS THE ASSETS ATLAS
The "assets atlas" is a single, shareable graphic buffer that contains
all the system's preloaded bitmap drawables (this includes 9-patches.)
The atlas is made of two distinct objects: the graphic buffer that
contains the actual pixels and the map which indicates where each
preloaded bitmap can be found in the atlas (essentially a pair of
x and y coordinates.)
HOW IS THE ASSETS ATLAS GENERATED
Because we need to support a wide variety of devices and because it
is easy to change the list of preloaded drawables, the atlas is
generated at runtime, during the startup phase of the system process.
There are several steps that lead to the atlas generation:
1. If the device is booting for the first time, or if the device was
updated, we need to find the best atlas configuration. To do so,
the atlas service tries a number of width, height and algorithm
variations that allows us to pack as many assets as possible while
using as little memory as possible. Once a best configuration is found,
it gets written to disk in /data/system/framework_atlas
2. Given a best configuration (algorithm variant, dimensions and
number of bitmaps that can be packed in the atlas), the atlas service
packs all the preloaded bitmaps into a single graphic buffer object.
3. The packing is done using Skia in a temporary native bitmap. The
Skia bitmap is then copied into the graphic buffer using OpenGL ES
to benefit from texture swizzling.
HOW PROCESSES USE THE ATLAS
Whenever a process' hardware renderer initializes its EGL context,
it queries the atlas service for the graphic buffer and the map.
It is important to remember that both the context and the map will
be valid for the lifetime of the hardware renderer (if the system
process goes down, all apps get killed as well.)
Every time the hardware renderer needs to render a bitmap, it first
checks whether the bitmap can be found in the assets atlas. When
the bitmap is part of the atlas, texture coordinates are remapped
appropriately before rendering.
Change-Id: I8eaecf53e7f6a33d90da3d0047c5ceec89ea3af0
PBOs (Pixel Buffer Objects) can be used on OpenGL ES 3.0 to perform
asynchronous texture uploads to free up the CPU. This change does not
enable the use of PBOs unless a specific property is set (Adreno drivers
have issues with PBOs at the moment, Mali drivers work just fine.)
This change also cleans up Font/FontRenderer a little bit and improves
performance of drop shadows generations by using memcpy() instead of
a manual byte-by-byte copy.
On GL ES 2.0 devices, or when PBOs are disabled, a PixelBuffer instance
behaves like a simple byte array. The extra APIs introduced for PBOs
(map/unmap and bind/unbind) are pretty much no-ops for CPU pixel
buffers and won't introduce any significant overhead.
This change also fixes a bug with text drop shadows: if the drop
shadow is larger than the max texture size, the renderer would leave
the GL context in a bad state and generate 0x501 errors. This change
simply skips drop shadows if they are too large.
Change-Id: I2700aadb0c6093431dc5dee3d587d689190c4e23