A core app is one that has coreApp="true" in its manifest tag.
The system can successfully boot (though a little painfully) with
only framework-res.apk, SettingsProvider.apk, SystemUI.apk,
DefaultContainerService.apk, and Launcher2.apk set as core apps.
Currently this boot mode is always turned off.
Change-Id: Ieaa4a8031c2c391a12996aa8d8b1d65fc2b09d6b
New methods for full backup/restore have been added to BackupAgent
(still hidden): onFullBackup() and onRestoreFile(). The former is the
entry point for a full app backup to adb/socket/etc: the app then writes
all of its files, entire, to the output. During restore, the latter
new callback is invoked, once for each file being restored.
The full backup/restore interface does not use the previously-defined
BackupDataInput / BackupDataOutput classes, because those classes
provide an API designed for incremental key/value data structuring.
Instead, a new FullBackupDataOutput class has been introduced, through
which we restrict apps' abilities to write data during a full backup
operation to *only* writing entire on-disk files via a new BackupAgent
method called fullBackupFile().
"FullBackupAgent" exists now solely as a concrete shell class that
can be instantiated in the case of apps that do not have their own
BackupAgent implementations.
Along with the API change, responsibility for backing up the .apk
file and OBB container has been moved into the framework rather than
have the application side of the transaction do it.
Change-Id: I12849b06b1a6e4c44d080587c1e9828a52b70dae
This is the basic infrastructure for pulling a full(*) backup of the
device's data over an adb(**) connection to the local device. The
basic process consists of these interacting pieces:
1. The framework's BackupManagerService, which coordinates the
collection of app data and routing to the destination.
2. A new framework-provided BackupAgent implementation called
FullBackupAgent, which is instantiated in the target applications'
processes in turn, and knows how to emit a datastream that contains
all of the app's saved data files.
3. A new shell-level program called "bu" that is used to bridge from
adb to the framework's Backup Manager.
4. adb itself, which now knows how to use 'bu' to kick off a backup
operation and pull the resulting data stream to the desktop host.
5. A system-provided application that verifies with the user that
an attempted backup/restore operation is in fact expected and to
be allowed.
The full agent implementation is not used during normal operation of
the delta-based app-customized remote backup process. Instead it's
used during user-confirmed *full* backup of applications and all their
data to a local destination, e.g. via the adb connection.
The output format is 'tar'. This makes it very easy for the end
user to examine the resulting dataset, e.g. for purpose of extracting
files for debug purposes; as well as making it easy to contemplate
adding things like a direct gzip stage to the data pipeline during
backup/restore. It also makes it convenient to construct and maintain
synthetic backup datasets for testing purposes.
Within the tar format, certain artificial conventions are used.
All files are stored within top-level directories according to
their semantic origin:
apps/pkgname/a/ : Application .apk file itself
apps/pkgname/obb/: The application's associated .obb containers
apps/pkgname/f/ : The subtree rooted at the getFilesDir() location
apps/pkgname/db/ : The subtree rooted at the getDatabasePath() parent
apps/pkgname/sp/ : The subtree rooted at the getSharedPrefsFile() parent
apps/pkgname/r/ : Files stored relative to the root of the app's file tree
apps/pkgname/c/ : Reserved for the app's getCacheDir() tree; not stored.
For each package, the first entry in the tar stream is a file called
"_manifest", nominally rooted at apps/pkgname. This file contains some
metadata about the package whose data is stored in the archive.
The contents of shared storage can optionally be included in the tar
stream. It is placed in the synthetic location:
shared/...
uid/gid are ignored; app uids are assigned at install time, and the
app's data is handled from within its own execution environment, so
will automatically have the app's correct uid.
Forward-locked .apk files are never backed up. System-partition
.apk files are not backed up unless they have been overridden by a
post-factory upgrade, in which case the current .apk *is* backed up --
i.e. the .apk that matches the on-disk data. The manifest preceding
each application's portion of the tar stream provides version numbers
and signature blocks for version checking, as well as an indication
of whether the restore logic should expect to install the .apk before
extracting the data.
System packages can designate their own full backup agents. This is
to manage things like the settings provider which (a) cannot be shut
down on the fly in order to do a clean snapshot of their file trees,
and (b) manage data that is not only irrelevant but actively hostile
to non-identical devices -- CDMA telephony settings would seriously
mess up a GSM device if emplaced there blind, for example.
When a full backup or restore is initiated from adb, the system will
present a confirmation UI that the user must explicitly respond to
within a short [~ 30 seconds] timeout. This is to avoid the
possibility of malicious desktop-side software secretly grabbing a copy
of all the user's data for nefarious purposes.
(*) The backup is not strictly a full mirror. In particular, the
settings database is not cloned; it is handled the same way that
it is in cloud backup/restore. This is because some settings
are actively destructive if cloned onto a different (or
especially a different-model) device: telephony settings and
AndroidID are good examples of this.
(**) On the framework side it doesn't care that it's adb; it just
sends the tar stream to a file descriptor. This can easily be
retargeted around whatever transport we might decide to use
in the future.
KNOWN ISSUES:
* the security UI is desperately ugly; no proper designs have yet
been done for it
* restore is not yet implemented
* shared storage backup is not yet implemented
* symlinks aren't yet handled, though some infrastructure for
dealing with them has been put in place.
Change-Id: Ia8347611e23b398af36ea22c36dff0a276b1ce91
Note in docs that callbacks are on main thread.
Rename to DeviceAdminReceiver?
Document resetPassword is the device's password.
Also hide android.R.attr.neverEncrypt.
Any package can now participate in backup/restore, without requiring any
manifest-declared permission. *Control* of the backup manager is still
guarded by the BACKUP permission, which is signatureOrSystem.
Change-Id: I116fcfcd4cd255e3c976330da1c4dea7d4faae9d
Applications can now specify two more aspects of the restore process: whether
they need to run with their own custom Application subclass rather than being
launched in the usual restricted mode during restore, and whether it's okay for
the backup manager to kill the app process once restore has completed. The new
manifest attributes for these are, respectively, android:restoreNeedsApplication
and android:killAfterRestore.
If unspecified in the manifest, restoreNeedsApplication is false, and
killAfterRestore is true.
In order to support kill-after-restore cleanly, this change also adds a new
system-process-only interface to the Activity Manager, which will schedule a
"commit suicide" event on the target app's main thread looper.
The framework backup agents have been given the appropriate new backup
attributes as well.
Packages that do not use android.permission.BACKUP_DATA will neither be backed
up nor restored. That permission is currently signature-only. In the future if
access to the backup/restore infrastructure is made available to arbitrary 3rd
party applications, the permission checks (and indeed, the permission itself)
can simply be removed.
This backs up the basic system and secure settings. THe restoration doesn't
take effect immediately. You many need to restart the runtime to see all
restored values take effect.
made public, and wouldn't be used by any third party applications,
and no longer does anything regardless).
Also remove the WRITE_GSERVICES permission from the SettingsProvider
package's manifest (the declaration there was redundant with the one
in the core manifest, where all the other settings-related permissions
live -- no other core package includes its own permission definitions).