This is the basic infrastructure for pulling a full(*) backup of the
device's data over an adb(**) connection to the local device. The
basic process consists of these interacting pieces:
1. The framework's BackupManagerService, which coordinates the
collection of app data and routing to the destination.
2. A new framework-provided BackupAgent implementation called
FullBackupAgent, which is instantiated in the target applications'
processes in turn, and knows how to emit a datastream that contains
all of the app's saved data files.
3. A new shell-level program called "bu" that is used to bridge from
adb to the framework's Backup Manager.
4. adb itself, which now knows how to use 'bu' to kick off a backup
operation and pull the resulting data stream to the desktop host.
5. A system-provided application that verifies with the user that
an attempted backup/restore operation is in fact expected and to
be allowed.
The full agent implementation is not used during normal operation of
the delta-based app-customized remote backup process. Instead it's
used during user-confirmed *full* backup of applications and all their
data to a local destination, e.g. via the adb connection.
The output format is 'tar'. This makes it very easy for the end
user to examine the resulting dataset, e.g. for purpose of extracting
files for debug purposes; as well as making it easy to contemplate
adding things like a direct gzip stage to the data pipeline during
backup/restore. It also makes it convenient to construct and maintain
synthetic backup datasets for testing purposes.
Within the tar format, certain artificial conventions are used.
All files are stored within top-level directories according to
their semantic origin:
apps/pkgname/a/ : Application .apk file itself
apps/pkgname/obb/: The application's associated .obb containers
apps/pkgname/f/ : The subtree rooted at the getFilesDir() location
apps/pkgname/db/ : The subtree rooted at the getDatabasePath() parent
apps/pkgname/sp/ : The subtree rooted at the getSharedPrefsFile() parent
apps/pkgname/r/ : Files stored relative to the root of the app's file tree
apps/pkgname/c/ : Reserved for the app's getCacheDir() tree; not stored.
For each package, the first entry in the tar stream is a file called
"_manifest", nominally rooted at apps/pkgname. This file contains some
metadata about the package whose data is stored in the archive.
The contents of shared storage can optionally be included in the tar
stream. It is placed in the synthetic location:
shared/...
uid/gid are ignored; app uids are assigned at install time, and the
app's data is handled from within its own execution environment, so
will automatically have the app's correct uid.
Forward-locked .apk files are never backed up. System-partition
.apk files are not backed up unless they have been overridden by a
post-factory upgrade, in which case the current .apk *is* backed up --
i.e. the .apk that matches the on-disk data. The manifest preceding
each application's portion of the tar stream provides version numbers
and signature blocks for version checking, as well as an indication
of whether the restore logic should expect to install the .apk before
extracting the data.
System packages can designate their own full backup agents. This is
to manage things like the settings provider which (a) cannot be shut
down on the fly in order to do a clean snapshot of their file trees,
and (b) manage data that is not only irrelevant but actively hostile
to non-identical devices -- CDMA telephony settings would seriously
mess up a GSM device if emplaced there blind, for example.
When a full backup or restore is initiated from adb, the system will
present a confirmation UI that the user must explicitly respond to
within a short [~ 30 seconds] timeout. This is to avoid the
possibility of malicious desktop-side software secretly grabbing a copy
of all the user's data for nefarious purposes.
(*) The backup is not strictly a full mirror. In particular, the
settings database is not cloned; it is handled the same way that
it is in cloud backup/restore. This is because some settings
are actively destructive if cloned onto a different (or
especially a different-model) device: telephony settings and
AndroidID are good examples of this.
(**) On the framework side it doesn't care that it's adb; it just
sends the tar stream to a file descriptor. This can easily be
retargeted around whatever transport we might decide to use
in the future.
KNOWN ISSUES:
* the security UI is desperately ugly; no proper designs have yet
been done for it
* restore is not yet implemented
* shared storage backup is not yet implemented
* symlinks aren't yet handled, though some infrastructure for
dealing with them has been put in place.
Change-Id: Ia8347611e23b398af36ea22c36dff0a276b1ce91
Clicking on a node in hierarchyviewer1 and hierarchyviewer2 and then
clicking the new "Dump DisplayList" button will cause the display
list for the selected node (including its children) to be output into
logcat.
Change-Id: Iad05f5f6cca0f8b465dccd962b501dc18fe6e053
Clicking on a node in hierarchyviewer1 and hierarchyviewer2 and then
clicking the new "Dump DisplayList" button will cause the display
list for the selected node (including its children) to be output into
logcat.
Change-Id: Id32f62569ad1ab4d533bc62987f3a7390c1bb4e6
We define struct CameraInfo in this camera/Camera.h, even though an identical
struct camera_info is defined in hardware/camera.h (but not in
hardware/camera_defs.h). We may not export struct definitions from the HAL
into headers which may find their way into the NDK.
This commit also renames FRAME_CALLBACK_FLAG_xxx to CAMERA_FRAME_CALLBACK_xxx.
Change-Id: I3e2ddd01d61bf5371ff2fc1a397995e0f1ee11f8
Signed-off-by: Iliyan Malchev <malchev@google.com>
- Supports wakeup and renewal on dhcp
- Supports multiple controllers to use the state machine
simultaneously
- Optionally, a controller can request a notification prior
to DHCP request/renewal being sent
Change-Id: I3a9d7e6a02ff26be3a86ddca6964683ad3c28f93
Bug #4343984
TextureView can be used to render media content (video, OpenGL,
RenderScript) inside a View.
The key difference with SurfaceView is that TextureView does
not create a new Surface. This gives the ability to seamlessly
transform, animate, fade, etc. a TextureView, which was hard
if not impossible to do with a SurfaceView.
A TextureView also interacts perfectly with ScrollView,
ListView, etc. It allows application to embed media content
in a much more flexible way than before.
For instance, to render the camera preview at 50% opacity,
all you need to do is the following:
mTextureView.setAlpha(0.5f);
Camera c = Camera.open();
c.setPreviewTexture(mTextureView.getSurfaceTexture());
c.startPreview();
TextureView uses a SurfaceTexture to get the job done. More
APIs are required to make it easy to create OpenGL contexts
for a TextureView. It can currently be done with a bit of
JNI code.
Change-Id: Iaa7953097ab5beb8437bcbbfa03b2df5b7f80cd7
- remove ICU reference in API names
- use a "reserved" int parameter to pass either "0" for Harfbuzz or "1" for "ICU"
Change-Id: I88b4f76feafd203a6999cd7349402fa36a9a4b2a
Applications now get the display size from the window manager. No
behavior should be changed yet, this is just prep for some real
changes.
Change-Id: I2958a6660895c1cba2b670509600014e55ee9273
Added a new PointerIcon API (hidden for now) for loading
pointer icons.
Fixed a starvation problem in the native Looper's sendMessage
implementation which caused new messages to be posted ahead
of old messages sent with sendMessageDelayed.
Redesigned the touch pad gestures to be defined in terms of
more fluid finger / spot movements. The objective is to reinforce
the natural mapping between fingers and spots which means there
must not be any discontinuities in spot motion relative to
the fingers.
Removed the SpotController stub and folded its responsibilities
into PointerController.
Change-Id: I5126b1e69d95252fda7f2a684c9287e239a57163
This seems simpler and more contained, and I think the comment explaining
why hoop-jumping is necessary is a bit clearer now.
Change-Id: Ief4afd7cbb42188ed835fce23e497520bdb753a8
Use ScopedUtfChars (fixes a leak in TrafficStats, and fixes a crash in Wifi in
a case where GetStringChars could have been called with a pending exception).
Change-Id: I3465ff392b4038dfdafa6af80ec1314cc6d6a11c