First step of improving app screen size compatibility mode. When
running in compat mode, an application's windows are scaled up on
the screen rather than being small with 1:1 pixels.
Currently we scale the application to fill the entire screen, so
don't use an even pixel scaling. Though this may have some
negative impact on the appearance (it looks okay to me), it has a
big benefit of allowing us to now treat these apps as normal
full-screens apps and do the normal transition animations as you
move in and out and around in them.
This introduces fun stuff in the input system to take care of
modifying pointer coordinates to account for the app window
surface scaling. The input dispatcher is told about the scale
that is being applied to each window and, when there is one,
adjusts pointer events appropriately as they are being sent
to the transport.
Also modified is CompatibilityInfo, which has been greatly
simplified to not be so insane and incomprehendible. It is
now simple -- when constructed it determines if the given app
is compatible with the current screen size and density, and
that is that.
There are new APIs on ActivityManagerService to put applications
that we would traditionally consider compatible with larger screens
in compatibility mode. This is the start of a facility to have
a UI affordance for a user to switch apps in and out of
compatibility.
To test switching of modes, there is a new variation of the "am"
command to do this: am screen-compat [on|off] [package]
This mode switching has the fundamentals of restarting activities
when it is changed, though the state still needs to be persisted
and the overall mode switch cleaned up.
For the few small apps I have tested, things mostly seem to be
working well. I know of one problem with the text selection
handles being drawn at the wrong position because at some point
the window offset is being scaled incorrectly. There are
probably other similar issues around the interaction between
two windows because the different window coordinate spaces are
done in a hacky way instead of being formally integrated into
the window manager layout process.
Change-Id: Ie038e3746b448135117bd860859d74e360938557
Previously, the translucent boundary of AA lines would be scaled
by the line's transform. It should always be exactly one pixel wide
in screen space. This fix accounts for scaling for the boundary
region, and fixes some AA calculations that make wide/AA lines
more correct.
Change-Id: I30df2d5d96315bf3e7ff30be9735282fd5439a39
Clicking on a node in hierarchyviewer1 and hierarchyviewer2 and then
clicking the new "Dump DisplayList" button will cause the display
list for the selected node (including its children) to be output into
logcat.
Change-Id: Iad05f5f6cca0f8b465dccd962b501dc18fe6e053
Clicking on a node in hierarchyviewer1 and hierarchyviewer2 and then
clicking the new "Dump DisplayList" button will cause the display
list for the selected node (including its children) to be output into
logcat.
Change-Id: Id32f62569ad1ab4d533bc62987f3a7390c1bb4e6
query() does not modify the object's data, so it needs to be a const method
Change-Id: I67c40a3c865461e6f1cc2193fd2d74286ff6ac8f
Signed-off-by: Iliyan Malchev <malchev@google.com>
Adds a new camera parameter for locking auto-exposure to its current
value. Also adds a function for checking if auto-exposure lock is
supported by the current platform.
Hidden for now.
Change-Id: Id452371191ab220318ce2cb98b8ee91bdde9aab6
Bug #4343984
TextureView can be used to render media content (video, OpenGL,
RenderScript) inside a View.
The key difference with SurfaceView is that TextureView does
not create a new Surface. This gives the ability to seamlessly
transform, animate, fade, etc. a TextureView, which was hard
if not impossible to do with a SurfaceView.
A TextureView also interacts perfectly with ScrollView,
ListView, etc. It allows application to embed media content
in a much more flexible way than before.
For instance, to render the camera preview at 50% opacity,
all you need to do is the following:
mTextureView.setAlpha(0.5f);
Camera c = Camera.open();
c.setPreviewTexture(mTextureView.getSurfaceTexture());
c.startPreview();
TextureView uses a SurfaceTexture to get the job done. More
APIs are required to make it easy to create OpenGL contexts
for a TextureView. It can currently be done with a bit of
JNI code.
Change-Id: Iaa7953097ab5beb8437bcbbfa03b2df5b7f80cd7
All accelerated lines are now rendered as quads. Hairlines used to
be rendered as GL_LINES, but these lines don't render the same as our
non-accelerated lines, so we're using quads for everything. Also, fixed
a bug in the way that we were offsetting quads (and not offseting points)
to ensure that our lines/points actuall start on the same pixels as
Skia's.
Change-Id: I51b923cc08a9858444c430ba07bc8aa0c83cbe6a