Usage: adb restore [tarfilename]
Restores app data [and installs the apps if necessary from the backup
file] captured in a previous invocation of 'adb backup'. The user
must explicitly acknowledge the action on-device before it is allowed
to proceed; this prevents any "invisible" pushes of content from the
host to the device.
Known issues:
* The settings databases and wallpaper are saved/restored, but lots
of other system state is not yet captured in the full backup. This
means that for practical purposes this is usable for 3rd party
apps at present but not for full-system cloning/imaging.
Change-Id: I0c748b645845e7c9178e30bf142857861a64efd3
http://b/4442803 vril-dump's usage of adb causes bugreport to hang
lcm-dump.sh re-uses adb which breaks.
Change-Id: I5eeb30f78793c0a6d10bfaf0097d6aa7b811cf66
Signed-off-by: JP Abgrall <jpa@google.com>
Added hook for Vendor RIL to provide a dump of the underlying
baseband's logs. The Vendor RIL must implement the actual executable
that does the capture.
Change-Id: I40fdf2ccc4bb14a9cef92b7866fad19684502524
Activity manager now does all dump requests into apps
asynchronously, so it can nicely timeout if there is an
app problem. Also lots of general cleanup of the am
dump output.
Change-Id: I99447b87f77a701af52aeca984d93dfe931f065d
Adds a really crappy UI for toggling compat mode.
Persists compat mode selection across boots.
Turns on compat mode by default for newly installed apps.
Change-Id: Idc83494397bd17c41450bc9e9a05e4386c509399
This is the basic infrastructure for pulling a full(*) backup of the
device's data over an adb(**) connection to the local device. The
basic process consists of these interacting pieces:
1. The framework's BackupManagerService, which coordinates the
collection of app data and routing to the destination.
2. A new framework-provided BackupAgent implementation called
FullBackupAgent, which is instantiated in the target applications'
processes in turn, and knows how to emit a datastream that contains
all of the app's saved data files.
3. A new shell-level program called "bu" that is used to bridge from
adb to the framework's Backup Manager.
4. adb itself, which now knows how to use 'bu' to kick off a backup
operation and pull the resulting data stream to the desktop host.
5. A system-provided application that verifies with the user that
an attempted backup/restore operation is in fact expected and to
be allowed.
The full agent implementation is not used during normal operation of
the delta-based app-customized remote backup process. Instead it's
used during user-confirmed *full* backup of applications and all their
data to a local destination, e.g. via the adb connection.
The output format is 'tar'. This makes it very easy for the end
user to examine the resulting dataset, e.g. for purpose of extracting
files for debug purposes; as well as making it easy to contemplate
adding things like a direct gzip stage to the data pipeline during
backup/restore. It also makes it convenient to construct and maintain
synthetic backup datasets for testing purposes.
Within the tar format, certain artificial conventions are used.
All files are stored within top-level directories according to
their semantic origin:
apps/pkgname/a/ : Application .apk file itself
apps/pkgname/obb/: The application's associated .obb containers
apps/pkgname/f/ : The subtree rooted at the getFilesDir() location
apps/pkgname/db/ : The subtree rooted at the getDatabasePath() parent
apps/pkgname/sp/ : The subtree rooted at the getSharedPrefsFile() parent
apps/pkgname/r/ : Files stored relative to the root of the app's file tree
apps/pkgname/c/ : Reserved for the app's getCacheDir() tree; not stored.
For each package, the first entry in the tar stream is a file called
"_manifest", nominally rooted at apps/pkgname. This file contains some
metadata about the package whose data is stored in the archive.
The contents of shared storage can optionally be included in the tar
stream. It is placed in the synthetic location:
shared/...
uid/gid are ignored; app uids are assigned at install time, and the
app's data is handled from within its own execution environment, so
will automatically have the app's correct uid.
Forward-locked .apk files are never backed up. System-partition
.apk files are not backed up unless they have been overridden by a
post-factory upgrade, in which case the current .apk *is* backed up --
i.e. the .apk that matches the on-disk data. The manifest preceding
each application's portion of the tar stream provides version numbers
and signature blocks for version checking, as well as an indication
of whether the restore logic should expect to install the .apk before
extracting the data.
System packages can designate their own full backup agents. This is
to manage things like the settings provider which (a) cannot be shut
down on the fly in order to do a clean snapshot of their file trees,
and (b) manage data that is not only irrelevant but actively hostile
to non-identical devices -- CDMA telephony settings would seriously
mess up a GSM device if emplaced there blind, for example.
When a full backup or restore is initiated from adb, the system will
present a confirmation UI that the user must explicitly respond to
within a short [~ 30 seconds] timeout. This is to avoid the
possibility of malicious desktop-side software secretly grabbing a copy
of all the user's data for nefarious purposes.
(*) The backup is not strictly a full mirror. In particular, the
settings database is not cloned; it is handled the same way that
it is in cloud backup/restore. This is because some settings
are actively destructive if cloned onto a different (or
especially a different-model) device: telephony settings and
AndroidID are good examples of this.
(**) On the framework side it doesn't care that it's adb; it just
sends the tar stream to a file descriptor. This can easily be
retargeted around whatever transport we might decide to use
in the future.
KNOWN ISSUES:
* the security UI is desperately ugly; no proper designs have yet
been done for it
* restore is not yet implemented
* shared storage backup is not yet implemented
* symlinks aren't yet handled, though some infrastructure for
dealing with them has been put in place.
Change-Id: Ia8347611e23b398af36ea22c36dff0a276b1ce91
First step of improving app screen size compatibility mode. When
running in compat mode, an application's windows are scaled up on
the screen rather than being small with 1:1 pixels.
Currently we scale the application to fill the entire screen, so
don't use an even pixel scaling. Though this may have some
negative impact on the appearance (it looks okay to me), it has a
big benefit of allowing us to now treat these apps as normal
full-screens apps and do the normal transition animations as you
move in and out and around in them.
This introduces fun stuff in the input system to take care of
modifying pointer coordinates to account for the app window
surface scaling. The input dispatcher is told about the scale
that is being applied to each window and, when there is one,
adjusts pointer events appropriately as they are being sent
to the transport.
Also modified is CompatibilityInfo, which has been greatly
simplified to not be so insane and incomprehendible. It is
now simple -- when constructed it determines if the given app
is compatible with the current screen size and density, and
that is that.
There are new APIs on ActivityManagerService to put applications
that we would traditionally consider compatible with larger screens
in compatibility mode. This is the start of a facility to have
a UI affordance for a user to switch apps in and out of
compatibility.
To test switching of modes, there is a new variation of the "am"
command to do this: am screen-compat [on|off] [package]
This mode switching has the fundamentals of restarting activities
when it is changed, though the state still needs to be persisted
and the overall mode switch cleaned up.
For the few small apps I have tested, things mostly seem to be
working well. I know of one problem with the text selection
handles being drawn at the wrong position because at some point
the window offset is being scaled incorrectly. There are
probably other similar issues around the interaction between
two windows because the different window coordinate spaces are
done in a hacky way instead of being formally integrated into
the window manager layout process.
Change-Id: Ie038e3746b448135117bd860859d74e360938557
To avoid blowing past the Binder IPC limit, change the
PackageManagerService to have a DB-like interaction where the client
tells the service the last "row" that it read.
The fact that we use a HashMap instead of a TreeMap makes this
problematic. For now we're just making a new ArrayList for the keys and
then sorting them for each call. This can make the API slower for callers
of this, but it's probably greatly overshadowed by the cost of the data
transfer itself.
Bug: 4064282
Change-Id: Ic370fd148d4c3813ae4f2daffa1a7c28d63d5a09
- Create /data/user directory and symlink /data/user/0 -> /data/data for
backward compatibility
- Create data directories for all packages for new user
- Remove data directories when removing a user
- Create data directories for all users when a package is created
- Clear / Remove data for multiple users
- Fixed a bug in verifying the location of a system app
- pm commands for createUser and removeUser (will be disabled later)
- symlink duplicate lib directories to the original lib directory
Change-Id: Id9fdfcf0e62406a8896aa811314dfc08d5f6ed95
This seems simpler and more contained, and I think the comment explaining
why hoop-jumping is necessary is a bit clearer now.
Change-Id: Ief4afd7cbb42188ed835fce23e497520bdb753a8
through listener during video playback.
- Add OnTimedTextListener in the MediaPlayer
For feature request 800939.
Change-Id: I65072c27acb4c0037109a72be38c73e9f667420f
Activity manager now does all dump requests into apps
asynchronously, so it can nicely timeout if there is an
app problem. Also lots of general cleanup of the am
dump output.
Change-Id: Id0dbccffb217315aeb85c964e379833e6aa3f5af
* Add ability to select different personas to generate the path to be
created.
* Move hardcoded paths to read from init's set environment.
* Add unit tests for all the utility functions that build strings to
make sure they're correct.
* Fill in persona with "0" all the time now. Will be plumbed through in
later CL.
Change-Id: I0a7f6e3640cb6b052f8823080886ee79e90b679f
this is the first step in unifying surfacetexture and surface.
for this reason the header files were not moved, as most of them
will eventually go away.
NOTE: currently we keep libsurfaceflinger_client.so as an empty
library to workaround prebuilt binaries wrongly linking against
it.
Change-Id: I130f0de2428e8579033dc41394d093f4e1431a00
o Update the copyright date on InputDispatcher_test.cpp and InputReader_test.cpp
because these two files were moved from other places to the current location,
and were actually created in 2010.
bug - 4119349
Change-Id: Ic93b81ddafb58e9e72a2e9e02ca3d9f173d6dca7
Before the IPackageDeleteObserver only knew whether the deletion
succeeded or failed, but not the reason why.
Bug: 2520191
Change-Id: I1f0d7c04f06c539660b6e17e7e133defb0f61b5b