Merge changes I6d3584f3,Ifdaada39

* changes:
  Fix SntpClient 2036 issue (2/2)
  Fix SntpClient 2036 issue (1/2)
This commit is contained in:
Treehugger Robot 2021-10-19 18:58:55 +00:00 committed by Gerrit Code Review
commit f637a0d63d
7 changed files with 1353 additions and 107 deletions

View File

@ -17,16 +17,26 @@
package android.net;
import android.compat.annotation.UnsupportedAppUsage;
import android.net.sntp.Duration64;
import android.net.sntp.Timestamp64;
import android.os.SystemClock;
import android.util.Log;
import android.util.Slog;
import com.android.internal.annotations.VisibleForTesting;
import com.android.internal.util.TrafficStatsConstants;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
import java.net.UnknownHostException;
import java.util.Arrays;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import java.time.Duration;
import java.time.Instant;
import java.util.Objects;
import java.util.Random;
import java.util.function.Supplier;
/**
* {@hide}
@ -60,17 +70,21 @@ public class SntpClient {
private static final int NTP_STRATUM_DEATH = 0;
private static final int NTP_STRATUM_MAX = 15;
// Number of seconds between Jan 1, 1900 and Jan 1, 1970
// 70 years plus 17 leap days
private static final long OFFSET_1900_TO_1970 = ((365L * 70L) + 17L) * 24L * 60L * 60L;
// The source of the current system clock time, replaceable for testing.
private final Supplier<Instant> mSystemTimeSupplier;
// system time computed from NTP server response
private final Random mRandom;
// The last offset calculated from an NTP server response
private long mClockOffset;
// The last system time computed from an NTP server response
private long mNtpTime;
// value of SystemClock.elapsedRealtime() corresponding to mNtpTime
// The value of SystemClock.elapsedRealtime() corresponding to mNtpTime / mClockOffset
private long mNtpTimeReference;
// round trip time in milliseconds
// The round trip (network) time in milliseconds
private long mRoundTripTime;
private static class InvalidServerReplyException extends Exception {
@ -81,6 +95,13 @@ public class SntpClient {
@UnsupportedAppUsage
public SntpClient() {
this(Instant::now, defaultRandom());
}
@VisibleForTesting
public SntpClient(Supplier<Instant> systemTimeSupplier, Random random) {
mSystemTimeSupplier = Objects.requireNonNull(systemTimeSupplier);
mRandom = Objects.requireNonNull(random);
}
/**
@ -126,9 +147,13 @@ public class SntpClient {
buffer[0] = NTP_MODE_CLIENT | (NTP_VERSION << 3);
// get current time and write it to the request packet
final long requestTime = System.currentTimeMillis();
final Instant requestTime = mSystemTimeSupplier.get();
final Timestamp64 requestTimestamp = Timestamp64.fromInstant(requestTime);
final Timestamp64 randomizedRequestTimestamp =
requestTimestamp.randomizeSubMillis(mRandom);
final long requestTicks = SystemClock.elapsedRealtime();
writeTimeStamp(buffer, TRANSMIT_TIME_OFFSET, requestTime);
writeTimeStamp(buffer, TRANSMIT_TIME_OFFSET, randomizedRequestTimestamp);
socket.send(request);
@ -136,42 +161,44 @@ public class SntpClient {
DatagramPacket response = new DatagramPacket(buffer, buffer.length);
socket.receive(response);
final long responseTicks = SystemClock.elapsedRealtime();
final long responseTime = requestTime + (responseTicks - requestTicks);
final Instant responseTime = requestTime.plusMillis(responseTicks - requestTicks);
final Timestamp64 responseTimestamp = Timestamp64.fromInstant(responseTime);
// extract the results
final byte leap = (byte) ((buffer[0] >> 6) & 0x3);
final byte mode = (byte) (buffer[0] & 0x7);
final int stratum = (int) (buffer[1] & 0xff);
final long originateTime = readTimeStamp(buffer, ORIGINATE_TIME_OFFSET);
final long receiveTime = readTimeStamp(buffer, RECEIVE_TIME_OFFSET);
final long transmitTime = readTimeStamp(buffer, TRANSMIT_TIME_OFFSET);
final long referenceTime = readTimeStamp(buffer, REFERENCE_TIME_OFFSET);
final Timestamp64 referenceTimestamp = readTimeStamp(buffer, REFERENCE_TIME_OFFSET);
final Timestamp64 originateTimestamp = readTimeStamp(buffer, ORIGINATE_TIME_OFFSET);
final Timestamp64 receiveTimestamp = readTimeStamp(buffer, RECEIVE_TIME_OFFSET);
final Timestamp64 transmitTimestamp = readTimeStamp(buffer, TRANSMIT_TIME_OFFSET);
/* Do validation according to RFC */
// TODO: validate originateTime == requestTime.
checkValidServerReply(leap, mode, stratum, transmitTime, referenceTime);
checkValidServerReply(leap, mode, stratum, transmitTimestamp, referenceTimestamp,
randomizedRequestTimestamp, originateTimestamp);
long roundTripTime = responseTicks - requestTicks - (transmitTime - receiveTime);
// receiveTime = originateTime + transit + skew
// responseTime = transmitTime + transit - skew
// clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2
// = ((originateTime + transit + skew - originateTime) +
// (transmitTime - (transmitTime + transit - skew)))/2
// = ((transit + skew) + (transmitTime - transmitTime - transit + skew))/2
// = (transit + skew - transit + skew)/2
// = (2 * skew)/2 = skew
long clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2;
EventLogTags.writeNtpSuccess(address.toString(), roundTripTime, clockOffset);
long totalTransactionDurationMillis = responseTicks - requestTicks;
long serverDurationMillis =
Duration64.between(receiveTimestamp, transmitTimestamp).toDuration().toMillis();
long roundTripTimeMillis = totalTransactionDurationMillis - serverDurationMillis;
Duration clockOffsetDuration = calculateClockOffset(requestTimestamp,
receiveTimestamp, transmitTimestamp, responseTimestamp);
long clockOffsetMillis = clockOffsetDuration.toMillis();
EventLogTags.writeNtpSuccess(
address.toString(), roundTripTimeMillis, clockOffsetMillis);
if (DBG) {
Log.d(TAG, "round trip: " + roundTripTime + "ms, " +
"clock offset: " + clockOffset + "ms");
Log.d(TAG, "round trip: " + roundTripTimeMillis + "ms, "
+ "clock offset: " + clockOffsetMillis + "ms");
}
// save our results - use the times on this side of the network latency
// (response rather than request time)
mNtpTime = responseTime + clockOffset;
mClockOffset = clockOffsetMillis;
mNtpTime = responseTime.plus(clockOffsetDuration).toEpochMilli();
mNtpTimeReference = responseTicks;
mRoundTripTime = roundTripTime;
mRoundTripTime = roundTripTimeMillis;
} catch (Exception e) {
EventLogTags.writeNtpFailure(address.toString(), e.toString());
if (DBG) Log.d(TAG, "request time failed: " + e);
@ -186,6 +213,28 @@ public class SntpClient {
return true;
}
/** Performs the NTP clock offset calculation. */
@VisibleForTesting
public static Duration calculateClockOffset(Timestamp64 clientRequestTimestamp,
Timestamp64 serverReceiveTimestamp, Timestamp64 serverTransmitTimestamp,
Timestamp64 clientResponseTimestamp) {
// According to RFC4330:
// t is the system clock offset (the adjustment we are trying to find)
// t = ((T2 - T1) + (T3 - T4)) / 2
//
// Which is:
// t = (([server]receiveTimestamp - [client]requestTimestamp)
// + ([server]transmitTimestamp - [client]responseTimestamp)) / 2
//
// See the NTP spec and tests: the numeric types used are deliberate:
// + Duration64.between() uses 64-bit arithmetic (32-bit for the seconds).
// + plus() / dividedBy() use Duration, which isn't the double precision floating point
// used in NTPv4, but is good enough.
return Duration64.between(clientRequestTimestamp, serverReceiveTimestamp)
.plus(Duration64.between(clientResponseTimestamp, serverTransmitTimestamp))
.dividedBy(2);
}
@Deprecated
@UnsupportedAppUsage
public boolean requestTime(String host, int timeout) {
@ -193,6 +242,14 @@ public class SntpClient {
return false;
}
/**
* Returns the offset calculated to apply to the client clock to arrive at {@link #getNtpTime()}
*/
@VisibleForTesting
public long getClockOffset() {
return mClockOffset;
}
/**
* Returns the time computed from the NTP transaction.
*
@ -225,8 +282,9 @@ public class SntpClient {
}
private static void checkValidServerReply(
byte leap, byte mode, int stratum, long transmitTime, long referenceTime)
throws InvalidServerReplyException {
byte leap, byte mode, int stratum, Timestamp64 transmitTimestamp,
Timestamp64 referenceTimestamp, Timestamp64 randomizedRequestTimestamp,
Timestamp64 originateTimestamp) throws InvalidServerReplyException {
if (leap == NTP_LEAP_NOSYNC) {
throw new InvalidServerReplyException("unsynchronized server");
}
@ -236,73 +294,68 @@ public class SntpClient {
if ((stratum == NTP_STRATUM_DEATH) || (stratum > NTP_STRATUM_MAX)) {
throw new InvalidServerReplyException("untrusted stratum: " + stratum);
}
if (transmitTime == 0) {
throw new InvalidServerReplyException("zero transmitTime");
if (!randomizedRequestTimestamp.equals(originateTimestamp)) {
throw new InvalidServerReplyException(
"originateTimestamp != randomizedRequestTimestamp");
}
if (referenceTime == 0) {
throw new InvalidServerReplyException("zero reference timestamp");
if (transmitTimestamp.equals(Timestamp64.ZERO)) {
throw new InvalidServerReplyException("zero transmitTimestamp");
}
if (referenceTimestamp.equals(Timestamp64.ZERO)) {
throw new InvalidServerReplyException("zero referenceTimestamp");
}
}
/**
* Reads an unsigned 32 bit big endian number from the given offset in the buffer.
*/
private long read32(byte[] buffer, int offset) {
byte b0 = buffer[offset];
byte b1 = buffer[offset+1];
byte b2 = buffer[offset+2];
byte b3 = buffer[offset+3];
private long readUnsigned32(byte[] buffer, int offset) {
int i0 = buffer[offset++] & 0xFF;
int i1 = buffer[offset++] & 0xFF;
int i2 = buffer[offset++] & 0xFF;
int i3 = buffer[offset] & 0xFF;
// convert signed bytes to unsigned values
int i0 = ((b0 & 0x80) == 0x80 ? (b0 & 0x7F) + 0x80 : b0);
int i1 = ((b1 & 0x80) == 0x80 ? (b1 & 0x7F) + 0x80 : b1);
int i2 = ((b2 & 0x80) == 0x80 ? (b2 & 0x7F) + 0x80 : b2);
int i3 = ((b3 & 0x80) == 0x80 ? (b3 & 0x7F) + 0x80 : b3);
return ((long)i0 << 24) + ((long)i1 << 16) + ((long)i2 << 8) + (long)i3;
int bits = (i0 << 24) | (i1 << 16) | (i2 << 8) | i3;
return bits & 0xFFFF_FFFFL;
}
/**
* Reads the NTP time stamp at the given offset in the buffer and returns
* it as a system time (milliseconds since January 1, 1970).
* Reads the NTP time stamp from the given offset in the buffer.
*/
private long readTimeStamp(byte[] buffer, int offset) {
long seconds = read32(buffer, offset);
long fraction = read32(buffer, offset + 4);
// Special case: zero means zero.
if (seconds == 0 && fraction == 0) {
return 0;
}
return ((seconds - OFFSET_1900_TO_1970) * 1000) + ((fraction * 1000L) / 0x100000000L);
private Timestamp64 readTimeStamp(byte[] buffer, int offset) {
long seconds = readUnsigned32(buffer, offset);
int fractionBits = (int) readUnsigned32(buffer, offset + 4);
return Timestamp64.fromComponents(seconds, fractionBits);
}
/**
* Writes system time (milliseconds since January 1, 1970) as an NTP time stamp
* at the given offset in the buffer.
* Writes the NTP time stamp at the given offset in the buffer.
*/
private void writeTimeStamp(byte[] buffer, int offset, long time) {
// Special case: zero means zero.
if (time == 0) {
Arrays.fill(buffer, offset, offset + 8, (byte) 0x00);
return;
}
long seconds = time / 1000L;
long milliseconds = time - seconds * 1000L;
seconds += OFFSET_1900_TO_1970;
private void writeTimeStamp(byte[] buffer, int offset, Timestamp64 timestamp) {
long seconds = timestamp.getEraSeconds();
// write seconds in big endian format
buffer[offset++] = (byte)(seconds >> 24);
buffer[offset++] = (byte)(seconds >> 16);
buffer[offset++] = (byte)(seconds >> 8);
buffer[offset++] = (byte)(seconds >> 0);
buffer[offset++] = (byte) (seconds >>> 24);
buffer[offset++] = (byte) (seconds >>> 16);
buffer[offset++] = (byte) (seconds >>> 8);
buffer[offset++] = (byte) (seconds);
long fraction = milliseconds * 0x100000000L / 1000L;
int fractionBits = timestamp.getFractionBits();
// write fraction in big endian format
buffer[offset++] = (byte)(fraction >> 24);
buffer[offset++] = (byte)(fraction >> 16);
buffer[offset++] = (byte)(fraction >> 8);
// low order bits should be random data
buffer[offset++] = (byte)(Math.random() * 255.0);
buffer[offset++] = (byte) (fractionBits >>> 24);
buffer[offset++] = (byte) (fractionBits >>> 16);
buffer[offset++] = (byte) (fractionBits >>> 8);
buffer[offset] = (byte) (fractionBits);
}
private static Random defaultRandom() {
Random random;
try {
random = SecureRandom.getInstanceStrong();
} catch (NoSuchAlgorithmException e) {
// This should never happen.
Slog.wtf(TAG, "Unable to access SecureRandom", e);
random = new Random(System.currentTimeMillis());
}
return random;
}
}

View File

@ -0,0 +1,141 @@
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.net.sntp;
import java.time.Duration;
/**
* A type similar to {@link Timestamp64} but used when calculating the difference between two
* timestamps. As such, it is a signed type, but still uses 64-bits in total and so can only
* represent half the magnitude of {@link Timestamp64}.
*
* <p>See <a href="https://www.eecis.udel.edu/~mills/time.html">4. Time Difference Calculations</a>.
*
* @hide
*/
public class Duration64 {
public static final Duration64 ZERO = new Duration64(0);
private final long mBits;
private Duration64(long bits) {
this.mBits = bits;
}
/**
* Returns the difference between two 64-bit NTP timestamps as a {@link Duration64}, as
* described in the NTP spec. The times represented by the timestamps have to be within {@link
* Timestamp64#MAX_SECONDS_IN_ERA} (~68 years) of each other for the calculation to produce a
* correct answer.
*/
public static Duration64 between(Timestamp64 startInclusive, Timestamp64 endExclusive) {
long oneBits = (startInclusive.getEraSeconds() << 32)
| (startInclusive.getFractionBits() & 0xFFFF_FFFFL);
long twoBits = (endExclusive.getEraSeconds() << 32)
| (endExclusive.getFractionBits() & 0xFFFF_FFFFL);
long resultBits = twoBits - oneBits;
return new Duration64(resultBits);
}
/**
* Add two {@link Duration64} instances together. This performs the calculation in {@link
* Duration} and returns a {@link Duration} to increase the magnitude of accepted arguments,
* since {@link Duration64} only supports signed 32-bit seconds. The use of {@link Duration}
* limits precision to nanoseconds.
*/
public Duration plus(Duration64 other) {
// From https://www.eecis.udel.edu/~mills/time.html:
// "The offset and delay calculations require sums and differences of these raw timestamp
// differences that can span no more than from 34 years in the future to 34 years in the
// past without overflow. This is a fundamental limitation in 64-bit integer calculations.
//
// In the NTPv4 reference implementation, all calculations involving offset and delay values
// use 64-bit floating double arithmetic, with the exception of raw timestamp subtraction,
// as mentioned above. The raw timestamp differences are then converted to 64-bit floating
// double format without loss of precision or chance of overflow in subsequent
// calculations."
//
// Here, we use Duration instead, which provides sufficient range, but loses precision below
// nanos.
return this.toDuration().plus(other.toDuration());
}
/**
* Returns a {@link Duration64} equivalent of the supplied duration, if the magnitude can be
* represented. Because {@link Duration64} uses a fixed point type for sub-second values it
* cannot represent all nanosecond values precisely and so the conversion can be lossy.
*
* @throws IllegalArgumentException if the supplied duration is too big to be represented
*/
public static Duration64 fromDuration(Duration duration) {
long seconds = duration.getSeconds();
if (seconds < Integer.MIN_VALUE || seconds > Integer.MAX_VALUE) {
throw new IllegalArgumentException();
}
long bits = (seconds << 32)
| (Timestamp64.nanosToFractionBits(duration.getNano()) & 0xFFFF_FFFFL);
return new Duration64(bits);
}
/**
* Returns a {@link Duration} equivalent of this duration. Because {@link Duration64} uses a
* fixed point type for sub-second values it can values smaller than nanosecond precision and so
* the conversion can be lossy.
*/
public Duration toDuration() {
int seconds = getSeconds();
int nanos = getNanos();
return Duration.ofSeconds(seconds, nanos);
}
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
Duration64 that = (Duration64) o;
return mBits == that.mBits;
}
@Override
public int hashCode() {
return java.util.Objects.hash(mBits);
}
@Override
public String toString() {
Duration duration = toDuration();
return Long.toHexString(mBits)
+ "(" + duration.getSeconds() + "s " + duration.getNano() + "ns)";
}
/**
* Returns the <em>signed</em> seconds in this duration.
*/
public int getSeconds() {
return (int) (mBits >> 32);
}
/**
* Returns the <em>unsigned</em> nanoseconds in this duration (truncated).
*/
public int getNanos() {
return Timestamp64.fractionBitsToNanos((int) (mBits & 0xFFFF_FFFFL));
}
}

View File

@ -0,0 +1,186 @@
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.net.sntp;
import com.android.internal.annotations.VisibleForTesting;
import java.time.Instant;
import java.util.Objects;
import java.util.Random;
/**
* The 64-bit type ("timestamp") that NTP uses to represent a point in time. It only holds the
* lowest 32-bits of the number of seconds since 1900-01-01 00:00:00. Consequently, to turn an
* instance into an unambiguous point in time the era number must be known. Era zero runs from
* 1900-01-01 00:00:00 to a date in 2036.
*
* It stores sub-second values using a 32-bit fixed point type, so it can resolve values smaller
* than a nanosecond, but is imprecise (i.e. it truncates).
*
* See also <a href=https://www.eecis.udel.edu/~mills/y2k.html>NTP docs</a>.
*
* @hide
*/
public final class Timestamp64 {
public static final Timestamp64 ZERO = fromComponents(0, 0);
static final int SUB_MILLIS_BITS_TO_RANDOMIZE = 32 - 10;
// Number of seconds between Jan 1, 1900 and Jan 1, 1970
// 70 years plus 17 leap days
static final long OFFSET_1900_TO_1970 = ((365L * 70L) + 17L) * 24L * 60L * 60L;
static final long MAX_SECONDS_IN_ERA = 0xFFFF_FFFFL;
static final long SECONDS_IN_ERA = MAX_SECONDS_IN_ERA + 1;
static final int NANOS_PER_SECOND = 1_000_000_000;
/** Creates a {@link Timestamp64} from the seconds and fraction components. */
public static Timestamp64 fromComponents(long eraSeconds, int fractionBits) {
return new Timestamp64(eraSeconds, fractionBits);
}
/** Creates a {@link Timestamp64} by decoding a string in the form "e4dc720c.4d4fc9eb". */
public static Timestamp64 fromString(String string) {
final int requiredLength = 17;
if (string.length() != requiredLength || string.charAt(8) != '.') {
throw new IllegalArgumentException(string);
}
String eraSecondsString = string.substring(0, 8);
String fractionString = string.substring(9);
long eraSeconds = Long.parseLong(eraSecondsString, 16);
// Use parseLong() because the type is unsigned. Integer.parseInt() will reject 0x70000000
// or above as being out of range.
long fractionBitsAsLong = Long.parseLong(fractionString, 16);
if (fractionBitsAsLong < 0 || fractionBitsAsLong > 0xFFFFFFFFL) {
throw new IllegalArgumentException("Invalid fractionBits:" + fractionString);
}
return new Timestamp64(eraSeconds, (int) fractionBitsAsLong);
}
/**
* Converts an {@link Instant} into a {@link Timestamp64}. This is lossy: Timestamp64 only
* contains the number of seconds in a given era, but the era is not stored. Also, sub-second
* values are not stored precisely.
*/
public static Timestamp64 fromInstant(Instant instant) {
long ntpEraSeconds = instant.getEpochSecond() + OFFSET_1900_TO_1970;
if (ntpEraSeconds < 0) {
ntpEraSeconds = SECONDS_IN_ERA - (-ntpEraSeconds % SECONDS_IN_ERA);
}
ntpEraSeconds %= SECONDS_IN_ERA;
long nanos = instant.getNano();
int fractionBits = nanosToFractionBits(nanos);
return new Timestamp64(ntpEraSeconds, fractionBits);
}
private final long mEraSeconds;
private final int mFractionBits;
private Timestamp64(long eraSeconds, int fractionBits) {
if (eraSeconds < 0 || eraSeconds > MAX_SECONDS_IN_ERA) {
throw new IllegalArgumentException(
"Invalid parameters. seconds=" + eraSeconds + ", fraction=" + fractionBits);
}
this.mEraSeconds = eraSeconds;
this.mFractionBits = fractionBits;
}
/** Returns the number of seconds in the NTP era. */
public long getEraSeconds() {
return mEraSeconds;
}
/** Returns the fraction of a second as 32-bit, unsigned fixed-point bits. */
public int getFractionBits() {
return mFractionBits;
}
@Override
public String toString() {
return String.format("%08x.%08x", mEraSeconds, mFractionBits);
}
/** Returns the instant represented by this value in the specified NTP era. */
public Instant toInstant(int ntpEra) {
long secondsSinceEpoch = mEraSeconds - OFFSET_1900_TO_1970;
secondsSinceEpoch += ntpEra * SECONDS_IN_ERA;
int nanos = fractionBitsToNanos(mFractionBits);
return Instant.ofEpochSecond(secondsSinceEpoch, nanos);
}
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
Timestamp64 that = (Timestamp64) o;
return mEraSeconds == that.mEraSeconds && mFractionBits == that.mFractionBits;
}
@Override
public int hashCode() {
return Objects.hash(mEraSeconds, mFractionBits);
}
static int fractionBitsToNanos(int fractionBits) {
long fractionBitsLong = fractionBits & 0xFFFF_FFFFL;
return (int) ((fractionBitsLong * NANOS_PER_SECOND) >>> 32);
}
static int nanosToFractionBits(long nanos) {
if (nanos > NANOS_PER_SECOND) {
throw new IllegalArgumentException();
}
return (int) ((nanos << 32) / NANOS_PER_SECOND);
}
/**
* Randomizes the fraction bits that represent sub-millisecond values. i.e. the randomization
* won't change the number of milliseconds represented after truncation. This is used to
* implement the part of the NTP spec that calls for clients with millisecond accuracy clocks
* to send randomized LSB values rather than zeros.
*/
public Timestamp64 randomizeSubMillis(Random random) {
int randomizedFractionBits =
randomizeLowestBits(random, this.mFractionBits, SUB_MILLIS_BITS_TO_RANDOMIZE);
return new Timestamp64(mEraSeconds, randomizedFractionBits);
}
/**
* Randomizes the specified number of LSBs in {@code value} by using replacement bits from
* {@code Random.getNextInt()}.
*/
@VisibleForTesting
public static int randomizeLowestBits(Random random, int value, int bitsToRandomize) {
if (bitsToRandomize < 1 || bitsToRandomize >= Integer.SIZE) {
// There's no point in randomizing all bits or none of the bits.
throw new IllegalArgumentException(Integer.toString(bitsToRandomize));
}
int upperBitMask = 0xFFFF_FFFF << bitsToRandomize;
int lowerBitMask = ~upperBitMask;
int randomValue = random.nextInt();
return (value & upperBitMask) | (randomValue & lowerBitMask);
}
}

View File

@ -22,7 +22,10 @@ import static junit.framework.Assert.assertTrue;
import static org.mockito.Mockito.CALLS_REAL_METHODS;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import android.net.sntp.Duration64;
import android.net.sntp.Timestamp64;
import android.util.Log;
import androidx.test.runner.AndroidJUnit4;
@ -38,7 +41,13 @@ import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
import java.net.SocketException;
import java.time.Duration;
import java.time.Instant;
import java.time.LocalDateTime;
import java.time.ZoneOffset;
import java.util.Arrays;
import java.util.Random;
import java.util.function.Supplier;
@RunWith(AndroidJUnit4.class)
public class SntpClientTest {
@ -54,41 +63,232 @@ public class SntpClientTest {
//
// Server, Leap indicator: (0), Stratum 2 (secondary reference), poll 6 (64s), precision -20
// Root Delay: 0.005447, Root dispersion: 0.002716, Reference-ID: 221.253.71.41
// Reference Timestamp: 3653932102.507969856 (2015/10/15 14:08:22)
// Originator Timestamp: 3653932113.576327741 (2015/10/15 14:08:33)
// Receive Timestamp: 3653932113.581012725 (2015/10/15 14:08:33)
// Transmit Timestamp: 3653932113.581012725 (2015/10/15 14:08:33)
// Reference Timestamp:
// d9ca9446.820a5000 / ERA0: 2015-10-15 21:08:22 UTC / ERA1: 2151-11-22 03:36:38 UTC
// Originator Timestamp:
// d9ca9451.938a3771 / ERA0: 2015-10-15 21:08:33 UTC / ERA1: 2151-11-22 03:36:49 UTC
// Receive Timestamp:
// d9ca9451.94bd3fff / ERA0: 2015-10-15 21:08:33 UTC / ERA1: 2151-11-22 03:36:49 UTC
// Transmit Timestamp:
// d9ca9451.94bd4001 / ERA0: 2015-10-15 21:08:33 UTC / ERA1: 2151-11-22 03:36:49 UTC
//
// Originator - Receive Timestamp: +0.004684958
// Originator - Transmit Timestamp: +0.004684958
private static final String WORKING_VERSION4 =
"240206ec" +
"00000165" +
"000000b2" +
"ddfd4729" +
"d9ca9446820a5000" +
"d9ca9451938a3771" +
"d9ca945194bd3fff" +
"d9ca945194bd4001";
private static final String LATE_ERA_RESPONSE =
"240206ec"
+ "00000165"
+ "000000b2"
+ "ddfd4729"
+ "d9ca9446820a5000"
+ "d9ca9451938a3771"
+ "d9ca945194bd3fff"
+ "d9ca945194bd4001";
/** This is the actual UTC time in the server if it is in ERA0 */
private static final Instant LATE_ERA0_SERVER_TIME =
calculateIdealServerTime("d9ca9451.94bd3fff", "d9ca9451.94bd4001", 0);
/**
* This is the Unix epoch time matches the originate timestamp from {@link #LATE_ERA_RESPONSE}
* when interpreted as an ERA0 timestamp.
*/
private static final Instant LATE_ERA0_REQUEST_TIME =
Timestamp64.fromString("d9ca9451.938a3771").toInstant(0);
// A tweaked version of the ERA0 response to represent an ERA 1 response.
//
// Server, Leap indicator: (0), Stratum 2 (secondary reference), poll 6 (64s), precision -20
// Root Delay: 0.005447, Root dispersion: 0.002716, Reference-ID: 221.253.71.41
// Reference Timestamp:
// 1db2d246.820a5000 / ERA0: 1915-10-16 21:08:22 UTC / ERA1: 2051-11-22 03:36:38 UTC
// Originate Timestamp:
// 1db2d251.938a3771 / ERA0: 1915-10-16 21:08:33 UTC / ERA1: 2051-11-22 03:36:49 UTC
// Receive Timestamp:
// 1db2d251.94bd3fff / ERA0: 1915-10-16 21:08:33 UTC / ERA1: 2051-11-22 03:36:49 UTC
// Transmit Timestamp:
// 1db2d251.94bd4001 / ERA0: 1915-10-16 21:08:33 UTC / ERA1: 2051-11-22 03:36:49 UTC
//
// Originate - Receive Timestamp: +0.004684958
// Originate - Transmit Timestamp: +0.004684958
private static final String EARLY_ERA_RESPONSE =
"240206ec"
+ "00000165"
+ "000000b2"
+ "ddfd4729"
+ "1db2d246820a5000"
+ "1db2d251938a3771"
+ "1db2d25194bd3fff"
+ "1db2d25194bd4001";
/** This is the actual UTC time in the server if it is in ERA0 */
private static final Instant EARLY_ERA1_SERVER_TIME =
calculateIdealServerTime("1db2d251.94bd3fff", "1db2d251.94bd4001", 1);
/**
* This is the Unix epoch time matches the originate timestamp from {@link #EARLY_ERA_RESPONSE}
* when interpreted as an ERA1 timestamp.
*/
private static final Instant EARLY_ERA1_REQUEST_TIME =
Timestamp64.fromString("1db2d251.938a3771").toInstant(1);
private SntpTestServer mServer;
private SntpClient mClient;
private Network mNetwork;
private Supplier<Instant> mSystemTimeSupplier;
private Random mRandom;
@SuppressWarnings("unchecked")
@Before
public void setUp() throws Exception {
mServer = new SntpTestServer();
// A mock network has NETID_UNSET, which allows the test to run, with a loopback server,
// even w/o external networking.
mNetwork = mock(Network.class, CALLS_REAL_METHODS);
mServer = new SntpTestServer();
mClient = new SntpClient();
mRandom = mock(Random.class);
mSystemTimeSupplier = mock(Supplier.class);
// Returning zero means the "randomized" bottom bits of the clients transmit timestamp /
// server's originate timestamp will be zeros.
when(mRandom.nextInt()).thenReturn(0);
mClient = new SntpClient(mSystemTimeSupplier, mRandom);
}
/** Tests when the client and server are in ERA0. b/199481251. */
@Test
public void testBasicWorkingSntpClientQuery() throws Exception {
mServer.setServerReply(HexEncoding.decode(WORKING_VERSION4.toCharArray(), false));
public void testRequestTime_era0ClientEra0RServer() throws Exception {
when(mSystemTimeSupplier.get()).thenReturn(LATE_ERA0_REQUEST_TIME);
mServer.setServerReply(HexEncoding.decode(LATE_ERA_RESPONSE.toCharArray(), false));
assertTrue(mClient.requestTime(mServer.getAddress(), mServer.getPort(), 500, mNetwork));
assertEquals(1, mServer.numRequestsReceived());
assertEquals(1, mServer.numRepliesSent());
checkRequestTimeCalcs(LATE_ERA0_REQUEST_TIME, LATE_ERA0_SERVER_TIME, mClient);
}
/** Tests when the client is behind the server and in the previous ERA. b/199481251. */
@Test
public void testRequestTime_era0ClientEra1Server() throws Exception {
when(mSystemTimeSupplier.get()).thenReturn(LATE_ERA0_REQUEST_TIME);
mServer.setServerReply(HexEncoding.decode(EARLY_ERA_RESPONSE.toCharArray(), false));
assertTrue(mClient.requestTime(mServer.getAddress(), mServer.getPort(), 500, mNetwork));
assertEquals(1, mServer.numRequestsReceived());
assertEquals(1, mServer.numRepliesSent());
checkRequestTimeCalcs(LATE_ERA0_REQUEST_TIME, EARLY_ERA1_SERVER_TIME, mClient);
}
/** Tests when the client is ahead of the server and in the next ERA. b/199481251. */
@Test
public void testRequestTime_era1ClientEra0Server() throws Exception {
when(mSystemTimeSupplier.get()).thenReturn(EARLY_ERA1_REQUEST_TIME);
mServer.setServerReply(HexEncoding.decode(LATE_ERA_RESPONSE.toCharArray(), false));
assertTrue(mClient.requestTime(mServer.getAddress(), mServer.getPort(), 500, mNetwork));
assertEquals(1, mServer.numRequestsReceived());
assertEquals(1, mServer.numRepliesSent());
checkRequestTimeCalcs(EARLY_ERA1_REQUEST_TIME, LATE_ERA0_SERVER_TIME, mClient);
}
/** Tests when the client and server are in ERA1. b/199481251. */
@Test
public void testRequestTime_era1ClientEra1Server() throws Exception {
when(mSystemTimeSupplier.get()).thenReturn(EARLY_ERA1_REQUEST_TIME);
mServer.setServerReply(HexEncoding.decode(EARLY_ERA_RESPONSE.toCharArray(), false));
assertTrue(mClient.requestTime(mServer.getAddress(), mServer.getPort(), 500, mNetwork));
assertEquals(1, mServer.numRequestsReceived());
assertEquals(1, mServer.numRepliesSent());
checkRequestTimeCalcs(EARLY_ERA1_REQUEST_TIME, EARLY_ERA1_SERVER_TIME, mClient);
}
private static void checkRequestTimeCalcs(
Instant clientTime, Instant serverTime, SntpClient client) {
// The tests don't attempt to control the elapsed time tracking, which influences the
// round trip time (i.e. time spent in due to the network), but they control everything
// else, so assertions are allowed some slop and round trip time just has to be >= 0.
assertTrue("getRoundTripTime()=" + client.getRoundTripTime(),
client.getRoundTripTime() >= 0);
// Calculate the ideal offset if nothing took any time.
long expectedOffset = serverTime.toEpochMilli() - clientTime.toEpochMilli();
long allowedSlop = (client.getRoundTripTime() / 2) + 1; // +1 to allow for truncation loss.
assertNearlyEquals(expectedOffset, client.getClockOffset(), allowedSlop);
assertNearlyEquals(clientTime.toEpochMilli() + expectedOffset,
client.getNtpTime(), allowedSlop);
}
/**
* Unit tests for the low-level offset calculations. More targeted / easier to write than the
* end-to-end tests above that simulate the server. b/199481251.
*/
@Test
public void testCalculateClockOffset() {
Instant era0Time1 = utcInstant(2021, 10, 5, 2, 2, 2, 2);
// Confirm what happens when the client and server are completely in sync.
checkCalculateClockOffset(era0Time1, era0Time1);
Instant era0Time2 = utcInstant(2021, 10, 6, 1, 1, 1, 1);
checkCalculateClockOffset(era0Time1, era0Time2);
checkCalculateClockOffset(era0Time2, era0Time1);
Instant era1Time1 = utcInstant(2061, 10, 5, 2, 2, 2, 2);
checkCalculateClockOffset(era1Time1, era1Time1);
Instant era1Time2 = utcInstant(2061, 10, 6, 1, 1, 1, 1);
checkCalculateClockOffset(era1Time1, era1Time2);
checkCalculateClockOffset(era1Time2, era1Time1);
// Cross-era calcs (requires they are still within 68 years of each other).
checkCalculateClockOffset(era0Time1, era1Time1);
checkCalculateClockOffset(era1Time1, era0Time1);
}
private void checkCalculateClockOffset(Instant clientTime, Instant serverTime) {
// The expected (ideal) offset is the difference between the client and server clocks. NTP
// assumes delays are symmetric, i.e. that the server time is between server
// receive/transmit time, client time is between request/response time, and send networking
// delay == receive networking delay.
Duration expectedOffset = Duration.between(clientTime, serverTime);
// Try simulating various round trip delays, including zero.
for (long totalElapsedTimeMillis : Arrays.asList(0, 20, 200, 2000, 20000)) {
// Simulate that a 10% of the elapsed time is due to time spent in the server, the rest
// is network / client processing time.
long simulatedServerElapsedTimeMillis = totalElapsedTimeMillis / 10;
long simulatedClientElapsedTimeMillis = totalElapsedTimeMillis;
// Create some symmetrical timestamps.
Timestamp64 clientRequestTimestamp = Timestamp64.fromInstant(
clientTime.minusMillis(simulatedClientElapsedTimeMillis / 2));
Timestamp64 clientResponseTimestamp = Timestamp64.fromInstant(
clientTime.plusMillis(simulatedClientElapsedTimeMillis / 2));
Timestamp64 serverReceiveTimestamp = Timestamp64.fromInstant(
serverTime.minusMillis(simulatedServerElapsedTimeMillis / 2));
Timestamp64 serverTransmitTimestamp = Timestamp64.fromInstant(
serverTime.plusMillis(simulatedServerElapsedTimeMillis / 2));
Duration actualOffset = SntpClient.calculateClockOffset(
clientRequestTimestamp, serverReceiveTimestamp,
serverTransmitTimestamp, clientResponseTimestamp);
// We allow up to 1ms variation because NTP types are lossy and the simulated elapsed
// time millis may not divide exactly.
int allowedSlopMillis = 1;
assertNearlyEquals(
expectedOffset.toMillis(), actualOffset.toMillis(), allowedSlopMillis);
}
}
private static Instant utcInstant(
int year, int monthOfYear, int day, int hour, int minute, int second, int nanos) {
return LocalDateTime.of(year, monthOfYear, day, hour, minute, second, nanos)
.toInstant(ZoneOffset.UTC);
}
@Test
@ -98,6 +298,8 @@ public class SntpClientTest {
@Test
public void testTimeoutFailure() throws Exception {
when(mSystemTimeSupplier.get()).thenReturn(LATE_ERA0_REQUEST_TIME);
mServer.clearServerReply();
assertFalse(mClient.requestTime(mServer.getAddress(), mServer.getPort(), 500, mNetwork));
assertEquals(1, mServer.numRequestsReceived());
@ -106,7 +308,9 @@ public class SntpClientTest {
@Test
public void testIgnoreLeapNoSync() throws Exception {
final byte[] reply = HexEncoding.decode(WORKING_VERSION4.toCharArray(), false);
when(mSystemTimeSupplier.get()).thenReturn(LATE_ERA0_REQUEST_TIME);
final byte[] reply = HexEncoding.decode(LATE_ERA_RESPONSE.toCharArray(), false);
reply[0] |= (byte) 0xc0;
mServer.setServerReply(reply);
assertFalse(mClient.requestTime(mServer.getAddress(), mServer.getPort(), 500, mNetwork));
@ -116,7 +320,9 @@ public class SntpClientTest {
@Test
public void testAcceptOnlyServerAndBroadcastModes() throws Exception {
final byte[] reply = HexEncoding.decode(WORKING_VERSION4.toCharArray(), false);
when(mSystemTimeSupplier.get()).thenReturn(LATE_ERA0_REQUEST_TIME);
final byte[] reply = HexEncoding.decode(LATE_ERA_RESPONSE.toCharArray(), false);
for (int i = 0; i <= 7; i++) {
final String logMsg = "mode: " + i;
reply[0] &= (byte) 0xf8;
@ -140,10 +346,12 @@ public class SntpClientTest {
@Test
public void testAcceptableStrataOnly() throws Exception {
when(mSystemTimeSupplier.get()).thenReturn(LATE_ERA0_REQUEST_TIME);
final int STRATUM_MIN = 1;
final int STRATUM_MAX = 15;
final byte[] reply = HexEncoding.decode(WORKING_VERSION4.toCharArray(), false);
final byte[] reply = HexEncoding.decode(LATE_ERA_RESPONSE.toCharArray(), false);
for (int i = 0; i < 256; i++) {
final String logMsg = "stratum: " + i;
reply[1] = (byte) i;
@ -162,7 +370,9 @@ public class SntpClientTest {
@Test
public void testZeroTransmitTime() throws Exception {
final byte[] reply = HexEncoding.decode(WORKING_VERSION4.toCharArray(), false);
when(mSystemTimeSupplier.get()).thenReturn(LATE_ERA0_REQUEST_TIME);
final byte[] reply = HexEncoding.decode(LATE_ERA_RESPONSE.toCharArray(), false);
Arrays.fill(reply, TRANSMIT_TIME_OFFSET, TRANSMIT_TIME_OFFSET + 8, (byte) 0x00);
mServer.setServerReply(reply);
assertFalse(mClient.requestTime(mServer.getAddress(), mServer.getPort(), 500, mNetwork));
@ -170,6 +380,19 @@ public class SntpClientTest {
assertEquals(1, mServer.numRepliesSent());
}
@Test
public void testNonMatchingOriginateTime() throws Exception {
when(mSystemTimeSupplier.get()).thenReturn(LATE_ERA0_REQUEST_TIME);
final byte[] reply = HexEncoding.decode(LATE_ERA_RESPONSE.toCharArray(), false);
mServer.setServerReply(reply);
mServer.setGenerateValidOriginateTimestamp(false);
assertFalse(mClient.requestTime(mServer.getAddress(), mServer.getPort(), 500, mNetwork));
assertEquals(1, mServer.numRequestsReceived());
assertEquals(1, mServer.numRepliesSent());
}
private static class SntpTestServer {
private final Object mLock = new Object();
@ -177,6 +400,7 @@ public class SntpClientTest {
private final InetAddress mAddress;
private final int mPort;
private byte[] mReply;
private boolean mGenerateValidOriginateTimestamp = true;
private int mRcvd;
private int mSent;
private Thread mListeningThread;
@ -201,10 +425,16 @@ public class SntpClientTest {
synchronized (mLock) {
mRcvd++;
if (mReply == null) { continue; }
// Copy transmit timestamp into originate timestamp.
// TODO: bounds checking.
System.arraycopy(ntpMsg.getData(), TRANSMIT_TIME_OFFSET,
mReply, ORIGINATE_TIME_OFFSET, 8);
if (mGenerateValidOriginateTimestamp) {
// Copy the transmit timestamp into originate timestamp: This is
// validated by well-behaved clients.
System.arraycopy(ntpMsg.getData(), TRANSMIT_TIME_OFFSET,
mReply, ORIGINATE_TIME_OFFSET, 8);
} else {
// Fill it with junk instead.
Arrays.fill(mReply, ORIGINATE_TIME_OFFSET,
ORIGINATE_TIME_OFFSET + 8, (byte) 0xFF);
}
ntpMsg.setData(mReply);
ntpMsg.setLength(mReply.length);
try {
@ -245,9 +475,38 @@ public class SntpClientTest {
}
}
/**
* Controls the test server's behavior of copying the client's transmit timestamp into the
* response's originate timestamp (which is required of a real server).
*/
public void setGenerateValidOriginateTimestamp(boolean enabled) {
synchronized (mLock) {
mGenerateValidOriginateTimestamp = enabled;
}
}
public InetAddress getAddress() { return mAddress; }
public int getPort() { return mPort; }
public int numRequestsReceived() { synchronized (mLock) { return mRcvd; } }
public int numRepliesSent() { synchronized (mLock) { return mSent; } }
}
/**
* Generates the "real" server time assuming it is exactly between the receive and transmit
* timestamp and in the NTP era specified.
*/
private static Instant calculateIdealServerTime(String receiveTimestampString,
String transmitTimestampString, int era) {
Timestamp64 receiveTimestamp = Timestamp64.fromString(receiveTimestampString);
Timestamp64 transmitTimestamp = Timestamp64.fromString(transmitTimestampString);
Duration serverProcessingTime =
Duration64.between(receiveTimestamp, transmitTimestamp).toDuration();
return receiveTimestamp.toInstant(era)
.plusMillis(serverProcessingTime.dividedBy(2).toMillis());
}
private static void assertNearlyEquals(long expected, long actual, long allowedSlop) {
assertTrue("expected=" + expected + ", actual=" + actual + ", allowedSlop=" + allowedSlop,
actual >= expected - allowedSlop && actual <= expected + allowedSlop);
}
}

View File

@ -0,0 +1,264 @@
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.net.sntp;
import static android.net.sntp.Timestamp64.NANOS_PER_SECOND;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotEquals;
import static org.junit.Assert.assertTrue;
import org.junit.Test;
import java.time.Duration;
import java.time.Instant;
import java.time.LocalDateTime;
import java.time.ZoneOffset;
public class Duration64Test {
@Test
public void testBetween_rangeChecks() {
long maxDuration64Seconds = Timestamp64.MAX_SECONDS_IN_ERA / 2;
Timestamp64 zeroNoFrac = Timestamp64.fromComponents(0, 0);
assertEquals(Duration64.ZERO, Duration64.between(zeroNoFrac, zeroNoFrac));
{
Timestamp64 ceilNoFrac = Timestamp64.fromComponents(maxDuration64Seconds, 0);
assertEquals(Duration64.ZERO, Duration64.between(ceilNoFrac, ceilNoFrac));
long expectedNanos = maxDuration64Seconds * NANOS_PER_SECOND;
assertEquals(Duration.ofNanos(expectedNanos),
Duration64.between(zeroNoFrac, ceilNoFrac).toDuration());
assertEquals(Duration.ofNanos(-expectedNanos),
Duration64.between(ceilNoFrac, zeroNoFrac).toDuration());
}
{
// This value is the largest fraction of a second representable. It is 1-(1/2^32)), and
// so numerically larger than 999_999_999 nanos.
int fractionBits = 0xFFFF_FFFF;
Timestamp64 ceilWithFrac = Timestamp64
.fromComponents(maxDuration64Seconds, fractionBits);
assertEquals(Duration64.ZERO, Duration64.between(ceilWithFrac, ceilWithFrac));
long expectedNanos = maxDuration64Seconds * NANOS_PER_SECOND + 999_999_999;
assertEquals(
Duration.ofNanos(expectedNanos),
Duration64.between(zeroNoFrac, ceilWithFrac).toDuration());
// The -1 nanos demonstrates asymmetry due to the way Duration64 has different
// precision / range of sub-second fractions.
assertEquals(
Duration.ofNanos(-expectedNanos - 1),
Duration64.between(ceilWithFrac, zeroNoFrac).toDuration());
}
}
@Test
public void testBetween_smallSecondsOnly() {
long expectedNanos = 5L * NANOS_PER_SECOND;
assertEquals(Duration.ofNanos(expectedNanos),
Duration64.between(Timestamp64.fromComponents(5, 0),
Timestamp64.fromComponents(10, 0))
.toDuration());
assertEquals(Duration.ofNanos(-expectedNanos),
Duration64.between(Timestamp64.fromComponents(10, 0),
Timestamp64.fromComponents(5, 0))
.toDuration());
}
@Test
public void testBetween_smallSecondsAndFraction() {
// Choose a nanos values we know can be represented exactly with fixed point binary (1/2
// second, 1/4 second, etc.).
{
long expectedNanos = 5L * NANOS_PER_SECOND + 500_000_000L;
int fractionHalfSecond = 0x8000_0000;
assertEquals(Duration.ofNanos(expectedNanos),
Duration64.between(
Timestamp64.fromComponents(5, 0),
Timestamp64.fromComponents(10, fractionHalfSecond)).toDuration());
assertEquals(Duration.ofNanos(-expectedNanos),
Duration64.between(
Timestamp64.fromComponents(10, fractionHalfSecond),
Timestamp64.fromComponents(5, 0)).toDuration());
}
{
long expectedNanos = 5L * NANOS_PER_SECOND + 250_000_000L;
int fractionHalfSecond = 0x8000_0000;
int fractionQuarterSecond = 0x4000_0000;
assertEquals(Duration.ofNanos(expectedNanos),
Duration64.between(
Timestamp64.fromComponents(5, fractionQuarterSecond),
Timestamp64.fromComponents(10, fractionHalfSecond)).toDuration());
assertEquals(Duration.ofNanos(-expectedNanos),
Duration64.between(
Timestamp64.fromComponents(10, fractionHalfSecond),
Timestamp64.fromComponents(5, fractionQuarterSecond)).toDuration());
}
}
@Test
public void testBetween_sameEra0() {
int arbitraryEra0Year = 2021;
Instant one = utcInstant(arbitraryEra0Year, 1, 1, 0, 0, 0, 500);
assertNtpEraOfInstant(one, 0);
checkDuration64Behavior(one, one);
Instant two = utcInstant(arbitraryEra0Year + 1, 1, 1, 0, 0, 0, 250);
assertNtpEraOfInstant(two, 0);
checkDuration64Behavior(one, two);
checkDuration64Behavior(two, one);
}
@Test
public void testBetween_sameEra1() {
int arbitraryEra1Year = 2037;
Instant one = utcInstant(arbitraryEra1Year, 1, 1, 0, 0, 0, 500);
assertNtpEraOfInstant(one, 1);
checkDuration64Behavior(one, one);
Instant two = utcInstant(arbitraryEra1Year + 1, 1, 1, 0, 0, 0, 250);
assertNtpEraOfInstant(two, 1);
checkDuration64Behavior(one, two);
checkDuration64Behavior(two, one);
}
/**
* Tests that two timestamps can originate from times in different eras, and the works
* calculation still works providing the two times aren't more than 68 years apart (half of the
* 136 years representable using an unsigned 32-bit seconds representation).
*/
@Test
public void testBetween_adjacentEras() {
int yearsSeparation = 68;
// This year just needs to be < 68 years before the end of NTP timestamp era 0.
int arbitraryYearInEra0 = 2021;
Instant one = utcInstant(arbitraryYearInEra0, 1, 1, 0, 0, 0, 500);
assertNtpEraOfInstant(one, 0);
checkDuration64Behavior(one, one);
Instant two = utcInstant(arbitraryYearInEra0 + yearsSeparation, 1, 1, 0, 0, 0, 250);
assertNtpEraOfInstant(two, 1);
checkDuration64Behavior(one, two);
checkDuration64Behavior(two, one);
}
/**
* This test confirms that duration calculations fail in the expected fashion if two
* Timestamp64s are more than 2^31 seconds apart.
*
* <p>The types / math specified by NTP for timestamps deliberately takes place in 64-bit signed
* arithmetic for the bits used to represent timestamps (32-bit unsigned integer seconds,
* 32-bits fixed point for fraction of seconds). Timestamps can therefore represent ~136 years
* of seconds.
* When subtracting one timestamp from another, we end up with a signed 32-bit seconds value.
* This means the max duration representable is ~68 years before numbers will over or underflow.
* i.e. the client and server are in the same or adjacent NTP eras and the difference in their
* clocks isn't more than ~68 years. >= ~68 years and things break down.
*/
@Test
public void testBetween_tooFarApart() {
int tooManyYearsSeparation = 68 + 1;
Instant one = utcInstant(2021, 1, 1, 0, 0, 0, 500);
assertNtpEraOfInstant(one, 0);
Instant two = utcInstant(2021 + tooManyYearsSeparation, 1, 1, 0, 0, 0, 250);
assertNtpEraOfInstant(two, 1);
checkDuration64OverflowBehavior(one, two);
checkDuration64OverflowBehavior(two, one);
}
private static void checkDuration64Behavior(Instant one, Instant two) {
// This is the answer if we perform the arithmetic in a lossless fashion.
Duration expectedDuration = Duration.between(one, two);
Duration64 expectedDuration64 = Duration64.fromDuration(expectedDuration);
// Sub-second precision is limited in Timestamp64, so we can lose 1ms.
assertEqualsOrSlightlyLessThan(
expectedDuration.toMillis(), expectedDuration64.toDuration().toMillis());
Timestamp64 one64 = Timestamp64.fromInstant(one);
Timestamp64 two64 = Timestamp64.fromInstant(two);
// This is the answer if we perform the arithmetic in a lossy fashion.
Duration64 actualDuration64 = Duration64.between(one64, two64);
assertEquals(expectedDuration64.getSeconds(), actualDuration64.getSeconds());
assertEqualsOrSlightlyLessThan(expectedDuration64.getNanos(), actualDuration64.getNanos());
}
private static void checkDuration64OverflowBehavior(Instant one, Instant two) {
// This is the answer if we perform the arithmetic in a lossless fashion.
Duration trueDuration = Duration.between(one, two);
// Confirm the maths is expected to overflow / underflow.
assertTrue(trueDuration.getSeconds() > Integer.MAX_VALUE / 2
|| trueDuration.getSeconds() < Integer.MIN_VALUE / 2);
// Now perform the arithmetic as specified for NTP: do subtraction using the 64-bit
// timestamp.
Timestamp64 one64 = Timestamp64.fromInstant(one);
Timestamp64 two64 = Timestamp64.fromInstant(two);
Duration64 actualDuration64 = Duration64.between(one64, two64);
assertNotEquals(trueDuration.getSeconds(), actualDuration64.getSeconds());
}
/**
* Asserts the instant provided is in the specified NTP timestamp era. Used to confirm /
* document values picked for tests have the properties needed.
*/
private static void assertNtpEraOfInstant(Instant one, int ntpEra) {
long expectedSeconds = one.getEpochSecond();
// The conversion to Timestamp64 is lossy (it loses the era). We then supply the expected
// era. If the era was correct, we will end up with the value we started with (modulo nano
// precision loss). If the era is wrong, we won't.
Instant roundtrippedInstant = Timestamp64.fromInstant(one).toInstant(ntpEra);
long actualSeconds = roundtrippedInstant.getEpochSecond();
assertEquals(expectedSeconds, actualSeconds);
}
/**
* Used to account for the fact that NTP types used 32-bit fixed point storage, so cannot store
* all values precisely. The value we get out will always be the value we put in, or one that is
* one unit smaller (due to truncation).
*/
private static void assertEqualsOrSlightlyLessThan(long expected, long actual) {
assertTrue("expected=" + expected + ", actual=" + actual,
expected == actual || expected == actual - 1);
}
private static Instant utcInstant(
int year, int monthOfYear, int day, int hour, int minute, int second, int nanos) {
return LocalDateTime.of(year, monthOfYear, day, hour, minute, second, nanos)
.toInstant(ZoneOffset.UTC);
}
}

View File

@ -0,0 +1,34 @@
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.net.sntp;
import java.util.Random;
class PredictableRandom extends Random {
private int[] mIntSequence = new int[] { 1 };
private int mIntPos = 0;
public void setIntSequence(int[] intSequence) {
this.mIntSequence = intSequence;
}
@Override
public int nextInt() {
int value = mIntSequence[mIntPos++];
mIntPos %= mIntSequence.length;
return value;
}
}

View File

@ -0,0 +1,309 @@
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.net.sntp;
import static android.net.sntp.Timestamp64.NANOS_PER_SECOND;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
import static org.junit.Assert.fail;
import org.junit.Test;
import java.time.Instant;
import java.util.HashSet;
import java.util.Random;
import java.util.Set;
public class Timestamp64Test {
@Test
public void testFromComponents() {
long minNtpEraSeconds = 0;
long maxNtpEraSeconds = 0xFFFFFFFFL;
expectIllegalArgumentException(() -> Timestamp64.fromComponents(minNtpEraSeconds - 1, 0));
expectIllegalArgumentException(() -> Timestamp64.fromComponents(maxNtpEraSeconds + 1, 0));
assertComponentCreation(minNtpEraSeconds, 0);
assertComponentCreation(maxNtpEraSeconds, 0);
assertComponentCreation(maxNtpEraSeconds, Integer.MIN_VALUE);
assertComponentCreation(maxNtpEraSeconds, Integer.MAX_VALUE);
}
private static void assertComponentCreation(long ntpEraSeconds, int fractionBits) {
Timestamp64 value = Timestamp64.fromComponents(ntpEraSeconds, fractionBits);
assertEquals(ntpEraSeconds, value.getEraSeconds());
assertEquals(fractionBits, value.getFractionBits());
}
@Test
public void testEqualsAndHashcode() {
assertEqualsAndHashcode(0, 0);
assertEqualsAndHashcode(1, 0);
assertEqualsAndHashcode(0, 1);
}
private static void assertEqualsAndHashcode(int eraSeconds, int fractionBits) {
Timestamp64 one = Timestamp64.fromComponents(eraSeconds, fractionBits);
Timestamp64 two = Timestamp64.fromComponents(eraSeconds, fractionBits);
assertEquals(one, two);
assertEquals(one.hashCode(), two.hashCode());
}
@Test
public void testStringForm() {
expectIllegalArgumentException(() -> Timestamp64.fromString(""));
expectIllegalArgumentException(() -> Timestamp64.fromString("."));
expectIllegalArgumentException(() -> Timestamp64.fromString("1234567812345678"));
expectIllegalArgumentException(() -> Timestamp64.fromString("12345678?12345678"));
expectIllegalArgumentException(() -> Timestamp64.fromString("12345678..12345678"));
expectIllegalArgumentException(() -> Timestamp64.fromString("1.12345678"));
expectIllegalArgumentException(() -> Timestamp64.fromString("12.12345678"));
expectIllegalArgumentException(() -> Timestamp64.fromString("123456.12345678"));
expectIllegalArgumentException(() -> Timestamp64.fromString("1234567.12345678"));
expectIllegalArgumentException(() -> Timestamp64.fromString("12345678.1"));
expectIllegalArgumentException(() -> Timestamp64.fromString("12345678.12"));
expectIllegalArgumentException(() -> Timestamp64.fromString("12345678.123456"));
expectIllegalArgumentException(() -> Timestamp64.fromString("12345678.1234567"));
expectIllegalArgumentException(() -> Timestamp64.fromString("X2345678.12345678"));
expectIllegalArgumentException(() -> Timestamp64.fromString("12345678.X2345678"));
assertStringCreation("00000000.00000000", 0, 0);
assertStringCreation("00000001.00000001", 1, 1);
assertStringCreation("ffffffff.ffffffff", 0xFFFFFFFFL, 0xFFFFFFFF);
}
private static void assertStringCreation(
String string, long expectedSeconds, int expectedFractionBits) {
Timestamp64 timestamp64 = Timestamp64.fromString(string);
assertEquals(string, timestamp64.toString());
assertEquals(expectedSeconds, timestamp64.getEraSeconds());
assertEquals(expectedFractionBits, timestamp64.getFractionBits());
}
@Test
public void testStringForm_lenientHexCasing() {
Timestamp64 mixedCaseValue = Timestamp64.fromString("AaBbCcDd.EeFf1234");
assertEquals(0xAABBCCDDL, mixedCaseValue.getEraSeconds());
assertEquals(0xEEFF1234, mixedCaseValue.getFractionBits());
}
@Test
public void testFromInstant_secondsHandling() {
final int era0 = 0;
final int eraNeg1 = -1;
final int eraNeg2 = -2;
final int era1 = 1;
assertInstantCreationOnlySeconds(-Timestamp64.OFFSET_1900_TO_1970, 0, era0);
assertInstantCreationOnlySeconds(
-Timestamp64.OFFSET_1900_TO_1970 - Timestamp64.SECONDS_IN_ERA, 0, eraNeg1);
assertInstantCreationOnlySeconds(
-Timestamp64.OFFSET_1900_TO_1970 + Timestamp64.SECONDS_IN_ERA, 0, era1);
assertInstantCreationOnlySeconds(
-Timestamp64.OFFSET_1900_TO_1970 - 1, Timestamp64.MAX_SECONDS_IN_ERA, -1);
assertInstantCreationOnlySeconds(
-Timestamp64.OFFSET_1900_TO_1970 - Timestamp64.SECONDS_IN_ERA - 1,
Timestamp64.MAX_SECONDS_IN_ERA, eraNeg2);
assertInstantCreationOnlySeconds(
-Timestamp64.OFFSET_1900_TO_1970 + Timestamp64.SECONDS_IN_ERA - 1,
Timestamp64.MAX_SECONDS_IN_ERA, era0);
assertInstantCreationOnlySeconds(-Timestamp64.OFFSET_1900_TO_1970 + 1, 1, era0);
assertInstantCreationOnlySeconds(
-Timestamp64.OFFSET_1900_TO_1970 - Timestamp64.SECONDS_IN_ERA + 1, 1, eraNeg1);
assertInstantCreationOnlySeconds(
-Timestamp64.OFFSET_1900_TO_1970 + Timestamp64.SECONDS_IN_ERA + 1, 1, era1);
assertInstantCreationOnlySeconds(0, Timestamp64.OFFSET_1900_TO_1970, era0);
assertInstantCreationOnlySeconds(
-Timestamp64.SECONDS_IN_ERA, Timestamp64.OFFSET_1900_TO_1970, eraNeg1);
assertInstantCreationOnlySeconds(
Timestamp64.SECONDS_IN_ERA, Timestamp64.OFFSET_1900_TO_1970, era1);
assertInstantCreationOnlySeconds(1, Timestamp64.OFFSET_1900_TO_1970 + 1, era0);
assertInstantCreationOnlySeconds(
-Timestamp64.SECONDS_IN_ERA + 1, Timestamp64.OFFSET_1900_TO_1970 + 1, eraNeg1);
assertInstantCreationOnlySeconds(
Timestamp64.SECONDS_IN_ERA + 1, Timestamp64.OFFSET_1900_TO_1970 + 1, era1);
assertInstantCreationOnlySeconds(-1, Timestamp64.OFFSET_1900_TO_1970 - 1, era0);
assertInstantCreationOnlySeconds(
-Timestamp64.SECONDS_IN_ERA - 1, Timestamp64.OFFSET_1900_TO_1970 - 1, eraNeg1);
assertInstantCreationOnlySeconds(
Timestamp64.SECONDS_IN_ERA - 1, Timestamp64.OFFSET_1900_TO_1970 - 1, era1);
}
private static void assertInstantCreationOnlySeconds(
long epochSeconds, long expectedNtpEraSeconds, int ntpEra) {
int nanosOfSecond = 0;
Instant instant = Instant.ofEpochSecond(epochSeconds, nanosOfSecond);
Timestamp64 timestamp = Timestamp64.fromInstant(instant);
assertEquals(expectedNtpEraSeconds, timestamp.getEraSeconds());
int expectedFractionBits = 0;
assertEquals(expectedFractionBits, timestamp.getFractionBits());
// Confirm the Instant can be round-tripped if we know the era. Also assumes the nanos can
// be stored precisely; 0 can be.
Instant roundTrip = timestamp.toInstant(ntpEra);
assertEquals(instant, roundTrip);
}
@Test
public void testFromInstant_fractionHandling() {
// Try some values we know can be represented exactly.
assertInstantCreationOnlyFractionExact(0x0, 0);
assertInstantCreationOnlyFractionExact(0x80000000, 500_000_000L);
assertInstantCreationOnlyFractionExact(0x40000000, 250_000_000L);
// Test the limits of precision.
assertInstantCreationOnlyFractionExact(0x00000006, 1L);
assertInstantCreationOnlyFractionExact(0x00000005, 1L);
assertInstantCreationOnlyFractionExact(0x00000004, 0L);
assertInstantCreationOnlyFractionExact(0x00000002, 0L);
assertInstantCreationOnlyFractionExact(0x00000001, 0L);
// Confirm nanosecond storage / precision is within 1ns.
final boolean exhaustive = false;
for (int i = 0; i < NANOS_PER_SECOND; i++) {
Instant instant = Instant.ofEpochSecond(0, i);
Instant roundTripped = Timestamp64.fromInstant(instant).toInstant(0);
assertNanosWithTruncationAllowed(i, roundTripped);
if (!exhaustive) {
i += 999_999;
}
}
}
private static void assertInstantCreationOnlyFractionExact(
int fractionBits, long expectedNanos) {
Timestamp64 timestamp64 = Timestamp64.fromComponents(0, fractionBits);
final int ntpEra = 0;
Instant instant = timestamp64.toInstant(ntpEra);
assertEquals(expectedNanos, instant.getNano());
}
private static void assertNanosWithTruncationAllowed(long expectedNanos, Instant instant) {
// Allow for < 1ns difference due to truncation.
long actualNanos = instant.getNano();
assertTrue("expectedNanos=" + expectedNanos + ", actualNanos=" + actualNanos,
actualNanos == expectedNanos || actualNanos == expectedNanos - 1);
}
@Test
public void testMillisRandomizationConstant() {
// Mathematically, we can say that to represent 1000 different values, we need 10 binary
// digits (2^10 = 1024). The same is true whether we're dealing with integers or fractions.
// Unfortunately, for fractions those 1024 values do not correspond to discrete decimal
// values. Discrete millisecond values as fractions (e.g. 0.001 - 0.999) cannot be
// represented exactly except where the value can also be represented as some combination of
// powers of -2. When we convert back and forth, we truncate, so millisecond decimal
// fraction N represented as a binary fraction will always be equal to or lower than N. If
// we are truncating correctly it will never be as low as (N-0.001). N -> [N-0.001, N].
// We need to keep 10 bits to hold millis (inaccurately, since there are numbers that
// cannot be represented exactly), leaving us able to randomize the remaining 22 bits of the
// fraction part without significantly affecting the number represented.
assertEquals(22, Timestamp64.SUB_MILLIS_BITS_TO_RANDOMIZE);
// Brute force proof that randomization logic will keep the timestamp within the range
// [N-0.001, N] where x is in milliseconds.
int smallFractionRandomizedLow = 0;
int smallFractionRandomizedHigh = 0b00000000_00111111_11111111_11111111;
int largeFractionRandomizedLow = 0b11111111_11000000_00000000_00000000;
int largeFractionRandomizedHigh = 0b11111111_11111111_11111111_11111111;
long smallLowNanos = Timestamp64.fromComponents(
0, smallFractionRandomizedLow).toInstant(0).getNano();
long smallHighNanos = Timestamp64.fromComponents(
0, smallFractionRandomizedHigh).toInstant(0).getNano();
long smallDelta = smallHighNanos - smallLowNanos;
long millisInNanos = 1_000_000_000 / 1_000;
assertTrue(smallDelta >= 0 && smallDelta < millisInNanos);
long largeLowNanos = Timestamp64.fromComponents(
0, largeFractionRandomizedLow).toInstant(0).getNano();
long largeHighNanos = Timestamp64.fromComponents(
0, largeFractionRandomizedHigh).toInstant(0).getNano();
long largeDelta = largeHighNanos - largeLowNanos;
assertTrue(largeDelta >= 0 && largeDelta < millisInNanos);
PredictableRandom random = new PredictableRandom();
random.setIntSequence(new int[] { 0xFFFF_FFFF });
Timestamp64 zero = Timestamp64.fromComponents(0, 0);
Timestamp64 zeroWithFractionRandomized = zero.randomizeSubMillis(random);
assertEquals(zero.getEraSeconds(), zeroWithFractionRandomized.getEraSeconds());
assertEquals(smallFractionRandomizedHigh, zeroWithFractionRandomized.getFractionBits());
}
@Test
public void testRandomizeLowestBits() {
Random random = new Random(1);
{
int fractionBits = 0;
expectIllegalArgumentException(
() -> Timestamp64.randomizeLowestBits(random, fractionBits, -1));
expectIllegalArgumentException(
() -> Timestamp64.randomizeLowestBits(random, fractionBits, 0));
expectIllegalArgumentException(
() -> Timestamp64.randomizeLowestBits(random, fractionBits, Integer.SIZE));
expectIllegalArgumentException(
() -> Timestamp64.randomizeLowestBits(random, fractionBits, Integer.SIZE + 1));
}
// Check the behavior looks correct from a probabilistic point of view.
for (int input : new int[] { 0, 0xFFFFFFFF }) {
for (int bitCount = 1; bitCount < Integer.SIZE; bitCount++) {
int upperBitMask = 0xFFFFFFFF << bitCount;
int expectedUpperBits = input & upperBitMask;
Set<Integer> values = new HashSet<>();
values.add(input);
int trials = 100;
for (int i = 0; i < trials; i++) {
int outputFractionBits =
Timestamp64.randomizeLowestBits(random, input, bitCount);
// Record the output value for later analysis.
values.add(outputFractionBits);
// Check upper bits did not change.
assertEquals(expectedUpperBits, outputFractionBits & upperBitMask);
}
// It's possible to be more rigorous here, perhaps with a histogram. As bitCount
// rises, values.size() quickly trend towards the value of trials + 1. For now, this
// mostly just guards against a no-op implementation.
assertTrue(bitCount + ":" + values.size(), values.size() > 1);
}
}
}
private static void expectIllegalArgumentException(Runnable r) {
try {
r.run();
fail();
} catch (IllegalArgumentException e) {
// Expected
}
}
}