am 0b70c09c: am 7ae6fc81: Merge "A better looking and faster spot shadow." into lmp-mr1-dev

* commit '0b70c09c1df3a5c359b8a93a8ac08e945805b693':
  A better looking and faster spot shadow.
This commit is contained in:
ztenghui
2014-11-07 00:17:09 +00:00
committed by Android Git Automerger
4 changed files with 317 additions and 665 deletions

View File

@ -326,9 +326,9 @@ void AmbientShadow::createAmbientShadow(bool isCasterOpaque,
shadowVertexBuffer.updateVertexCount(vertexBufferIndex);
shadowVertexBuffer.updateIndexCount(indexBufferIndex);
ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Vertex Buffer");
ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Index Buffer");
ShadowTessellator::checkOverflow(umbraIndex, totalUmbraCount, "Umbra Buffer");
ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Ambient Vertex Buffer");
ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Ambient Index Buffer");
ShadowTessellator::checkOverflow(umbraIndex, totalUmbraCount, "Ambient Umbra Buffer");
#if DEBUG_SHADOW
for (int i = 0; i < vertexBufferIndex; i++) {

View File

@ -617,68 +617,6 @@ void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCente
}
/**
* Converts a polygon specified with CW vertices into an array of distance-from-centroid values.
*
* Returns false in error conditions
*
* @param poly Array of vertices. Note that these *must* be CW.
* @param polyLength The number of vertices in the polygon.
* @param polyCentroid The centroid of the polygon, from which rays will be cast
* @param rayDist The output array for the calculated distances, must be SHADOW_RAY_COUNT in size
*/
bool convertPolyToRayDist(const Vector2* poly, int polyLength, const Vector2& polyCentroid,
float* rayDist) {
const int rays = SHADOW_RAY_COUNT;
const float step = M_PI * 2 / rays;
const Vector2* lastVertex = &(poly[polyLength - 1]);
float startAngle = angle(*lastVertex, polyCentroid);
// Start with the ray that's closest to and less than startAngle
int rayIndex = floor((startAngle - EPSILON) / step);
rayIndex = (rayIndex + rays) % rays; // ensure positive
for (int polyIndex = 0; polyIndex < polyLength; polyIndex++) {
/*
* For a given pair of vertices on the polygon, poly[i-1] and poly[i], the rays that
* intersect these will be those that are between the two angles from the centroid that the
* vertices define.
*
* Because the polygon vertices are stored clockwise, the closest ray with an angle
* *smaller* than that defined by angle(poly[i], centroid) will be the first ray that does
* not intersect with poly[i-1], poly[i].
*/
float currentAngle = angle(poly[polyIndex], polyCentroid);
// find first ray that will not intersect the line segment poly[i-1] & poly[i]
int firstRayIndexOnNextSegment = floor((currentAngle - EPSILON) / step);
firstRayIndexOnNextSegment = (firstRayIndexOnNextSegment + rays) % rays; // ensure positive
// Iterate through all rays that intersect with poly[i-1], poly[i] line segment.
// This may be 0 rays.
while (rayIndex != firstRayIndexOnNextSegment) {
float distanceToIntersect = rayIntersectPoints(polyCentroid,
cos(rayIndex * step),
sin(rayIndex * step),
*lastVertex, poly[polyIndex]);
if (distanceToIntersect < 0) {
#if DEBUG_SHADOW
ALOGW("ERROR: convertPolyToRayDist failed");
#endif
return false; // error case, abort
}
rayDist[rayIndex] = distanceToIntersect;
rayIndex = (rayIndex - 1 + rays) % rays;
}
lastVertex = &poly[polyIndex];
}
return true;
}
/**
* This is only for experimental purpose.
* After intersections are calculated, we could smooth the polygon if needed.
@ -700,490 +638,223 @@ void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
}
}
/**
* Generate a array of the angleData for either umbra or penumbra vertices.
*
* This array will be merged and used to guide where to shoot the rays, in clockwise order.
*
* @param angleDataList The result array of angle data.
*
* @return int The maximum angle's index in the array.
*/
int SpotShadow::setupAngleList(VertexAngleData* angleDataList,
int polyLength, const Vector2* polygon, const Vector2& centroid,
bool isPenumbra, const char* name) {
float maxAngle = FLT_MIN;
int maxAngleIndex = 0;
for (int i = 0; i < polyLength; i++) {
float currentAngle = angle(polygon[i], centroid);
if (currentAngle > maxAngle) {
maxAngle = currentAngle;
maxAngleIndex = i;
}
angleDataList[i].set(currentAngle, isPenumbra, i);
#if DEBUG_SHADOW
ALOGD("%s AngleList i %d %f", name, i, currentAngle);
#endif
}
return maxAngleIndex;
}
// Index pair is meant for storing the tessellation information for the penumbra
// area. One index must come from exterior tangent of the circles, the other one
// must come from the interior tangent of the circles.
struct IndexPair {
int outerIndex;
int innerIndex;
};
/**
* Make sure the polygons are indeed in clockwise order.
*
* Possible reasons to return false: 1. The input polygon is not setup properly. 2. The hull
* algorithm is not able to generate it properly.
*
* Anyway, since the algorithm depends on the clockwise, when these kind of unexpected error
* situation is found, we need to detect it and early return without corrupting the memory.
*
* @return bool True if the angle list is actually from big to small.
*/
bool SpotShadow::checkClockwise(int indexOfMaxAngle, int listLength, VertexAngleData* angleList,
const char* name) {
int currentIndex = indexOfMaxAngle;
#if DEBUG_SHADOW
ALOGD("max index %d", currentIndex);
#endif
for (int i = 0; i < listLength - 1; i++) {
// TODO: Cache the last angle.
float currentAngle = angleList[currentIndex].mAngle;
float nextAngle = angleList[(currentIndex + 1) % listLength].mAngle;
if (currentAngle < nextAngle) {
#if DEBUG_SHADOW
ALOGE("%s, is not CW, at index %d", name, currentIndex);
#endif
return false;
}
currentIndex = (currentIndex + 1) % listLength;
}
return true;
}
/**
* Check the polygon is clockwise.
*
* @return bool True is the polygon is clockwise.
*/
bool SpotShadow::checkPolyClockwise(int polyAngleLength, int maxPolyAngleIndex,
const float* polyAngleList) {
bool isPolyCW = true;
// Starting from maxPolyAngleIndex , check around to make sure angle decrease.
for (int i = 0; i < polyAngleLength - 1; i++) {
float currentAngle = polyAngleList[(i + maxPolyAngleIndex) % polyAngleLength];
float nextAngle = polyAngleList[(i + maxPolyAngleIndex + 1) % polyAngleLength];
if (currentAngle < nextAngle) {
isPolyCW = false;
}
}
return isPolyCW;
}
/**
* Given the sorted array of all the vertices angle data, calculate for each
* vertices, the offset value to array element which represent the start edge
* of the polygon we need to shoot the ray at.
*
* TODO: Calculate this for umbra and penumbra in one loop using one single array.
*
* @param distances The result of the array distance counter.
*/
void SpotShadow::calculateDistanceCounter(bool needsOffsetToUmbra, int angleLength,
const VertexAngleData* allVerticesAngleData, int* distances) {
bool firstVertexIsPenumbra = allVerticesAngleData[0].mIsPenumbra;
// If we want distance to inner, then we just set to 0 when we see inner.
bool needsSearch = needsOffsetToUmbra ? firstVertexIsPenumbra : !firstVertexIsPenumbra;
int distanceCounter = 0;
if (needsSearch) {
int foundIndex = -1;
for (int i = (angleLength - 1); i >= 0; i--) {
bool currentIsOuter = allVerticesAngleData[i].mIsPenumbra;
// If we need distance to inner, then we need to find a inner vertex.
if (currentIsOuter != firstVertexIsPenumbra) {
foundIndex = i;
break;
}
}
LOG_ALWAYS_FATAL_IF(foundIndex == -1, "Wrong index found, means either"
" umbra or penumbra's length is 0");
distanceCounter = angleLength - foundIndex;
}
#if DEBUG_SHADOW
ALOGD("distances[0] is %d", distanceCounter);
#endif
distances[0] = distanceCounter; // means never see a target poly
for (int i = 1; i < angleLength; i++) {
bool firstVertexIsPenumbra = allVerticesAngleData[i].mIsPenumbra;
// When we needs for distance for each outer vertex to inner, then we
// increase the distance when seeing outer vertices. Otherwise, we clear
// to 0.
bool needsIncrement = needsOffsetToUmbra ? firstVertexIsPenumbra : !firstVertexIsPenumbra;
// If counter is not -1, that means we have seen an other polygon's vertex.
if (needsIncrement && distanceCounter != -1) {
distanceCounter++;
} else {
distanceCounter = 0;
}
distances[i] = distanceCounter;
}
}
/**
* Given umbra and penumbra angle data list, merge them by sorting the angle
* from the biggest to smallest.
*
* @param allVerticesAngleData The result array of merged angle data.
*/
void SpotShadow::mergeAngleList(int maxUmbraAngleIndex, int maxPenumbraAngleIndex,
const VertexAngleData* umbraAngleList, int umbraLength,
const VertexAngleData* penumbraAngleList, int penumbraLength,
VertexAngleData* allVerticesAngleData) {
int totalRayNumber = umbraLength + penumbraLength;
int umbraIndex = maxUmbraAngleIndex;
int penumbraIndex = maxPenumbraAngleIndex;
float currentUmbraAngle = umbraAngleList[umbraIndex].mAngle;
float currentPenumbraAngle = penumbraAngleList[penumbraIndex].mAngle;
// TODO: Clean this up using a while loop with 2 iterators.
for (int i = 0; i < totalRayNumber; i++) {
if (currentUmbraAngle > currentPenumbraAngle) {
allVerticesAngleData[i] = umbraAngleList[umbraIndex];
umbraIndex = (umbraIndex + 1) % umbraLength;
// If umbraIndex round back, that means we are running out of
// umbra vertices to merge, so just copy all the penumbra leftover.
// Otherwise, we update the currentUmbraAngle.
if (umbraIndex != maxUmbraAngleIndex) {
currentUmbraAngle = umbraAngleList[umbraIndex].mAngle;
} else {
for (int j = i + 1; j < totalRayNumber; j++) {
allVerticesAngleData[j] = penumbraAngleList[penumbraIndex];
penumbraIndex = (penumbraIndex + 1) % penumbraLength;
}
break;
}
} else {
allVerticesAngleData[i] = penumbraAngleList[penumbraIndex];
penumbraIndex = (penumbraIndex + 1) % penumbraLength;
// If penumbraIndex round back, that means we are running out of
// penumbra vertices to merge, so just copy all the umbra leftover.
// Otherwise, we update the currentPenumbraAngle.
if (penumbraIndex != maxPenumbraAngleIndex) {
currentPenumbraAngle = penumbraAngleList[penumbraIndex].mAngle;
} else {
for (int j = i + 1; j < totalRayNumber; j++) {
allVerticesAngleData[j] = umbraAngleList[umbraIndex];
umbraIndex = (umbraIndex + 1) % umbraLength;
}
break;
}
}
}
}
#if DEBUG_SHADOW
/**
* DEBUG ONLY: Verify all the offset compuation is correctly done by examining
* each vertex and its neighbor.
*/
static void verifyDistanceCounter(const VertexAngleData* allVerticesAngleData,
const int* distances, int angleLength, const char* name) {
int currentDistance = distances[0];
for (int i = 1; i < angleLength; i++) {
if (distances[i] != INT_MIN) {
if (!((currentDistance + 1) == distances[i]
|| distances[i] == 0)) {
ALOGE("Wrong distance found at i %d name %s", i, name);
}
currentDistance = distances[i];
if (currentDistance != 0) {
bool currentOuter = allVerticesAngleData[i].mIsPenumbra;
for (int j = 1; j <= (currentDistance - 1); j++) {
bool neigborOuter =
allVerticesAngleData[(i + angleLength - j) % angleLength].mIsPenumbra;
if (neigborOuter != currentOuter) {
ALOGE("Wrong distance found at i %d name %s", i, name);
}
}
bool oppositeOuter =
allVerticesAngleData[(i + angleLength - currentDistance) % angleLength].mIsPenumbra;
if (oppositeOuter == currentOuter) {
ALOGE("Wrong distance found at i %d name %s", i, name);
}
}
}
}
}
/**
* DEBUG ONLY: Verify all the angle data compuated are is correctly done
*/
static void verifyAngleData(int totalRayNumber, const VertexAngleData* allVerticesAngleData,
const int* distancesToInner, const int* distancesToOuter,
const VertexAngleData* umbraAngleList, int maxUmbraAngleIndex, int umbraLength,
const VertexAngleData* penumbraAngleList, int maxPenumbraAngleIndex,
int penumbraLength) {
for (int i = 0; i < totalRayNumber; i++) {
ALOGD("currentAngleList i %d, angle %f, isInner %d, index %d distancesToInner"
" %d distancesToOuter %d", i, allVerticesAngleData[i].mAngle,
!allVerticesAngleData[i].mIsPenumbra,
allVerticesAngleData[i].mVertexIndex, distancesToInner[i], distancesToOuter[i]);
}
verifyDistanceCounter(allVerticesAngleData, distancesToInner, totalRayNumber, "distancesToInner");
verifyDistanceCounter(allVerticesAngleData, distancesToOuter, totalRayNumber, "distancesToOuter");
for (int i = 0; i < totalRayNumber; i++) {
if ((distancesToInner[i] * distancesToOuter[i]) != 0) {
ALOGE("distancesToInner wrong at index %d distancesToInner[i] %d,"
" distancesToOuter[i] %d", i, distancesToInner[i], distancesToOuter[i]);
}
}
int currentUmbraVertexIndex =
umbraAngleList[maxUmbraAngleIndex].mVertexIndex;
int currentPenumbraVertexIndex =
penumbraAngleList[maxPenumbraAngleIndex].mVertexIndex;
for (int i = 0; i < totalRayNumber; i++) {
if (allVerticesAngleData[i].mIsPenumbra == true) {
if (allVerticesAngleData[i].mVertexIndex != currentPenumbraVertexIndex) {
ALOGW("wrong penumbra indexing i %d allVerticesAngleData[i].mVertexIndex %d "
"currentpenumbraVertexIndex %d", i,
allVerticesAngleData[i].mVertexIndex, currentPenumbraVertexIndex);
}
currentPenumbraVertexIndex = (currentPenumbraVertexIndex + 1) % penumbraLength;
} else {
if (allVerticesAngleData[i].mVertexIndex != currentUmbraVertexIndex) {
ALOGW("wrong umbra indexing i %d allVerticesAngleData[i].mVertexIndex %d "
"currentUmbraVertexIndex %d", i,
allVerticesAngleData[i].mVertexIndex, currentUmbraVertexIndex);
}
currentUmbraVertexIndex = (currentUmbraVertexIndex + 1) % umbraLength;
}
}
for (int i = 0; i < totalRayNumber - 1; i++) {
float currentAngle = allVerticesAngleData[i].mAngle;
float nextAngle = allVerticesAngleData[(i + 1) % totalRayNumber].mAngle;
if (currentAngle < nextAngle) {
ALOGE("Unexpected angle values!, currentAngle nextAngle %f %f", currentAngle, nextAngle);
}
}
}
#endif
/**
* In order to compute the occluded umbra, we need to setup the angle data list
* for the polygon data. Since we only store one poly vertex per polygon vertex,
* this array only needs to be a float array which are the angles for each vertex.
*
* @param polyAngleList The result list
*
* @return int The index for the maximum angle in this array.
*/
int SpotShadow::setupPolyAngleList(float* polyAngleList, int polyAngleLength,
const Vector2* poly2d, const Vector2& centroid) {
int maxPolyAngleIndex = -1;
float maxPolyAngle = -FLT_MAX;
for (int i = 0; i < polyAngleLength; i++) {
polyAngleList[i] = angle(poly2d[i], centroid);
if (polyAngleList[i] > maxPolyAngle) {
maxPolyAngle = polyAngleList[i];
maxPolyAngleIndex = i;
}
}
return maxPolyAngleIndex;
}
/**
* For umbra and penumbra, given the offset info and the current ray number,
* find the right edge index (the (starting vertex) for the ray to shoot at.
*
* @return int The index of the starting vertex of the edge.
*/
inline int SpotShadow::getEdgeStartIndex(const int* offsets, int rayIndex, int totalRayNumber,
const VertexAngleData* allVerticesAngleData) {
int tempOffset = offsets[rayIndex];
int targetRayIndex = (rayIndex - tempOffset + totalRayNumber) % totalRayNumber;
return allVerticesAngleData[targetRayIndex].mVertexIndex;
}
/**
* For the occluded umbra, given the array of angles, find the index of the
* starting vertex of the edge, for the ray to shoo at.
*
* TODO: Save the last result to shorten the search distance.
*
* @return int The index of the starting vertex of the edge.
*/
inline int SpotShadow::getPolyEdgeStartIndex(int maxPolyAngleIndex, int polyLength,
const float* polyAngleList, float rayAngle) {
int minPolyAngleIndex = (maxPolyAngleIndex + polyLength - 1) % polyLength;
// For one penumbra vertex, find the cloest umbra vertex and return its index.
inline int getClosestUmbraIndex(const Vector2& pivot, const Vector2* polygon, int polygonLength) {
float minLengthSquared = FLT_MAX;
int resultIndex = -1;
if (rayAngle > polyAngleList[maxPolyAngleIndex]
|| rayAngle <= polyAngleList[minPolyAngleIndex]) {
resultIndex = minPolyAngleIndex;
} else {
for (int i = 0; i < polyLength - 1; i++) {
int currentIndex = (maxPolyAngleIndex + i) % polyLength;
int nextIndex = (maxPolyAngleIndex + i + 1) % polyLength;
if (rayAngle <= polyAngleList[currentIndex]
&& rayAngle > polyAngleList[nextIndex]) {
bool hasDecreased = false;
// Starting with some negative offset, assuming both umbra and penumbra are starting
// at the same angle, this can help to find the result faster.
// Normally, loop 3 times, we can find the closest point.
int offset = polygonLength - 2;
for (int i = 0; i < polygonLength; i++) {
int currentIndex = (i + offset) % polygonLength;
float currentLengthSquared = (pivot - polygon[currentIndex]).lengthSquared();
if (currentLengthSquared < minLengthSquared) {
if (minLengthSquared != FLT_MAX) {
hasDecreased = true;
}
minLengthSquared = currentLengthSquared;
resultIndex = currentIndex;
} else if (currentLengthSquared > minLengthSquared && hasDecreased) {
// Early break b/c we have found the closet one and now the length
// is increasing again.
break;
}
}
}
if (CC_UNLIKELY(resultIndex == -1)) {
// TODO: Add more error handling here.
ALOGE("Wrong index found, means no edge can't be found for rayAngle %f", rayAngle);
if(resultIndex == -1) {
ALOGE("resultIndex is -1, the polygon must be invalid!");
resultIndex = 0;
}
return resultIndex;
}
/**
* Convert the incoming polygons into arrays of vertices, for each ray.
* Ray only shoots when there is one vertex either on penumbra on umbra.
*
* Finally, it will generate vertices per ray for umbra, penumbra and optionally
* occludedUmbra.
*
* Return true (success) when all vertices are generated
*/
int SpotShadow::convertPolysToVerticesPerRay(
bool hasOccludedUmbraArea, const Vector2* poly2d, int polyLength,
const Vector2* umbra, int umbraLength, const Vector2* penumbra,
int penumbraLength, const Vector2& centroid,
Vector2* umbraVerticesPerRay, Vector2* penumbraVerticesPerRay,
Vector2* occludedUmbraVerticesPerRay) {
int totalRayNumber = umbraLength + penumbraLength;
// For incoming umbra / penumbra polygons, we will build an intermediate data
// structure to help us sort all the vertices according to the vertices.
// Using this data structure, we can tell where (the angle) to shoot the ray,
// whether we shoot at penumbra edge or umbra edge, and which edge to shoot at.
//
// We first parse each vertices and generate a table of VertexAngleData.
// Based on that, we create 2 arrays telling us which edge to shoot at.
VertexAngleData allVerticesAngleData[totalRayNumber];
VertexAngleData umbraAngleList[umbraLength];
VertexAngleData penumbraAngleList[penumbraLength];
int polyAngleLength = hasOccludedUmbraArea ? polyLength : 0;
float polyAngleList[polyAngleLength];
const int maxUmbraAngleIndex =
setupAngleList(umbraAngleList, umbraLength, umbra, centroid, false, "umbra");
const int maxPenumbraAngleIndex =
setupAngleList(penumbraAngleList, penumbraLength, penumbra, centroid, true, "penumbra");
const int maxPolyAngleIndex = setupPolyAngleList(polyAngleList, polyAngleLength, poly2d, centroid);
// Check all the polygons here are CW.
bool isPolyCW = checkPolyClockwise(polyAngleLength, maxPolyAngleIndex, polyAngleList);
bool isUmbraCW = checkClockwise(maxUmbraAngleIndex, umbraLength,
umbraAngleList, "umbra");
bool isPenumbraCW = checkClockwise(maxPenumbraAngleIndex, penumbraLength,
penumbraAngleList, "penumbra");
if (!isUmbraCW || !isPenumbraCW || !isPolyCW) {
#if DEBUG_SHADOW
ALOGE("One polygon is not CW isUmbraCW %d isPenumbraCW %d isPolyCW %d",
isUmbraCW, isPenumbraCW, isPolyCW);
#endif
return false;
}
mergeAngleList(maxUmbraAngleIndex, maxPenumbraAngleIndex,
umbraAngleList, umbraLength, penumbraAngleList, penumbraLength,
allVerticesAngleData);
// Calculate the offset to the left most Inner vertex for each outerVertex.
// Then the offset to the left most Outer vertex for each innerVertex.
int offsetToInner[totalRayNumber];
int offsetToOuter[totalRayNumber];
calculateDistanceCounter(true, totalRayNumber, allVerticesAngleData, offsetToInner);
calculateDistanceCounter(false, totalRayNumber, allVerticesAngleData, offsetToOuter);
// Generate both umbraVerticesPerRay and penumbraVerticesPerRay
for (int i = 0; i < totalRayNumber; i++) {
float rayAngle = allVerticesAngleData[i].mAngle;
bool isUmbraVertex = !allVerticesAngleData[i].mIsPenumbra;
float dx = cosf(rayAngle);
float dy = sinf(rayAngle);
float distanceToIntersectUmbra = -1;
if (isUmbraVertex) {
// We can just copy umbra easily, and calculate the distance for the
// occluded umbra computation.
int startUmbraIndex = allVerticesAngleData[i].mVertexIndex;
umbraVerticesPerRay[i] = umbra[startUmbraIndex];
if (hasOccludedUmbraArea) {
distanceToIntersectUmbra = (umbraVerticesPerRay[i] - centroid).length();
}
//shoot ray to penumbra only
int startPenumbraIndex = getEdgeStartIndex(offsetToOuter, i, totalRayNumber,
allVerticesAngleData);
float distanceToIntersectPenumbra = rayIntersectPoints(centroid, dx, dy,
penumbra[startPenumbraIndex],
penumbra[(startPenumbraIndex + 1) % penumbraLength]);
if (distanceToIntersectPenumbra < 0) {
#if DEBUG_SHADOW
ALOGW("convertPolyToRayDist for penumbra failed rayAngle %f dx %f dy %f",
rayAngle, dx, dy);
#endif
distanceToIntersectPenumbra = 0;
}
penumbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectPenumbra;
penumbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectPenumbra;
inline bool sameDirections(bool isPositiveCross, float a, float b) {
if (isPositiveCross) {
return a >= 0 && b >= 0;
} else {
// We can just copy the penumbra
int startPenumbraIndex = allVerticesAngleData[i].mVertexIndex;
penumbraVerticesPerRay[i] = penumbra[startPenumbraIndex];
return a <= 0 && b <= 0;
}
}
// And shoot ray to umbra only
int startUmbraIndex = getEdgeStartIndex(offsetToInner, i, totalRayNumber,
allVerticesAngleData);
// Find the right polygon edge to shoot the ray at.
inline int findPolyIndex(bool isPositiveCross, int startPolyIndex, const Vector2& umbraDir,
const Vector2* polyToCentroid, int polyLength) {
// Make sure we loop with a bound.
for (int i = 0; i < polyLength; i++) {
int currentIndex = (i + startPolyIndex) % polyLength;
const Vector2& currentToCentroid = polyToCentroid[currentIndex];
const Vector2& nextToCentroid = polyToCentroid[(currentIndex + 1) % polyLength];
distanceToIntersectUmbra = rayIntersectPoints(centroid, dx, dy,
umbra[startUmbraIndex], umbra[(startUmbraIndex + 1) % umbraLength]);
if (distanceToIntersectUmbra < 0) {
float currentCrossUmbra = currentToCentroid.cross(umbraDir);
float umbraCrossNext = umbraDir.cross(nextToCentroid);
if (sameDirections(isPositiveCross, currentCrossUmbra, umbraCrossNext)) {
#if DEBUG_SHADOW
ALOGW("convertPolyToRayDist for umbra failed rayAngle %f dx %f dy %f",
rayAngle, dx, dy);
ALOGD("findPolyIndex loop %d times , index %d", i, currentIndex );
#endif
distanceToIntersectUmbra = 0;
return currentIndex;
}
umbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectUmbra;
umbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectUmbra;
}
LOG_ALWAYS_FATAL("Can't find the right polygon's edge from startPolyIndex %d", startPolyIndex);
return -1;
}
// Generate the index pair for penumbra / umbra vertices, and more penumbra vertices
// if needed.
inline void genNewPenumbraAndPairWithUmbra(const Vector2* penumbra, int penumbraLength,
const Vector2* umbra, int umbraLength, Vector2* newPenumbra, int& newPenumbraIndex,
IndexPair* verticesPair, int& verticesPairIndex) {
// In order to keep everything in just one loop, we need to pre-compute the
// closest umbra vertex for the last penumbra vertex.
int previousClosestUmbraIndex = getClosestUmbraIndex(penumbra[penumbraLength - 1],
umbra, umbraLength);
for (int i = 0; i < penumbraLength; i++) {
const Vector2& currentPenumbraVertex = penumbra[i];
// For current penumbra vertex, starting from previousClosestUmbraIndex,
// then check the next one until the distance increase.
// The last one before the increase is the umbra vertex we need to pair with.
int currentUmbraIndex = previousClosestUmbraIndex;
float currentLengthSquared = (currentPenumbraVertex - umbra[currentUmbraIndex]).lengthSquared();
int currentClosestUmbraIndex = -1;
int indexDelta = 0;
for (int j = 1; j < umbraLength; j++) {
int newUmbraIndex = (previousClosestUmbraIndex + j) % umbraLength;
float newLengthSquared = (currentPenumbraVertex - umbra[newUmbraIndex]).lengthSquared();
if (newLengthSquared > currentLengthSquared) {
currentClosestUmbraIndex = (previousClosestUmbraIndex + j - 1) % umbraLength;
break;
} else {
currentLengthSquared = newLengthSquared;
indexDelta++;
}
}
LOG_ALWAYS_FATAL_IF(currentClosestUmbraIndex == -1, "Can't find a closet umbra vertext at all");
if (indexDelta > 1) {
// For those umbra don't have penumbra, generate new penumbra vertices by interpolation.
//
// Assuming Pi for penumbra vertices, and Ui for umbra vertices.
// In the case like below P1 paired with U1 and P2 paired with U5.
// U2 to U4 are unpaired umbra vertices.
//
// P1 P2
// | |
// U1 U2 U3 U4 U5
//
// We will need to generate 3 more penumbra vertices P1.1, P1.2, P1.3
// to pair with U2 to U4.
//
// P1 P1.1 P1.2 P1.3 P2
// | | | | |
// U1 U2 U3 U4 U5
//
// That distance ratio b/t Ui to U1 and Ui to U5 decides its paired penumbra
// vertex's location.
int newPenumbraNumber = indexDelta - 1;
float accumulatedDeltaLength[newPenumbraNumber];
float totalDeltaLength = 0;
// To save time, cache the previous umbra vertex info outside the loop
// and update each loop.
Vector2 previousClosestUmbra = umbra[previousClosestUmbraIndex];
Vector2 skippedUmbra;
// Use umbra data to precompute the length b/t unpaired umbra vertices,
// and its ratio against the total length.
for (int k = 0; k < indexDelta; k++) {
int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
skippedUmbra = umbra[skippedUmbraIndex];
float currentDeltaLength = (skippedUmbra - previousClosestUmbra).length();
totalDeltaLength += currentDeltaLength;
accumulatedDeltaLength[k] = totalDeltaLength;
previousClosestUmbra = skippedUmbra;
}
if (hasOccludedUmbraArea) {
// Shoot the same ray to the poly2d, and get the distance.
int startPolyIndex = getPolyEdgeStartIndex(maxPolyAngleIndex, polyLength,
polyAngleList, rayAngle);
const Vector2& previousPenumbra = penumbra[(i + penumbraLength - 1) % penumbraLength];
// Then for each unpaired umbra vertex, create a new penumbra by the ratio,
// and pair them togehter.
for (int k = 0; k < newPenumbraNumber; k++) {
float weightForCurrentPenumbra = 1.0f;
if (totalDeltaLength != 0.0f) {
weightForCurrentPenumbra = accumulatedDeltaLength[k] / totalDeltaLength;
}
float weightForPreviousPenumbra = 1.0f - weightForCurrentPenumbra;
Vector2 interpolatedPenumbra = currentPenumbraVertex * weightForCurrentPenumbra +
previousPenumbra * weightForPreviousPenumbra;
int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
verticesPair[verticesPairIndex++] = {newPenumbraIndex, skippedUmbraIndex};
newPenumbra[newPenumbraIndex++] = interpolatedPenumbra;
}
}
verticesPair[verticesPairIndex++] = {newPenumbraIndex, currentClosestUmbraIndex};
newPenumbra[newPenumbraIndex++] = currentPenumbraVertex;
previousClosestUmbraIndex = currentClosestUmbraIndex;
}
}
// Precompute all the polygon's vector, return true if the reference cross product is positive.
inline bool genPolyToCentroid(const Vector2* poly2d, int polyLength,
const Vector2& centroid, Vector2* polyToCentroid) {
for (int j = 0; j < polyLength; j++) {
polyToCentroid[j] = poly2d[j] - centroid;
}
float refCrossProduct = 0;
for (int j = 0; j < polyLength; j++) {
refCrossProduct = polyToCentroid[j].cross(polyToCentroid[(j + 1) % polyLength]);
if (refCrossProduct != 0) {
break;
}
}
return refCrossProduct > 0;
}
// For one umbra vertex, shoot an ray from centroid to it.
// If the ray hit the polygon first, then return the intersection point as the
// closer vertex.
inline Vector2 getCloserVertex(const Vector2& umbraVertex, const Vector2& centroid,
const Vector2* poly2d, int polyLength, const Vector2* polyToCentroid,
bool isPositiveCross, int& previousPolyIndex) {
Vector2 umbraToCentroid = umbraVertex - centroid;
float distanceToUmbra = umbraToCentroid.length();
umbraToCentroid = umbraToCentroid / distanceToUmbra;
// previousPolyIndex is updated for each item such that we can minimize the
// looping inside findPolyIndex();
previousPolyIndex = findPolyIndex(isPositiveCross, previousPolyIndex,
umbraToCentroid, polyToCentroid, polyLength);
float dx = umbraToCentroid.x;
float dy = umbraToCentroid.y;
float distanceToIntersectPoly = rayIntersectPoints(centroid, dx, dy,
poly2d[startPolyIndex], poly2d[(startPolyIndex + 1) % polyLength]);
poly2d[previousPolyIndex], poly2d[(previousPolyIndex + 1) % polyLength]);
if (distanceToIntersectPoly < 0) {
distanceToIntersectPoly = 0;
}
distanceToIntersectPoly = MathUtils::min(distanceToIntersectUmbra, distanceToIntersectPoly);
occludedUmbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectPoly;
occludedUmbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectPoly;
}
// Pick the closer one as the occluded area vertex.
Vector2 closerVertex;
if (distanceToIntersectPoly < distanceToUmbra) {
closerVertex.x = centroid.x + dx * distanceToIntersectPoly;
closerVertex.y = centroid.y + dy * distanceToIntersectPoly;
} else {
closerVertex = umbraVertex;
}
#if DEBUG_SHADOW
verifyAngleData(totalRayNumber, allVerticesAngleData, offsetToInner,
offsetToOuter, umbraAngleList, maxUmbraAngleIndex, umbraLength,
penumbraAngleList, maxPenumbraAngleIndex, penumbraLength);
#endif
return true; // success
return closerVertex;
}
/**
@ -1193,7 +864,6 @@ void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrength
Vector2* penumbra, int penumbraLength, Vector2* umbra, int umbraLength,
const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip,
const Vector2& centroid) {
bool hasOccludedUmbraArea = false;
Vector2 poly2d[polyLength];
@ -1209,128 +879,140 @@ void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrength
}
}
int totalRayNum = umbraLength + penumbraLength;
Vector2 umbraVertices[totalRayNum];
Vector2 penumbraVertices[totalRayNum];
Vector2 occludedUmbraVertices[totalRayNum];
bool convertSuccess = convertPolysToVerticesPerRay(hasOccludedUmbraArea, poly2d,
polyLength, umbra, umbraLength, penumbra, penumbraLength,
centroid, umbraVertices, penumbraVertices, occludedUmbraVertices);
if (!convertSuccess) {
return;
// For each penumbra vertex, find its corresponding closest umbra vertex index.
//
// Penumbra Vertices marked as Pi
// Umbra Vertices marked as Ui
// (P3)
// (P2) | ' (P4)
// (P1)' | | '
// ' | | '
// (P0) ------------------------------------------------(P5)
// | (U0) |(U1)
// | |
// | |(U2) (P5.1)
// | |
// | |
// | |
// | |
// | |
// | |
// (U4)-----------------------------------(U3) (P6)
//
// At least, like P0, P1, P2, they will find the matching umbra as U0.
// If we jump over some umbra vertex without matching penumbra vertex, then
// we will generate some new penumbra vertex by interpolation. Like P6 is
// matching U3, but U2 is not matched with any penumbra vertex.
// So interpolate P5.1 out and match U2.
// In this way, every umbra vertex will have a matching penumbra vertex.
//
// The total pair number can be as high as umbraLength + penumbraLength.
const int maxNewPenumbraLength = umbraLength + penumbraLength;
IndexPair verticesPair[maxNewPenumbraLength];
int verticesPairIndex = 0;
// Cache all the existing penumbra vertices and newly interpolated vertices into a
// a new array.
Vector2 newPenumbra[maxNewPenumbraLength];
int newPenumbraIndex = 0;
// For each penumbra vertex, find its closet umbra vertex by comparing the
// neighbor umbra vertices.
genNewPenumbraAndPairWithUmbra(penumbra, penumbraLength, umbra, umbraLength, newPenumbra,
newPenumbraIndex, verticesPair, verticesPairIndex);
ShadowTessellator::checkOverflow(verticesPairIndex, maxNewPenumbraLength, "Spot pair");
ShadowTessellator::checkOverflow(newPenumbraIndex, maxNewPenumbraLength, "Spot new penumbra");
#if DEBUG_SHADOW
for (int i = 0; i < umbraLength; i++) {
ALOGD("umbra i %d, [%f, %f]", i, umbra[i].x, umbra[i].y);
}
for (int i = 0; i < newPenumbraIndex; i++) {
ALOGD("new penumbra i %d, [%f, %f]", i, newPenumbra[i].x, newPenumbra[i].y);
}
for (int i = 0; i < verticesPairIndex; i++) {
ALOGD("index i %d, [%d, %d]", i, verticesPair[i].outerIndex, verticesPair[i].innerIndex);
}
#endif
// Minimal value is 1, for each vertex show up once.
// The bigger this value is , the smoother the look is, but more memory
// is consumed.
// When the ray number is high, that means the polygon has been fine
// tessellated, we don't need this extra slice, just keep it as 1.
int sliceNumberPerEdge = (totalRayNum > FINE_TESSELLATED_POLYGON_RAY_NUMBER) ? 1 : 2;
// For each polygon, we at most add (totalRayNum * sliceNumberPerEdge) vertices.
int slicedVertexCountPerPolygon = totalRayNum * sliceNumberPerEdge;
int totalVertexCount = slicedVertexCountPerPolygon * 2 + totalRayNum;
int totalIndexCount = 2 * (slicedVertexCountPerPolygon * 2 + 2);
// For the size of vertex buffer, we need 3 rings, one has newPenumbraSize,
// one has umbraLength, the last one has at most umbraLength.
//
// For the size of index buffer, the umbra area needs (2 * umbraLength + 2).
// The penumbra one can vary a bit, but it is bounded by (2 * verticesPairIndex + 2).
// And 2 more for jumping between penumbra to umbra.
const int newPenumbraLength = newPenumbraIndex;
const int totalVertexCount = newPenumbraLength + umbraLength * 2;
const int totalIndexCount = 2 * umbraLength + 2 * verticesPairIndex + 6;
AlphaVertex* shadowVertices =
shadowTriangleStrip.alloc<AlphaVertex>(totalVertexCount);
uint16_t* indexBuffer =
shadowTriangleStrip.allocIndices<uint16_t>(totalIndexCount);
int indexBufferIndex = 0;
int vertexBufferIndex = 0;
int indexBufferIndex = 0;
uint16_t slicedUmbraVertexIndex[totalRayNum * sliceNumberPerEdge];
// Should be something like 0 0 0 1 1 1 2 3 3 3...
int rayNumberPerSlicedUmbra[totalRayNum * sliceNumberPerEdge];
int realUmbraVertexCount = 0;
for (int i = 0; i < totalRayNum; i++) {
Vector2 currentPenumbra = penumbraVertices[i];
Vector2 currentUmbra = umbraVertices[i];
Vector2 nextPenumbra = penumbraVertices[(i + 1) % totalRayNum];
Vector2 nextUmbra = umbraVertices[(i + 1) % totalRayNum];
// NextUmbra/Penumbra will be done in the next loop!!
for (int weight = 0; weight < sliceNumberPerEdge; weight++) {
const Vector2& slicedPenumbra = (currentPenumbra * (sliceNumberPerEdge - weight)
+ nextPenumbra * weight) / sliceNumberPerEdge;
const Vector2& slicedUmbra = (currentUmbra * (sliceNumberPerEdge - weight)
+ nextUmbra * weight) / sliceNumberPerEdge;
// In the vertex buffer, we fill the Penumbra first, then umbra.
indexBuffer[indexBufferIndex++] = vertexBufferIndex;
AlphaVertex::set(&shadowVertices[vertexBufferIndex++], slicedPenumbra.x,
slicedPenumbra.y, 0.0f);
// When we add umbra vertex, we need to remember its current ray number.
// And its own vertexBufferIndex. This is for occluded umbra usage.
indexBuffer[indexBufferIndex++] = vertexBufferIndex;
rayNumberPerSlicedUmbra[realUmbraVertexCount] = i;
slicedUmbraVertexIndex[realUmbraVertexCount] = vertexBufferIndex;
realUmbraVertexCount++;
AlphaVertex::set(&shadowVertices[vertexBufferIndex++], slicedUmbra.x,
slicedUmbra.y, M_PI);
// Fill the IB and VB for the penumbra area.
for (int i = 0; i < newPenumbraLength; i++) {
AlphaVertex::set(&shadowVertices[vertexBufferIndex++], newPenumbra[i].x,
newPenumbra[i].y, 0.0f);
}
for (int i = 0; i < umbraLength; i++) {
AlphaVertex::set(&shadowVertices[vertexBufferIndex++], umbra[i].x, umbra[i].y,
M_PI);
}
indexBuffer[indexBufferIndex++] = 0;
//RealUmbraVertexIndex[0] must be 1, so we connect back well at the
//beginning of occluded area.
indexBuffer[indexBufferIndex++] = 1;
for (int i = 0; i < verticesPairIndex; i++) {
indexBuffer[indexBufferIndex++] = verticesPair[i].outerIndex;
// All umbra index need to be offseted by newPenumbraSize.
indexBuffer[indexBufferIndex++] = verticesPair[i].innerIndex + newPenumbraLength;
}
indexBuffer[indexBufferIndex++] = verticesPair[0].outerIndex;
indexBuffer[indexBufferIndex++] = verticesPair[0].innerIndex + newPenumbraLength;
// Now fill the IB and VB for the umbra area.
// First duplicated the index from previous strip and the first one for the
// degenerated triangles.
indexBuffer[indexBufferIndex] = indexBuffer[indexBufferIndex - 1];
indexBufferIndex++;
indexBuffer[indexBufferIndex++] = newPenumbraLength + 0;
// Save the first VB index for umbra area in order to close the loop.
int savedStartIndex = vertexBufferIndex;
float occludedUmbraAlpha = M_PI;
if (hasOccludedUmbraArea) {
// Now the occludedUmbra area;
int currentRayNumber = -1;
int firstOccludedUmbraIndex = -1;
for (int i = 0; i < realUmbraVertexCount; i++) {
indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[i];
// Precompute all the polygon's vector, and the reference cross product,
// in order to find the right polygon edge for the ray to intersect.
Vector2 polyToCentroid[polyLength];
bool isPositiveCross = genPolyToCentroid(poly2d, polyLength, centroid, polyToCentroid);
// If the occludedUmbra vertex has not been added yet, then add it.
// Otherwise, just use the previously added occludedUmbra vertices.
if (rayNumberPerSlicedUmbra[i] != currentRayNumber) {
currentRayNumber++;
// Because both the umbra and polygon are going in the same direction,
// we can save the previous polygon index to make sure we have less polygon
// vertex to compute for each ray.
int previousPolyIndex = 0;
for (int i = 0; i < umbraLength; i++) {
// Shoot a ray from centroid to each umbra vertices and pick the one with
// shorter distance to the centroid, b/t the umbra vertex or the intersection point.
Vector2 closerVertex = getCloserVertex(umbra[i], centroid, poly2d, polyLength,
polyToCentroid, isPositiveCross, previousPolyIndex);
// We already stored the umbra vertices, just need to add the occlued umbra's ones.
indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
indexBuffer[indexBufferIndex++] = vertexBufferIndex;
// We need to remember the begining of the occludedUmbra vertices
// to close this loop.
if (currentRayNumber == 0) {
firstOccludedUmbraIndex = vertexBufferIndex;
}
AlphaVertex::set(&shadowVertices[vertexBufferIndex++],
occludedUmbraVertices[currentRayNumber].x,
occludedUmbraVertices[currentRayNumber].y,
occludedUmbraAlpha);
} else {
indexBuffer[indexBufferIndex++] = (vertexBufferIndex - 1);
closerVertex.x, closerVertex.y, M_PI);
}
}
// Close the loop here!
indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[0];
indexBuffer[indexBufferIndex++] = firstOccludedUmbraIndex;
} else {
// If there is no occluded umbra at all, then draw the triangle fan
// starting from the centroid to all umbra vertices.
int lastCentroidIndex = vertexBufferIndex;
AlphaVertex::set(&shadowVertices[vertexBufferIndex++], centroid.x,
centroid.y, occludedUmbraAlpha);
for (int i = 0; i < realUmbraVertexCount; i++) {
indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[i];
centroid.y, M_PI);
for (int i = 0; i < umbraLength; i++) {
indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
indexBuffer[indexBufferIndex++] = lastCentroidIndex;
}
// Close the loop here!
indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[0];
indexBuffer[indexBufferIndex++] = lastCentroidIndex;
}
#if DEBUG_SHADOW
ALOGD("allocated IB %d allocated VB is %d", totalIndexCount, totalVertexCount);
ALOGD("IB index %d VB index is %d", indexBufferIndex, vertexBufferIndex);
for (int i = 0; i < vertexBufferIndex; i++) {
ALOGD("vertexBuffer i %d, (%f, %f %f)", i, shadowVertices[i].x, shadowVertices[i].y,
shadowVertices[i].alpha);
}
for (int i = 0; i < indexBufferIndex; i++) {
ALOGD("indexBuffer i %d, indexBuffer[i] %d", i, indexBuffer[i]);
}
#endif
// Closing the umbra area triangle's loop here.
indexBuffer[indexBufferIndex++] = newPenumbraLength;
indexBuffer[indexBufferIndex++] = savedStartIndex;
// At the end, update the real index and vertex buffer size.
shadowTriangleStrip.updateVertexCount(vertexBufferIndex);

View File

@ -36,40 +36,6 @@ private:
static float projectCasterToOutline(Vector2& outline,
const Vector3& lightCenter, const Vector3& polyVertex);
static int setupAngleList(VertexAngleData* angleDataList,
int polyLength, const Vector2* polygon, const Vector2& centroid,
bool isPenumbra, const char* name);
static int convertPolysToVerticesPerRay(
bool hasOccludedUmbraArea, const Vector2* poly2d, int polyLength,
const Vector2* umbra, int umbraLength, const Vector2* penumbra,
int penumbraLength, const Vector2& centroid,
Vector2* umbraVerticesPerRay, Vector2* penumbraVerticesPerRay,
Vector2* occludedUmbraVerticesPerRay);
static bool checkClockwise(int maxIndex, int listLength,
VertexAngleData* angleList, const char* name);
static void calculateDistanceCounter(bool needsOffsetToUmbra, int angleLength,
const VertexAngleData* allVerticesAngleData, int* distances);
static void mergeAngleList(int maxUmbraAngleIndex, int maxPenumbraAngleIndex,
const VertexAngleData* umbraAngleList, int umbraLength,
const VertexAngleData* penumbraAngleList, int penumbraLength,
VertexAngleData* allVerticesAngleData);
static int setupPolyAngleList(float* polyAngleList, int polyAngleLength,
const Vector2* poly2d, const Vector2& centroid);
static bool checkPolyClockwise(int polyAngleLength, int maxPolyAngleIndex,
const float* polyAngleList);
static int getEdgeStartIndex(const int* offsets, int rayIndex, int totalRayNumber,
const VertexAngleData* allVerticesAngleData);
static int getPolyEdgeStartIndex(int maxPolyAngleIndex, int polyLength,
const float* polyAngleList, float rayAngle);
static void computeLightPolygon(int points, const Vector3& lightCenter,
float size, Vector3* ret);

View File

@ -99,6 +99,10 @@ struct Vector2 {
return x * v.x + y * v.y;
}
float cross(const Vector2& v) const {
return x * v.y - y * v.x;
}
void dump() {
ALOGD("Vector2[%.2f, %.2f]", x, y);
}