87 lines
2.1 KiB
Makefile
Raw Normal View History

LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)
# Only build libhwui when USE_OPENGL_RENDERER is
# defined in the current device/board configuration
ifeq ($(USE_OPENGL_RENDERER),true)
LOCAL_SRC_FILES:= \
utils/Blur.cpp \
utils/SortedListImpl.cpp \
thread/TaskManager.cpp \
font/CacheTexture.cpp \
font/Font.cpp \
Pack preloaded framework assets in a texture atlas When the Android runtime starts, the system preloads a series of assets in the Zygote process. These assets are shared across all processes. Unfortunately, each one of these assets is later uploaded in its own OpenGL texture, once per process. This wastes memory and generates unnecessary OpenGL state changes. This CL introduces an asset server that provides an atlas to all processes. Note: bitmaps used by skia shaders are *not* sampled from the atlas. It's an uncommon use case and would require extra texture transforms in the GL shaders. WHAT IS THE ASSETS ATLAS The "assets atlas" is a single, shareable graphic buffer that contains all the system's preloaded bitmap drawables (this includes 9-patches.) The atlas is made of two distinct objects: the graphic buffer that contains the actual pixels and the map which indicates where each preloaded bitmap can be found in the atlas (essentially a pair of x and y coordinates.) HOW IS THE ASSETS ATLAS GENERATED Because we need to support a wide variety of devices and because it is easy to change the list of preloaded drawables, the atlas is generated at runtime, during the startup phase of the system process. There are several steps that lead to the atlas generation: 1. If the device is booting for the first time, or if the device was updated, we need to find the best atlas configuration. To do so, the atlas service tries a number of width, height and algorithm variations that allows us to pack as many assets as possible while using as little memory as possible. Once a best configuration is found, it gets written to disk in /data/system/framework_atlas 2. Given a best configuration (algorithm variant, dimensions and number of bitmaps that can be packed in the atlas), the atlas service packs all the preloaded bitmaps into a single graphic buffer object. 3. The packing is done using Skia in a temporary native bitmap. The Skia bitmap is then copied into the graphic buffer using OpenGL ES to benefit from texture swizzling. HOW PROCESSES USE THE ATLAS Whenever a process' hardware renderer initializes its EGL context, it queries the atlas service for the graphic buffer and the map. It is important to remember that both the context and the map will be valid for the lifetime of the hardware renderer (if the system process goes down, all apps get killed as well.) Every time the hardware renderer needs to render a bitmap, it first checks whether the bitmap can be found in the assets atlas. When the bitmap is part of the atlas, texture coordinates are remapped appropriately before rendering. Change-Id: I8eaecf53e7f6a33d90da3d0047c5ceec89ea3af0
2013-04-17 18:54:38 -07:00
AssetAtlas.cpp \
FontRenderer.cpp \
GammaFontRenderer.cpp \
Caches.cpp \
DisplayList.cpp \
DeferredDisplayList.cpp \
DisplayListLogBuffer.cpp \
DisplayListRenderer.cpp \
Dither.cpp \
Extensions.cpp \
FboCache.cpp \
GradientCache.cpp \
Image.cpp \
Layer.cpp \
LayerCache.cpp \
LayerRenderer.cpp \
Matrix.cpp \
OpenGLRenderer.cpp \
Patch.cpp \
PatchCache.cpp \
PathCache.cpp \
PathTessellator.cpp \
PixelBuffer.cpp \
Program.cpp \
ProgramCache.cpp \
RenderBufferCache.cpp \
ResourceCache.cpp \
SkiaColorFilter.cpp \
SkiaShader.cpp \
Snapshot.cpp \
Stencil.cpp \
Texture.cpp \
TextureCache.cpp \
TextDropShadowCache.cpp
intermediates := $(call intermediates-dir-for,STATIC_LIBRARIES,libRS,TARGET,)
LOCAL_C_INCLUDES += \
$(JNI_H_INCLUDE) \
$(LOCAL_PATH)/../../include/utils \
external/skia/include/core \
external/skia/include/effects \
external/skia/include/images \
external/skia/src/core \
external/skia/src/ports \
external/skia/include/utils
Pack preloaded framework assets in a texture atlas When the Android runtime starts, the system preloads a series of assets in the Zygote process. These assets are shared across all processes. Unfortunately, each one of these assets is later uploaded in its own OpenGL texture, once per process. This wastes memory and generates unnecessary OpenGL state changes. This CL introduces an asset server that provides an atlas to all processes. Note: bitmaps used by skia shaders are *not* sampled from the atlas. It's an uncommon use case and would require extra texture transforms in the GL shaders. WHAT IS THE ASSETS ATLAS The "assets atlas" is a single, shareable graphic buffer that contains all the system's preloaded bitmap drawables (this includes 9-patches.) The atlas is made of two distinct objects: the graphic buffer that contains the actual pixels and the map which indicates where each preloaded bitmap can be found in the atlas (essentially a pair of x and y coordinates.) HOW IS THE ASSETS ATLAS GENERATED Because we need to support a wide variety of devices and because it is easy to change the list of preloaded drawables, the atlas is generated at runtime, during the startup phase of the system process. There are several steps that lead to the atlas generation: 1. If the device is booting for the first time, or if the device was updated, we need to find the best atlas configuration. To do so, the atlas service tries a number of width, height and algorithm variations that allows us to pack as many assets as possible while using as little memory as possible. Once a best configuration is found, it gets written to disk in /data/system/framework_atlas 2. Given a best configuration (algorithm variant, dimensions and number of bitmaps that can be packed in the atlas), the atlas service packs all the preloaded bitmaps into a single graphic buffer object. 3. The packing is done using Skia in a temporary native bitmap. The Skia bitmap is then copied into the graphic buffer using OpenGL ES to benefit from texture swizzling. HOW PROCESSES USE THE ATLAS Whenever a process' hardware renderer initializes its EGL context, it queries the atlas service for the graphic buffer and the map. It is important to remember that both the context and the map will be valid for the lifetime of the hardware renderer (if the system process goes down, all apps get killed as well.) Every time the hardware renderer needs to render a bitmap, it first checks whether the bitmap can be found in the assets atlas. When the bitmap is part of the atlas, texture coordinates are remapped appropriately before rendering. Change-Id: I8eaecf53e7f6a33d90da3d0047c5ceec89ea3af0
2013-04-17 18:54:38 -07:00
LOCAL_CFLAGS += -DUSE_OPENGL_RENDERER -DEGL_EGLEXT_PROTOTYPES -DGL_GLEXT_PROTOTYPES
LOCAL_MODULE_CLASS := SHARED_LIBRARIES
Pack preloaded framework assets in a texture atlas When the Android runtime starts, the system preloads a series of assets in the Zygote process. These assets are shared across all processes. Unfortunately, each one of these assets is later uploaded in its own OpenGL texture, once per process. This wastes memory and generates unnecessary OpenGL state changes. This CL introduces an asset server that provides an atlas to all processes. Note: bitmaps used by skia shaders are *not* sampled from the atlas. It's an uncommon use case and would require extra texture transforms in the GL shaders. WHAT IS THE ASSETS ATLAS The "assets atlas" is a single, shareable graphic buffer that contains all the system's preloaded bitmap drawables (this includes 9-patches.) The atlas is made of two distinct objects: the graphic buffer that contains the actual pixels and the map which indicates where each preloaded bitmap can be found in the atlas (essentially a pair of x and y coordinates.) HOW IS THE ASSETS ATLAS GENERATED Because we need to support a wide variety of devices and because it is easy to change the list of preloaded drawables, the atlas is generated at runtime, during the startup phase of the system process. There are several steps that lead to the atlas generation: 1. If the device is booting for the first time, or if the device was updated, we need to find the best atlas configuration. To do so, the atlas service tries a number of width, height and algorithm variations that allows us to pack as many assets as possible while using as little memory as possible. Once a best configuration is found, it gets written to disk in /data/system/framework_atlas 2. Given a best configuration (algorithm variant, dimensions and number of bitmaps that can be packed in the atlas), the atlas service packs all the preloaded bitmaps into a single graphic buffer object. 3. The packing is done using Skia in a temporary native bitmap. The Skia bitmap is then copied into the graphic buffer using OpenGL ES to benefit from texture swizzling. HOW PROCESSES USE THE ATLAS Whenever a process' hardware renderer initializes its EGL context, it queries the atlas service for the graphic buffer and the map. It is important to remember that both the context and the map will be valid for the lifetime of the hardware renderer (if the system process goes down, all apps get killed as well.) Every time the hardware renderer needs to render a bitmap, it first checks whether the bitmap can be found in the assets atlas. When the bitmap is part of the atlas, texture coordinates are remapped appropriately before rendering. Change-Id: I8eaecf53e7f6a33d90da3d0047c5ceec89ea3af0
2013-04-17 18:54:38 -07:00
LOCAL_SHARED_LIBRARIES := liblog libcutils libutils libEGL libGLESv2 libskia libui
LOCAL_MODULE := libhwui
LOCAL_MODULE_TAGS := optional
ifneq (false,$(ANDROID_ENABLE_RENDERSCRIPT))
LOCAL_CFLAGS += -DANDROID_ENABLE_RENDERSCRIPT
LOCAL_SHARED_LIBRARIES += libRS libRScpp
LOCAL_C_INCLUDES += \
$(intermediates) \
frameworks/rs/cpp \
frameworks/rs
endif
ifndef HWUI_COMPILE_SYMBOLS
LOCAL_CFLAGS += -fvisibility=hidden
endif
ifdef HWUI_COMPILE_FOR_PERF
LOCAL_CFLAGS += -fno-omit-frame-pointer -marm -mapcs
endif
include $(BUILD_SHARED_LIBRARY)
include $(call all-makefiles-under,$(LOCAL_PATH))
endif