1029 lines
38 KiB
C++
Raw Normal View History

/*
**
** Copyright 2007, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#define LOG_TAG "IAudioFlinger"
//#define LOG_NDEBUG 0
#include <utils/Log.h>
#include <stdint.h>
#include <sys/types.h>
#include <binder/Parcel.h>
#include <media/IAudioFlinger.h>
namespace android {
enum {
CREATE_TRACK = IBinder::FIRST_CALL_TRANSACTION,
OPEN_RECORD,
SAMPLE_RATE,
CHANNEL_COUNT,
FORMAT,
FRAME_COUNT,
LATENCY,
SET_MASTER_VOLUME,
SET_MASTER_MUTE,
MASTER_VOLUME,
MASTER_MUTE,
SET_STREAM_VOLUME,
SET_STREAM_MUTE,
STREAM_VOLUME,
STREAM_MUTE,
SET_MODE,
SET_MIC_MUTE,
GET_MIC_MUTE,
SET_PARAMETERS,
GET_PARAMETERS,
REGISTER_CLIENT,
GET_INPUTBUFFERSIZE,
OPEN_OUTPUT,
OPEN_DUPLICATE_OUTPUT,
CLOSE_OUTPUT,
SUSPEND_OUTPUT,
RESTORE_OUTPUT,
OPEN_INPUT,
CLOSE_INPUT,
SET_STREAM_OUTPUT,
SET_VOICE_VOLUME,
GET_RENDER_POSITION,
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
GET_INPUT_FRAMES_LOST,
NEW_AUDIO_SESSION_ID,
ACQUIRE_AUDIO_SESSION_ID,
RELEASE_AUDIO_SESSION_ID,
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
QUERY_NUM_EFFECTS,
Various fixes and improvements in audio effects implementation Effect API: - Use different definitions for audio device, channels, formats... in AudioSystem and EffectApi: Removed media/AudioCommon.h file created for initial version of EffectApi - Indicate audio session and output ID to effect library when calling EffectCreate(). Session ID can be useful to optimize the implementation of effect chains in the same audio session. Output ID can be used for effects implemented in audio hardware. - Renamed EffectQueryNext() function to EffectQueryEffect() and changed operating mode: now an index is passed for the queried effect instead of implicitly querying the next one. - Added CPU load and memory usage indication in effects descriptor - Added flags and commands to indicate changes in audio mode (ring tone, in call...) to effect engine - Added flag to indicate hardware accelerated effect implementation. - Renamed EffectFactoryApi.h to EffectsFactoryApi.h for consistency with EffectsFactory.c/h Effect libraries: - Reflected changes in Effect API - Several fixes in reverb implementation - Added build option TEST_EFFECT_LIBRARIES in makefile to prepare integration of actual effect library. - Replaced pointer by integer identifier for library handle returned by effects factory Audio effect framework: - Added support for audio session -1 in preparation of output stage effects configuration. - Reflected changes in Effect API - Removed volume ramp up/down when effect is inserted/removed: this has to be taken care of by effect engines. - Added some overflow verification on indexes used for deferred parameter updates via shared memory - Added hardcoded CPU and memory limit check when creating a new effect instance Change-Id: I43fee5182ee201384ea3479af6d0acb95092901d
2010-06-23 17:38:20 -07:00
QUERY_EFFECT,
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
GET_EFFECT_DESCRIPTOR,
CREATE_EFFECT,
MOVE_EFFECTS
};
class BpAudioFlinger : public BpInterface<IAudioFlinger>
{
public:
BpAudioFlinger(const sp<IBinder>& impl)
: BpInterface<IAudioFlinger>(impl)
{
}
virtual sp<IAudioTrack> createTrack(
pid_t pid,
audio_stream_type_t streamType,
uint32_t sampleRate,
audio_format_t format,
uint32_t channelMask,
int frameCount,
uint32_t flags,
const sp<IMemory>& sharedBuffer,
audio_io_handle_t output,
bool isTimed,
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
int *sessionId,
status_t *status)
{
Parcel data, reply;
sp<IAudioTrack> track;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32(pid);
data.writeInt32((int32_t) streamType);
data.writeInt32(sampleRate);
data.writeInt32(format);
data.writeInt32(channelMask);
data.writeInt32(frameCount);
data.writeInt32(flags);
data.writeStrongBinder(sharedBuffer->asBinder());
data.writeInt32((int32_t) output);
data.writeInt32(isTimed);
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
int lSessionId = 0;
if (sessionId != NULL) {
lSessionId = *sessionId;
}
data.writeInt32(lSessionId);
status_t lStatus = remote()->transact(CREATE_TRACK, data, &reply);
if (lStatus != NO_ERROR) {
ALOGE("createTrack error: %s", strerror(-lStatus));
} else {
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
lSessionId = reply.readInt32();
if (sessionId != NULL) {
*sessionId = lSessionId;
}
lStatus = reply.readInt32();
track = interface_cast<IAudioTrack>(reply.readStrongBinder());
}
if (status) {
*status = lStatus;
}
return track;
}
virtual sp<IAudioRecord> openRecord(
pid_t pid,
audio_io_handle_t input,
uint32_t sampleRate,
audio_format_t format,
uint32_t channelMask,
int frameCount,
uint32_t flags,
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
int *sessionId,
status_t *status)
{
Parcel data, reply;
sp<IAudioRecord> record;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32(pid);
data.writeInt32((int32_t) input);
data.writeInt32(sampleRate);
data.writeInt32(format);
data.writeInt32(channelMask);
data.writeInt32(frameCount);
data.writeInt32(flags);
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
int lSessionId = 0;
if (sessionId != NULL) {
lSessionId = *sessionId;
}
data.writeInt32(lSessionId);
status_t lStatus = remote()->transact(OPEN_RECORD, data, &reply);
if (lStatus != NO_ERROR) {
ALOGE("openRecord error: %s", strerror(-lStatus));
} else {
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
lSessionId = reply.readInt32();
if (sessionId != NULL) {
*sessionId = lSessionId;
}
lStatus = reply.readInt32();
record = interface_cast<IAudioRecord>(reply.readStrongBinder());
}
if (status) {
*status = lStatus;
}
return record;
}
virtual uint32_t sampleRate(audio_io_handle_t output) const
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32((int32_t) output);
remote()->transact(SAMPLE_RATE, data, &reply);
return reply.readInt32();
}
virtual int channelCount(audio_io_handle_t output) const
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32((int32_t) output);
remote()->transact(CHANNEL_COUNT, data, &reply);
return reply.readInt32();
}
virtual audio_format_t format(audio_io_handle_t output) const
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32((int32_t) output);
remote()->transact(FORMAT, data, &reply);
return (audio_format_t) reply.readInt32();
}
virtual size_t frameCount(audio_io_handle_t output) const
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32((int32_t) output);
remote()->transact(FRAME_COUNT, data, &reply);
return reply.readInt32();
}
virtual uint32_t latency(audio_io_handle_t output) const
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32((int32_t) output);
remote()->transact(LATENCY, data, &reply);
return reply.readInt32();
}
virtual status_t setMasterVolume(float value)
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeFloat(value);
remote()->transact(SET_MASTER_VOLUME, data, &reply);
return reply.readInt32();
}
virtual status_t setMasterMute(bool muted)
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32(muted);
remote()->transact(SET_MASTER_MUTE, data, &reply);
return reply.readInt32();
}
virtual float masterVolume() const
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
remote()->transact(MASTER_VOLUME, data, &reply);
return reply.readFloat();
}
virtual bool masterMute() const
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
remote()->transact(MASTER_MUTE, data, &reply);
return reply.readInt32();
}
virtual status_t setStreamVolume(audio_stream_type_t stream, float value,
audio_io_handle_t output)
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32((int32_t) stream);
data.writeFloat(value);
data.writeInt32((int32_t) output);
remote()->transact(SET_STREAM_VOLUME, data, &reply);
return reply.readInt32();
}
virtual status_t setStreamMute(audio_stream_type_t stream, bool muted)
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32((int32_t) stream);
data.writeInt32(muted);
remote()->transact(SET_STREAM_MUTE, data, &reply);
return reply.readInt32();
}
virtual float streamVolume(audio_stream_type_t stream, audio_io_handle_t output) const
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32((int32_t) stream);
data.writeInt32((int32_t) output);
remote()->transact(STREAM_VOLUME, data, &reply);
return reply.readFloat();
}
virtual bool streamMute(audio_stream_type_t stream) const
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32((int32_t) stream);
remote()->transact(STREAM_MUTE, data, &reply);
return reply.readInt32();
}
virtual status_t setMode(audio_mode_t mode)
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32(mode);
remote()->transact(SET_MODE, data, &reply);
return reply.readInt32();
}
virtual status_t setMicMute(bool state)
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32(state);
remote()->transact(SET_MIC_MUTE, data, &reply);
return reply.readInt32();
}
virtual bool getMicMute() const
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
remote()->transact(GET_MIC_MUTE, data, &reply);
return reply.readInt32();
}
virtual status_t setParameters(audio_io_handle_t ioHandle, const String8& keyValuePairs)
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32((int32_t) ioHandle);
data.writeString8(keyValuePairs);
remote()->transact(SET_PARAMETERS, data, &reply);
return reply.readInt32();
}
virtual String8 getParameters(audio_io_handle_t ioHandle, const String8& keys) const
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32((int32_t) ioHandle);
data.writeString8(keys);
remote()->transact(GET_PARAMETERS, data, &reply);
return reply.readString8();
}
virtual void registerClient(const sp<IAudioFlingerClient>& client)
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeStrongBinder(client->asBinder());
remote()->transact(REGISTER_CLIENT, data, &reply);
}
virtual size_t getInputBufferSize(uint32_t sampleRate, audio_format_t format, int channelCount) const
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32(sampleRate);
data.writeInt32(format);
data.writeInt32(channelCount);
remote()->transact(GET_INPUTBUFFERSIZE, data, &reply);
return reply.readInt32();
}
virtual audio_io_handle_t openOutput(uint32_t *pDevices,
uint32_t *pSamplingRate,
audio_format_t *pFormat,
uint32_t *pChannels,
uint32_t *pLatencyMs,
uint32_t flags)
{
Parcel data, reply;
uint32_t devices = pDevices ? *pDevices : 0;
uint32_t samplingRate = pSamplingRate ? *pSamplingRate : 0;
audio_format_t format = pFormat ? *pFormat : AUDIO_FORMAT_DEFAULT;
uint32_t channels = pChannels ? *pChannels : 0;
uint32_t latency = pLatencyMs ? *pLatencyMs : 0;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32(devices);
data.writeInt32(samplingRate);
data.writeInt32(format);
data.writeInt32(channels);
data.writeInt32(latency);
data.writeInt32(flags);
remote()->transact(OPEN_OUTPUT, data, &reply);
audio_io_handle_t output = (audio_io_handle_t) reply.readInt32();
ALOGV("openOutput() returned output, %d", output);
devices = reply.readInt32();
if (pDevices) *pDevices = devices;
samplingRate = reply.readInt32();
if (pSamplingRate) *pSamplingRate = samplingRate;
format = (audio_format_t) reply.readInt32();
if (pFormat) *pFormat = format;
channels = reply.readInt32();
if (pChannels) *pChannels = channels;
latency = reply.readInt32();
if (pLatencyMs) *pLatencyMs = latency;
return output;
}
virtual audio_io_handle_t openDuplicateOutput(audio_io_handle_t output1,
audio_io_handle_t output2)
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32((int32_t) output1);
data.writeInt32((int32_t) output2);
remote()->transact(OPEN_DUPLICATE_OUTPUT, data, &reply);
return (audio_io_handle_t) reply.readInt32();
}
virtual status_t closeOutput(audio_io_handle_t output)
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32((int32_t) output);
remote()->transact(CLOSE_OUTPUT, data, &reply);
return reply.readInt32();
}
virtual status_t suspendOutput(audio_io_handle_t output)
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32((int32_t) output);
remote()->transact(SUSPEND_OUTPUT, data, &reply);
return reply.readInt32();
}
virtual status_t restoreOutput(audio_io_handle_t output)
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32((int32_t) output);
remote()->transact(RESTORE_OUTPUT, data, &reply);
return reply.readInt32();
}
virtual audio_io_handle_t openInput(uint32_t *pDevices,
uint32_t *pSamplingRate,
audio_format_t *pFormat,
uint32_t *pChannels,
audio_in_acoustics_t acoustics)
{
Parcel data, reply;
uint32_t devices = pDevices ? *pDevices : 0;
uint32_t samplingRate = pSamplingRate ? *pSamplingRate : 0;
audio_format_t format = pFormat ? *pFormat : AUDIO_FORMAT_DEFAULT;
uint32_t channels = pChannels ? *pChannels : 0;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32(devices);
data.writeInt32(samplingRate);
data.writeInt32(format);
data.writeInt32(channels);
data.writeInt32((int32_t) acoustics);
remote()->transact(OPEN_INPUT, data, &reply);
audio_io_handle_t input = (audio_io_handle_t) reply.readInt32();
devices = reply.readInt32();
if (pDevices) *pDevices = devices;
samplingRate = reply.readInt32();
if (pSamplingRate) *pSamplingRate = samplingRate;
format = (audio_format_t) reply.readInt32();
if (pFormat) *pFormat = format;
channels = reply.readInt32();
if (pChannels) *pChannels = channels;
return input;
}
virtual status_t closeInput(int input)
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32(input);
remote()->transact(CLOSE_INPUT, data, &reply);
return reply.readInt32();
}
virtual status_t setStreamOutput(audio_stream_type_t stream, audio_io_handle_t output)
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32((int32_t) stream);
data.writeInt32((int32_t) output);
remote()->transact(SET_STREAM_OUTPUT, data, &reply);
return reply.readInt32();
}
virtual status_t setVoiceVolume(float volume)
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeFloat(volume);
remote()->transact(SET_VOICE_VOLUME, data, &reply);
return reply.readInt32();
}
virtual status_t getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames,
audio_io_handle_t output) const
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32((int32_t) output);
remote()->transact(GET_RENDER_POSITION, data, &reply);
status_t status = reply.readInt32();
if (status == NO_ERROR) {
uint32_t tmp = reply.readInt32();
if (halFrames) {
*halFrames = tmp;
}
tmp = reply.readInt32();
if (dspFrames) {
*dspFrames = tmp;
}
}
return status;
}
virtual unsigned int getInputFramesLost(audio_io_handle_t ioHandle) const
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32((int32_t) ioHandle);
remote()->transact(GET_INPUT_FRAMES_LOST, data, &reply);
return reply.readInt32();
}
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
virtual int newAudioSessionId()
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
status_t status = remote()->transact(NEW_AUDIO_SESSION_ID, data, &reply);
int id = 0;
if (status == NO_ERROR) {
id = reply.readInt32();
}
return id;
}
virtual void acquireAudioSessionId(int audioSession)
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32(audioSession);
remote()->transact(ACQUIRE_AUDIO_SESSION_ID, data, &reply);
}
virtual void releaseAudioSessionId(int audioSession)
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32(audioSession);
remote()->transact(RELEASE_AUDIO_SESSION_ID, data, &reply);
}
virtual status_t queryNumberEffects(uint32_t *numEffects) const
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
status_t status = remote()->transact(QUERY_NUM_EFFECTS, data, &reply);
if (status != NO_ERROR) {
return status;
}
status = reply.readInt32();
if (status != NO_ERROR) {
return status;
}
if (numEffects != NULL) {
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
*numEffects = (uint32_t)reply.readInt32();
}
return NO_ERROR;
}
virtual status_t queryEffect(uint32_t index, effect_descriptor_t *pDescriptor) const
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
{
if (pDescriptor == NULL) {
return BAD_VALUE;
}
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
Various fixes and improvements in audio effects implementation Effect API: - Use different definitions for audio device, channels, formats... in AudioSystem and EffectApi: Removed media/AudioCommon.h file created for initial version of EffectApi - Indicate audio session and output ID to effect library when calling EffectCreate(). Session ID can be useful to optimize the implementation of effect chains in the same audio session. Output ID can be used for effects implemented in audio hardware. - Renamed EffectQueryNext() function to EffectQueryEffect() and changed operating mode: now an index is passed for the queried effect instead of implicitly querying the next one. - Added CPU load and memory usage indication in effects descriptor - Added flags and commands to indicate changes in audio mode (ring tone, in call...) to effect engine - Added flag to indicate hardware accelerated effect implementation. - Renamed EffectFactoryApi.h to EffectsFactoryApi.h for consistency with EffectsFactory.c/h Effect libraries: - Reflected changes in Effect API - Several fixes in reverb implementation - Added build option TEST_EFFECT_LIBRARIES in makefile to prepare integration of actual effect library. - Replaced pointer by integer identifier for library handle returned by effects factory Audio effect framework: - Added support for audio session -1 in preparation of output stage effects configuration. - Reflected changes in Effect API - Removed volume ramp up/down when effect is inserted/removed: this has to be taken care of by effect engines. - Added some overflow verification on indexes used for deferred parameter updates via shared memory - Added hardcoded CPU and memory limit check when creating a new effect instance Change-Id: I43fee5182ee201384ea3479af6d0acb95092901d
2010-06-23 17:38:20 -07:00
data.writeInt32(index);
status_t status = remote()->transact(QUERY_EFFECT, data, &reply);
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
if (status != NO_ERROR) {
return status;
}
status = reply.readInt32();
if (status != NO_ERROR) {
return status;
}
reply.read(pDescriptor, sizeof(effect_descriptor_t));
return NO_ERROR;
}
virtual status_t getEffectDescriptor(const effect_uuid_t *pUuid,
effect_descriptor_t *pDescriptor) const
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
{
if (pUuid == NULL || pDescriptor == NULL) {
return BAD_VALUE;
}
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.write(pUuid, sizeof(effect_uuid_t));
status_t status = remote()->transact(GET_EFFECT_DESCRIPTOR, data, &reply);
if (status != NO_ERROR) {
return status;
}
status = reply.readInt32();
if (status != NO_ERROR) {
return status;
}
reply.read(pDescriptor, sizeof(effect_descriptor_t));
return NO_ERROR;
}
virtual sp<IEffect> createEffect(pid_t pid,
effect_descriptor_t *pDesc,
const sp<IEffectClient>& client,
int32_t priority,
audio_io_handle_t output,
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
int sessionId,
status_t *status,
int *id,
int *enabled)
{
Parcel data, reply;
sp<IEffect> effect;
if (pDesc == NULL) {
return effect;
if (status) {
*status = BAD_VALUE;
}
}
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32(pid);
data.write(pDesc, sizeof(effect_descriptor_t));
data.writeStrongBinder(client->asBinder());
data.writeInt32(priority);
data.writeInt32((int32_t) output);
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
data.writeInt32(sessionId);
status_t lStatus = remote()->transact(CREATE_EFFECT, data, &reply);
if (lStatus != NO_ERROR) {
ALOGE("createEffect error: %s", strerror(-lStatus));
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
} else {
lStatus = reply.readInt32();
int tmp = reply.readInt32();
if (id) {
*id = tmp;
}
tmp = reply.readInt32();
if (enabled != NULL) {
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
*enabled = tmp;
}
effect = interface_cast<IEffect>(reply.readStrongBinder());
reply.read(pDesc, sizeof(effect_descriptor_t));
}
if (status) {
*status = lStatus;
}
return effect;
}
virtual status_t moveEffects(int session, audio_io_handle_t srcOutput,
audio_io_handle_t dstOutput)
{
Parcel data, reply;
data.writeInterfaceToken(IAudioFlinger::getInterfaceDescriptor());
data.writeInt32(session);
data.writeInt32((int32_t) srcOutput);
data.writeInt32((int32_t) dstOutput);
remote()->transact(MOVE_EFFECTS, data, &reply);
return reply.readInt32();
}
};
IMPLEMENT_META_INTERFACE(AudioFlinger, "android.media.IAudioFlinger");
// ----------------------------------------------------------------------
status_t BnAudioFlinger::onTransact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
switch(code) {
case CREATE_TRACK: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
pid_t pid = data.readInt32();
int streamType = data.readInt32();
uint32_t sampleRate = data.readInt32();
audio_format_t format = (audio_format_t) data.readInt32();
int channelCount = data.readInt32();
size_t bufferCount = data.readInt32();
uint32_t flags = data.readInt32();
sp<IMemory> buffer = interface_cast<IMemory>(data.readStrongBinder());
audio_io_handle_t output = (audio_io_handle_t) data.readInt32();
bool isTimed = data.readInt32();
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
int sessionId = data.readInt32();
status_t status;
sp<IAudioTrack> track = createTrack(pid,
(audio_stream_type_t) streamType, sampleRate, format,
channelCount, bufferCount, flags, buffer, output, isTimed, &sessionId, &status);
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
reply->writeInt32(sessionId);
reply->writeInt32(status);
reply->writeStrongBinder(track->asBinder());
return NO_ERROR;
} break;
case OPEN_RECORD: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
pid_t pid = data.readInt32();
audio_io_handle_t input = (audio_io_handle_t) data.readInt32();
uint32_t sampleRate = data.readInt32();
audio_format_t format = (audio_format_t) data.readInt32();
int channelCount = data.readInt32();
size_t bufferCount = data.readInt32();
uint32_t flags = data.readInt32();
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
int sessionId = data.readInt32();
status_t status;
sp<IAudioRecord> record = openRecord(pid, input,
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
sampleRate, format, channelCount, bufferCount, flags, &sessionId, &status);
reply->writeInt32(sessionId);
reply->writeInt32(status);
reply->writeStrongBinder(record->asBinder());
return NO_ERROR;
} break;
case SAMPLE_RATE: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
reply->writeInt32( sampleRate((audio_io_handle_t) data.readInt32()) );
return NO_ERROR;
} break;
case CHANNEL_COUNT: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
reply->writeInt32( channelCount((audio_io_handle_t) data.readInt32()) );
return NO_ERROR;
} break;
case FORMAT: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
reply->writeInt32( format((audio_io_handle_t) data.readInt32()) );
return NO_ERROR;
} break;
case FRAME_COUNT: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
reply->writeInt32( frameCount((audio_io_handle_t) data.readInt32()) );
return NO_ERROR;
} break;
case LATENCY: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
reply->writeInt32( latency((audio_io_handle_t) data.readInt32()) );
return NO_ERROR;
} break;
case SET_MASTER_VOLUME: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
reply->writeInt32( setMasterVolume(data.readFloat()) );
return NO_ERROR;
} break;
case SET_MASTER_MUTE: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
reply->writeInt32( setMasterMute(data.readInt32()) );
return NO_ERROR;
} break;
case MASTER_VOLUME: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
reply->writeFloat( masterVolume() );
return NO_ERROR;
} break;
case MASTER_MUTE: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
reply->writeInt32( masterMute() );
return NO_ERROR;
} break;
case SET_STREAM_VOLUME: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
int stream = data.readInt32();
float volume = data.readFloat();
audio_io_handle_t output = (audio_io_handle_t) data.readInt32();
reply->writeInt32( setStreamVolume((audio_stream_type_t) stream, volume, output) );
return NO_ERROR;
} break;
case SET_STREAM_MUTE: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
int stream = data.readInt32();
reply->writeInt32( setStreamMute((audio_stream_type_t) stream, data.readInt32()) );
return NO_ERROR;
} break;
case STREAM_VOLUME: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
int stream = data.readInt32();
int output = data.readInt32();
reply->writeFloat( streamVolume((audio_stream_type_t) stream, output) );
return NO_ERROR;
} break;
case STREAM_MUTE: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
int stream = data.readInt32();
reply->writeInt32( streamMute((audio_stream_type_t) stream) );
return NO_ERROR;
} break;
case SET_MODE: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
audio_mode_t mode = (audio_mode_t) data.readInt32();
reply->writeInt32( setMode(mode) );
return NO_ERROR;
} break;
case SET_MIC_MUTE: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
int state = data.readInt32();
reply->writeInt32( setMicMute(state) );
return NO_ERROR;
} break;
case GET_MIC_MUTE: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
reply->writeInt32( getMicMute() );
return NO_ERROR;
} break;
case SET_PARAMETERS: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
audio_io_handle_t ioHandle = (audio_io_handle_t) data.readInt32();
String8 keyValuePairs(data.readString8());
reply->writeInt32(setParameters(ioHandle, keyValuePairs));
return NO_ERROR;
} break;
case GET_PARAMETERS: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
audio_io_handle_t ioHandle = (audio_io_handle_t) data.readInt32();
String8 keys(data.readString8());
reply->writeString8(getParameters(ioHandle, keys));
return NO_ERROR;
} break;
case REGISTER_CLIENT: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
sp<IAudioFlingerClient> client = interface_cast<IAudioFlingerClient>(data.readStrongBinder());
registerClient(client);
return NO_ERROR;
} break;
case GET_INPUTBUFFERSIZE: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
uint32_t sampleRate = data.readInt32();
audio_format_t format = (audio_format_t) data.readInt32();
int channelCount = data.readInt32();
reply->writeInt32( getInputBufferSize(sampleRate, format, channelCount) );
return NO_ERROR;
} break;
case OPEN_OUTPUT: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
uint32_t devices = data.readInt32();
uint32_t samplingRate = data.readInt32();
audio_format_t format = (audio_format_t) data.readInt32();
uint32_t channels = data.readInt32();
uint32_t latency = data.readInt32();
uint32_t flags = data.readInt32();
audio_io_handle_t output = openOutput(&devices,
&samplingRate,
&format,
&channels,
&latency,
flags);
ALOGV("OPEN_OUTPUT output, %p", output);
reply->writeInt32((int32_t) output);
reply->writeInt32(devices);
reply->writeInt32(samplingRate);
reply->writeInt32(format);
reply->writeInt32(channels);
reply->writeInt32(latency);
return NO_ERROR;
} break;
case OPEN_DUPLICATE_OUTPUT: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
audio_io_handle_t output1 = (audio_io_handle_t) data.readInt32();
audio_io_handle_t output2 = (audio_io_handle_t) data.readInt32();
reply->writeInt32((int32_t) openDuplicateOutput(output1, output2));
return NO_ERROR;
} break;
case CLOSE_OUTPUT: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
reply->writeInt32(closeOutput((audio_io_handle_t) data.readInt32()));
return NO_ERROR;
} break;
case SUSPEND_OUTPUT: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
reply->writeInt32(suspendOutput((audio_io_handle_t) data.readInt32()));
return NO_ERROR;
} break;
case RESTORE_OUTPUT: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
reply->writeInt32(restoreOutput((audio_io_handle_t) data.readInt32()));
return NO_ERROR;
} break;
case OPEN_INPUT: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
uint32_t devices = data.readInt32();
uint32_t samplingRate = data.readInt32();
audio_format_t format = (audio_format_t) data.readInt32();
uint32_t channels = data.readInt32();
audio_in_acoustics_t acoustics = (audio_in_acoustics_t) data.readInt32();
audio_io_handle_t input = openInput(&devices,
&samplingRate,
&format,
&channels,
acoustics);
reply->writeInt32((int32_t) input);
reply->writeInt32(devices);
reply->writeInt32(samplingRate);
reply->writeInt32(format);
reply->writeInt32(channels);
return NO_ERROR;
} break;
case CLOSE_INPUT: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
reply->writeInt32(closeInput((audio_io_handle_t) data.readInt32()));
return NO_ERROR;
} break;
case SET_STREAM_OUTPUT: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
uint32_t stream = data.readInt32();
audio_io_handle_t output = (audio_io_handle_t) data.readInt32();
reply->writeInt32(setStreamOutput((audio_stream_type_t) stream, output));
return NO_ERROR;
} break;
case SET_VOICE_VOLUME: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
float volume = data.readFloat();
reply->writeInt32( setVoiceVolume(volume) );
return NO_ERROR;
} break;
case GET_RENDER_POSITION: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
audio_io_handle_t output = (audio_io_handle_t) data.readInt32();
uint32_t halFrames;
uint32_t dspFrames;
status_t status = getRenderPosition(&halFrames, &dspFrames, output);
reply->writeInt32(status);
if (status == NO_ERROR) {
reply->writeInt32(halFrames);
reply->writeInt32(dspFrames);
}
return NO_ERROR;
}
case GET_INPUT_FRAMES_LOST: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
audio_io_handle_t ioHandle = (audio_io_handle_t) data.readInt32();
reply->writeInt32(getInputFramesLost(ioHandle));
return NO_ERROR;
} break;
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
case NEW_AUDIO_SESSION_ID: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
reply->writeInt32(newAudioSessionId());
return NO_ERROR;
} break;
case ACQUIRE_AUDIO_SESSION_ID: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
int audioSession = data.readInt32();
acquireAudioSessionId(audioSession);
return NO_ERROR;
} break;
case RELEASE_AUDIO_SESSION_ID: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
int audioSession = data.readInt32();
releaseAudioSessionId(audioSession);
return NO_ERROR;
} break;
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
case QUERY_NUM_EFFECTS: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
uint32_t numEffects;
status_t status = queryNumberEffects(&numEffects);
reply->writeInt32(status);
if (status == NO_ERROR) {
reply->writeInt32((int32_t)numEffects);
}
return NO_ERROR;
}
Various fixes and improvements in audio effects implementation Effect API: - Use different definitions for audio device, channels, formats... in AudioSystem and EffectApi: Removed media/AudioCommon.h file created for initial version of EffectApi - Indicate audio session and output ID to effect library when calling EffectCreate(). Session ID can be useful to optimize the implementation of effect chains in the same audio session. Output ID can be used for effects implemented in audio hardware. - Renamed EffectQueryNext() function to EffectQueryEffect() and changed operating mode: now an index is passed for the queried effect instead of implicitly querying the next one. - Added CPU load and memory usage indication in effects descriptor - Added flags and commands to indicate changes in audio mode (ring tone, in call...) to effect engine - Added flag to indicate hardware accelerated effect implementation. - Renamed EffectFactoryApi.h to EffectsFactoryApi.h for consistency with EffectsFactory.c/h Effect libraries: - Reflected changes in Effect API - Several fixes in reverb implementation - Added build option TEST_EFFECT_LIBRARIES in makefile to prepare integration of actual effect library. - Replaced pointer by integer identifier for library handle returned by effects factory Audio effect framework: - Added support for audio session -1 in preparation of output stage effects configuration. - Reflected changes in Effect API - Removed volume ramp up/down when effect is inserted/removed: this has to be taken care of by effect engines. - Added some overflow verification on indexes used for deferred parameter updates via shared memory - Added hardcoded CPU and memory limit check when creating a new effect instance Change-Id: I43fee5182ee201384ea3479af6d0acb95092901d
2010-06-23 17:38:20 -07:00
case QUERY_EFFECT: {
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
CHECK_INTERFACE(IAudioFlinger, data, reply);
effect_descriptor_t desc;
Various fixes and improvements in audio effects implementation Effect API: - Use different definitions for audio device, channels, formats... in AudioSystem and EffectApi: Removed media/AudioCommon.h file created for initial version of EffectApi - Indicate audio session and output ID to effect library when calling EffectCreate(). Session ID can be useful to optimize the implementation of effect chains in the same audio session. Output ID can be used for effects implemented in audio hardware. - Renamed EffectQueryNext() function to EffectQueryEffect() and changed operating mode: now an index is passed for the queried effect instead of implicitly querying the next one. - Added CPU load and memory usage indication in effects descriptor - Added flags and commands to indicate changes in audio mode (ring tone, in call...) to effect engine - Added flag to indicate hardware accelerated effect implementation. - Renamed EffectFactoryApi.h to EffectsFactoryApi.h for consistency with EffectsFactory.c/h Effect libraries: - Reflected changes in Effect API - Several fixes in reverb implementation - Added build option TEST_EFFECT_LIBRARIES in makefile to prepare integration of actual effect library. - Replaced pointer by integer identifier for library handle returned by effects factory Audio effect framework: - Added support for audio session -1 in preparation of output stage effects configuration. - Reflected changes in Effect API - Removed volume ramp up/down when effect is inserted/removed: this has to be taken care of by effect engines. - Added some overflow verification on indexes used for deferred parameter updates via shared memory - Added hardcoded CPU and memory limit check when creating a new effect instance Change-Id: I43fee5182ee201384ea3479af6d0acb95092901d
2010-06-23 17:38:20 -07:00
status_t status = queryEffect(data.readInt32(), &desc);
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
reply->writeInt32(status);
if (status == NO_ERROR) {
reply->write(&desc, sizeof(effect_descriptor_t));
}
return NO_ERROR;
}
case GET_EFFECT_DESCRIPTOR: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
effect_uuid_t uuid;
data.read(&uuid, sizeof(effect_uuid_t));
effect_descriptor_t desc;
status_t status = getEffectDescriptor(&uuid, &desc);
reply->writeInt32(status);
if (status == NO_ERROR) {
reply->write(&desc, sizeof(effect_descriptor_t));
}
return NO_ERROR;
}
case CREATE_EFFECT: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
pid_t pid = data.readInt32();
effect_descriptor_t desc;
data.read(&desc, sizeof(effect_descriptor_t));
sp<IEffectClient> client = interface_cast<IEffectClient>(data.readStrongBinder());
int32_t priority = data.readInt32();
audio_io_handle_t output = (audio_io_handle_t) data.readInt32();
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
int sessionId = data.readInt32();
status_t status;
int id;
int enabled;
Issue 2667801: [Audio Effect Framework] AudioFlinger, AudioMixer AudioTrack modifications. First drop of audio framework modifications for audio effects support. - AudioTrack/AudioRecord: Added support for auxiliary effects in AudioTrack Added support for audio sessions Fixed left right channel inversion in setVolume() - IAudioFlinger: Added interface methods for effect enumeraiton and instantiation Added support for audio sessions. - IAudioTrack: Added method to attach auxiliary effect. - AudioFlinger Created new classes to control effect engines in effect library and manage effect connections to tracks or output mix: EffectModule: wrapper object controlling the effect engine implementation in the effect library. There is one EffectModule per instance of an effect in a given audio session EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session. EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks with same session ID. Each chain contains a variable number of EffectModules EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles. Added support for effect modules and effect chains creation in PlaybackThread. modified mixer thread loop to allow track volume control by effect modules and call effect processing. -AudioMixer Each track now specifies its output buffer used by mixer for accumulation Modified mixer process functions to process tracks by groups of tracks with same buffer Modified track process functions to support accumulation to auxiliary channel Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
2010-06-01 23:49:17 -07:00
sp<IEffect> effect = createEffect(pid, &desc, client, priority, output, sessionId, &status, &id, &enabled);
reply->writeInt32(status);
reply->writeInt32(id);
reply->writeInt32(enabled);
reply->writeStrongBinder(effect->asBinder());
reply->write(&desc, sizeof(effect_descriptor_t));
return NO_ERROR;
} break;
case MOVE_EFFECTS: {
CHECK_INTERFACE(IAudioFlinger, data, reply);
int session = data.readInt32();
audio_io_handle_t srcOutput = (audio_io_handle_t) data.readInt32();
audio_io_handle_t dstOutput = (audio_io_handle_t) data.readInt32();
reply->writeInt32(moveEffects(session, srcOutput, dstOutput));
return NO_ERROR;
} break;
default:
return BBinder::onTransact(code, data, reply, flags);
}
}
// ----------------------------------------------------------------------------
}; // namespace android