2012-11-26 18:30:17 -08:00
|
|
|
/*
|
2013-02-22 11:48:16 -08:00
|
|
|
* Copyright (C) 2013 The Android Open Source Project
|
2012-11-26 18:30:17 -08:00
|
|
|
*
|
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
* you may not use this file except in compliance with the License.
|
|
|
|
* You may obtain a copy of the License at
|
|
|
|
*
|
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
* See the License for the specific language governing permissions and
|
|
|
|
* limitations under the License.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef ANDROID_HWUI_DISPLAY_OPERATION_H
|
|
|
|
#define ANDROID_HWUI_DISPLAY_OPERATION_H
|
|
|
|
|
2013-02-22 11:48:16 -08:00
|
|
|
#ifndef LOG_TAG
|
|
|
|
#define LOG_TAG "OpenGLRenderer"
|
|
|
|
#endif
|
|
|
|
|
2012-11-26 18:30:17 -08:00
|
|
|
#include <SkXfermode.h>
|
|
|
|
|
2013-02-14 15:36:01 -08:00
|
|
|
#include <private/hwui/DrawGlInfo.h>
|
|
|
|
|
2012-11-26 18:30:17 -08:00
|
|
|
#include "OpenGLRenderer.h"
|
Pack preloaded framework assets in a texture atlas
When the Android runtime starts, the system preloads a series of assets
in the Zygote process. These assets are shared across all processes.
Unfortunately, each one of these assets is later uploaded in its own
OpenGL texture, once per process. This wastes memory and generates
unnecessary OpenGL state changes.
This CL introduces an asset server that provides an atlas to all processes.
Note: bitmaps used by skia shaders are *not* sampled from the atlas.
It's an uncommon use case and would require extra texture transforms
in the GL shaders.
WHAT IS THE ASSETS ATLAS
The "assets atlas" is a single, shareable graphic buffer that contains
all the system's preloaded bitmap drawables (this includes 9-patches.)
The atlas is made of two distinct objects: the graphic buffer that
contains the actual pixels and the map which indicates where each
preloaded bitmap can be found in the atlas (essentially a pair of
x and y coordinates.)
HOW IS THE ASSETS ATLAS GENERATED
Because we need to support a wide variety of devices and because it
is easy to change the list of preloaded drawables, the atlas is
generated at runtime, during the startup phase of the system process.
There are several steps that lead to the atlas generation:
1. If the device is booting for the first time, or if the device was
updated, we need to find the best atlas configuration. To do so,
the atlas service tries a number of width, height and algorithm
variations that allows us to pack as many assets as possible while
using as little memory as possible. Once a best configuration is found,
it gets written to disk in /data/system/framework_atlas
2. Given a best configuration (algorithm variant, dimensions and
number of bitmaps that can be packed in the atlas), the atlas service
packs all the preloaded bitmaps into a single graphic buffer object.
3. The packing is done using Skia in a temporary native bitmap. The
Skia bitmap is then copied into the graphic buffer using OpenGL ES
to benefit from texture swizzling.
HOW PROCESSES USE THE ATLAS
Whenever a process' hardware renderer initializes its EGL context,
it queries the atlas service for the graphic buffer and the map.
It is important to remember that both the context and the map will
be valid for the lifetime of the hardware renderer (if the system
process goes down, all apps get killed as well.)
Every time the hardware renderer needs to render a bitmap, it first
checks whether the bitmap can be found in the assets atlas. When
the bitmap is part of the atlas, texture coordinates are remapped
appropriately before rendering.
Change-Id: I8eaecf53e7f6a33d90da3d0047c5ceec89ea3af0
2013-04-17 18:54:38 -07:00
|
|
|
#include "AssetAtlas.h"
|
2013-02-04 16:16:33 -08:00
|
|
|
#include "DeferredDisplayList.h"
|
2012-11-26 18:30:17 -08:00
|
|
|
#include "DisplayListRenderer.h"
|
Pack preloaded framework assets in a texture atlas
When the Android runtime starts, the system preloads a series of assets
in the Zygote process. These assets are shared across all processes.
Unfortunately, each one of these assets is later uploaded in its own
OpenGL texture, once per process. This wastes memory and generates
unnecessary OpenGL state changes.
This CL introduces an asset server that provides an atlas to all processes.
Note: bitmaps used by skia shaders are *not* sampled from the atlas.
It's an uncommon use case and would require extra texture transforms
in the GL shaders.
WHAT IS THE ASSETS ATLAS
The "assets atlas" is a single, shareable graphic buffer that contains
all the system's preloaded bitmap drawables (this includes 9-patches.)
The atlas is made of two distinct objects: the graphic buffer that
contains the actual pixels and the map which indicates where each
preloaded bitmap can be found in the atlas (essentially a pair of
x and y coordinates.)
HOW IS THE ASSETS ATLAS GENERATED
Because we need to support a wide variety of devices and because it
is easy to change the list of preloaded drawables, the atlas is
generated at runtime, during the startup phase of the system process.
There are several steps that lead to the atlas generation:
1. If the device is booting for the first time, or if the device was
updated, we need to find the best atlas configuration. To do so,
the atlas service tries a number of width, height and algorithm
variations that allows us to pack as many assets as possible while
using as little memory as possible. Once a best configuration is found,
it gets written to disk in /data/system/framework_atlas
2. Given a best configuration (algorithm variant, dimensions and
number of bitmaps that can be packed in the atlas), the atlas service
packs all the preloaded bitmaps into a single graphic buffer object.
3. The packing is done using Skia in a temporary native bitmap. The
Skia bitmap is then copied into the graphic buffer using OpenGL ES
to benefit from texture swizzling.
HOW PROCESSES USE THE ATLAS
Whenever a process' hardware renderer initializes its EGL context,
it queries the atlas service for the graphic buffer and the map.
It is important to remember that both the context and the map will
be valid for the lifetime of the hardware renderer (if the system
process goes down, all apps get killed as well.)
Every time the hardware renderer needs to render a bitmap, it first
checks whether the bitmap can be found in the assets atlas. When
the bitmap is part of the atlas, texture coordinates are remapped
appropriately before rendering.
Change-Id: I8eaecf53e7f6a33d90da3d0047c5ceec89ea3af0
2013-04-17 18:54:38 -07:00
|
|
|
#include "UvMapper.h"
|
2012-11-26 18:30:17 -08:00
|
|
|
#include "utils/LinearAllocator.h"
|
|
|
|
|
|
|
|
#define CRASH() do { \
|
2013-06-14 16:31:37 -07:00
|
|
|
*(int *)(uintptr_t) 0xbbadbeef = 0; \
|
2012-11-26 18:30:17 -08:00
|
|
|
((void(*)())0)(); /* More reliable, but doesn't say BBADBEEF */ \
|
|
|
|
} while(false)
|
|
|
|
|
|
|
|
// Use OP_LOG for logging with arglist, OP_LOGS if just printing char*
|
2013-05-31 11:38:03 -07:00
|
|
|
#define OP_LOGS(s) OP_LOG("%s", (s))
|
2013-02-04 12:45:13 -08:00
|
|
|
#define OP_LOG(s, ...) ALOGD( "%*s" s, level * 2, "", __VA_ARGS__ )
|
2012-11-26 18:30:17 -08:00
|
|
|
|
|
|
|
namespace android {
|
|
|
|
namespace uirenderer {
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Structure for storing canvas operations when they are recorded into a DisplayList, so that they
|
|
|
|
* may be replayed to an OpenGLRenderer.
|
|
|
|
*
|
|
|
|
* To avoid individual memory allocations, DisplayListOps may only be allocated into a
|
|
|
|
* LinearAllocator's managed memory buffers. Each pointer held by a DisplayListOp is either a
|
|
|
|
* pointer into memory also allocated in the LinearAllocator (mostly for text and float buffers) or
|
|
|
|
* references a externally refcounted object (Sk... and Skia... objects). ~DisplayListOp() is
|
|
|
|
* never called as LinearAllocators are simply discarded, so no memory management should be done in
|
|
|
|
* this class.
|
|
|
|
*/
|
|
|
|
class DisplayListOp {
|
|
|
|
public:
|
|
|
|
// These objects should always be allocated with a LinearAllocator, and never destroyed/deleted.
|
|
|
|
// standard new() intentionally not implemented, and delete/deconstructor should never be used.
|
|
|
|
virtual ~DisplayListOp() { CRASH(); }
|
|
|
|
static void operator delete(void* ptr) { CRASH(); }
|
|
|
|
/** static void* operator new(size_t size); PURPOSELY OMITTED **/
|
|
|
|
static void* operator new(size_t size, LinearAllocator& allocator) {
|
|
|
|
return allocator.alloc(size);
|
|
|
|
}
|
|
|
|
|
|
|
|
enum OpLogFlag {
|
|
|
|
kOpLogFlag_Recurse = 0x1,
|
|
|
|
kOpLogFlag_JSON = 0x2 // TODO: add?
|
|
|
|
};
|
|
|
|
|
2013-04-19 14:54:34 -07:00
|
|
|
virtual void defer(DeferStateStruct& deferStruct, int saveCount, int level,
|
|
|
|
bool useQuickReject) = 0;
|
2013-02-04 16:16:33 -08:00
|
|
|
|
2013-04-19 14:54:34 -07:00
|
|
|
virtual void replay(ReplayStateStruct& replayStruct, int saveCount, int level,
|
|
|
|
bool useQuickReject) = 0;
|
2013-03-08 13:12:16 -08:00
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags = 0) const = 0;
|
2012-11-26 18:30:17 -08:00
|
|
|
|
|
|
|
// NOTE: it would be nice to declare constants and overriding the implementation in each op to
|
|
|
|
// point at the constants, but that seems to require a .cpp file
|
|
|
|
virtual const char* name() = 0;
|
2013-03-08 13:12:16 -08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* Stores the relevant canvas state of the object between deferral and replay (if the canvas
|
|
|
|
* state supports being stored) See OpenGLRenderer::simpleClipAndState()
|
|
|
|
*
|
|
|
|
* TODO: don't reserve space for StateOps that won't be deferred
|
|
|
|
*/
|
|
|
|
DeferredDisplayState state;
|
|
|
|
|
2012-11-26 18:30:17 -08:00
|
|
|
};
|
|
|
|
|
|
|
|
class StateOp : public DisplayListOp {
|
|
|
|
public:
|
|
|
|
StateOp() {};
|
|
|
|
|
|
|
|
virtual ~StateOp() {}
|
|
|
|
|
2013-04-19 14:54:34 -07:00
|
|
|
virtual void defer(DeferStateStruct& deferStruct, int saveCount, int level,
|
|
|
|
bool useQuickReject) {
|
2013-03-08 13:12:16 -08:00
|
|
|
// default behavior only affects immediate, deferrable state, issue directly to renderer
|
|
|
|
applyState(deferStruct.mRenderer, saveCount);
|
|
|
|
}
|
|
|
|
|
2013-02-04 16:16:33 -08:00
|
|
|
/**
|
|
|
|
* State operations are applied directly to the renderer, but can cause the deferred drawing op
|
|
|
|
* list to flush
|
|
|
|
*/
|
2013-04-19 14:54:34 -07:00
|
|
|
virtual void replay(ReplayStateStruct& replayStruct, int saveCount, int level,
|
|
|
|
bool useQuickReject) {
|
2013-03-08 13:12:16 -08:00
|
|
|
applyState(replayStruct.mRenderer, saveCount);
|
2013-02-04 16:16:33 -08:00
|
|
|
}
|
|
|
|
|
2013-03-28 11:25:24 -07:00
|
|
|
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const = 0;
|
2012-11-26 18:30:17 -08:00
|
|
|
};
|
|
|
|
|
|
|
|
class DrawOp : public DisplayListOp {
|
2013-03-04 10:19:31 -08:00
|
|
|
friend class MergingDrawBatch;
|
2012-11-26 18:30:17 -08:00
|
|
|
public:
|
|
|
|
DrawOp(SkPaint* paint)
|
|
|
|
: mPaint(paint), mQuickRejected(false) {}
|
|
|
|
|
2013-04-19 14:54:34 -07:00
|
|
|
virtual void defer(DeferStateStruct& deferStruct, int saveCount, int level,
|
|
|
|
bool useQuickReject) {
|
|
|
|
if (mQuickRejected && CC_LIKELY(useQuickReject)) {
|
2013-03-08 13:12:16 -08:00
|
|
|
return;
|
2013-02-04 16:16:33 -08:00
|
|
|
}
|
|
|
|
|
2013-06-17 13:52:06 -07:00
|
|
|
if (getLocalBounds(state.mBounds)) {
|
|
|
|
// valid empty bounds, don't bother deferring
|
|
|
|
if (state.mBounds.isEmpty()) return;
|
|
|
|
} else {
|
2013-02-04 16:16:33 -08:00
|
|
|
// empty bounds signify bounds can't be calculated
|
|
|
|
state.mBounds.setEmpty();
|
|
|
|
}
|
|
|
|
|
2013-03-08 13:12:16 -08:00
|
|
|
deferStruct.mDeferredList.addDrawOp(deferStruct.mRenderer, this);
|
|
|
|
}
|
|
|
|
|
2013-04-19 14:54:34 -07:00
|
|
|
virtual void replay(ReplayStateStruct& replayStruct, int saveCount, int level,
|
|
|
|
bool useQuickReject) {
|
|
|
|
if (mQuickRejected && CC_LIKELY(useQuickReject)) {
|
2013-03-08 13:12:16 -08:00
|
|
|
return;
|
2013-02-04 16:16:33 -08:00
|
|
|
}
|
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
replayStruct.mDrawGlStatus |= applyDraw(replayStruct.mRenderer, replayStruct.mDirty);
|
2013-02-04 16:16:33 -08:00
|
|
|
}
|
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) = 0;
|
2012-11-26 18:30:17 -08:00
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
/**
|
|
|
|
* Draw multiple instances of an operation, must be overidden for operations that merge
|
|
|
|
*
|
|
|
|
* Currently guarantees certain similarities between ops (see MergingDrawBatch::canMergeWith),
|
|
|
|
* and pure translation transformations. Other guarantees of similarity should be enforced by
|
|
|
|
* reducing which operations are tagged as mergeable.
|
|
|
|
*/
|
|
|
|
virtual status_t multiDraw(OpenGLRenderer& renderer, Rect& dirty,
|
|
|
|
const Vector<DrawOp*>& ops, const Rect& bounds) {
|
|
|
|
status_t status = DrawGlInfo::kStatusDone;
|
|
|
|
for (unsigned int i = 0; i < ops.size(); i++) {
|
2013-05-31 11:38:03 -07:00
|
|
|
renderer.restoreDisplayState(ops[i]->state, true);
|
2013-03-04 10:19:31 -08:00
|
|
|
status |= ops[i]->applyDraw(renderer, dirty);
|
|
|
|
}
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
2013-05-31 11:38:03 -07:00
|
|
|
/**
|
2013-03-04 10:19:31 -08:00
|
|
|
* When this method is invoked the state field is initialized to have the
|
|
|
|
* final rendering state. We can thus use it to process data as it will be
|
|
|
|
* used at draw time.
|
|
|
|
*
|
|
|
|
* Additionally, this method allows subclasses to provide defer-time preferences for batching
|
|
|
|
* and merging.
|
|
|
|
*
|
2013-05-31 11:38:03 -07:00
|
|
|
* if a subclass can set deferInfo.mergeable to true, it should implement multiDraw()
|
2013-03-04 10:19:31 -08:00
|
|
|
*/
|
2013-05-31 11:38:03 -07:00
|
|
|
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) {}
|
2013-03-01 14:31:04 -08:00
|
|
|
|
2012-11-26 18:30:17 -08:00
|
|
|
// returns true if bounds exist
|
|
|
|
virtual bool getLocalBounds(Rect& localBounds) { return false; }
|
|
|
|
|
|
|
|
// TODO: better refine localbounds usage
|
|
|
|
void setQuickRejected(bool quickRejected) { mQuickRejected = quickRejected; }
|
|
|
|
bool getQuickRejected() { return mQuickRejected; }
|
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
inline int getPaintAlpha() {
|
|
|
|
return OpenGLRenderer::getAlphaDirect(mPaint);
|
2013-02-04 16:16:33 -08:00
|
|
|
}
|
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
inline float strokeWidthOutset() {
|
2013-04-03 09:55:48 -07:00
|
|
|
float width = mPaint->getStrokeWidth();
|
|
|
|
if (width == 0) return 0.5f; // account for hairline
|
|
|
|
return width * 0.5f;
|
|
|
|
}
|
2013-02-04 16:16:33 -08:00
|
|
|
|
2012-11-26 18:30:17 -08:00
|
|
|
protected:
|
2013-03-15 17:24:33 -07:00
|
|
|
SkPaint* getPaint(OpenGLRenderer& renderer) {
|
|
|
|
return renderer.filterPaint(mPaint);
|
2012-11-26 18:30:17 -08:00
|
|
|
}
|
|
|
|
|
2013-05-31 11:38:03 -07:00
|
|
|
// Helper method for determining op opaqueness. Assumes op fills its bounds in local
|
|
|
|
// coordinates, and that paint's alpha is used
|
|
|
|
inline bool isOpaqueOverBounds() {
|
|
|
|
// ensure that local bounds cover mapped bounds
|
|
|
|
if (!state.mMatrix.isSimple()) return false;
|
|
|
|
|
|
|
|
// check state/paint for transparency
|
|
|
|
if (state.mDrawModifiers.mShader ||
|
|
|
|
state.mAlpha != 1.0f ||
|
|
|
|
(mPaint && mPaint->getAlpha() != 0xFF)) return false;
|
|
|
|
|
|
|
|
SkXfermode::Mode mode = OpenGLRenderer::getXfermodeDirect(mPaint);
|
|
|
|
return (mode == SkXfermode::kSrcOver_Mode ||
|
|
|
|
mode == SkXfermode::kSrc_Mode);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
2012-11-26 18:30:17 -08:00
|
|
|
SkPaint* mPaint; // should be accessed via getPaint() when applying
|
|
|
|
bool mQuickRejected;
|
|
|
|
};
|
|
|
|
|
|
|
|
class DrawBoundedOp : public DrawOp {
|
|
|
|
public:
|
|
|
|
DrawBoundedOp(float left, float top, float right, float bottom, SkPaint* paint)
|
|
|
|
: DrawOp(paint), mLocalBounds(left, top, right, bottom) {}
|
|
|
|
|
2013-05-03 16:35:54 -07:00
|
|
|
DrawBoundedOp(const Rect& localBounds, SkPaint* paint)
|
|
|
|
: DrawOp(paint), mLocalBounds(localBounds) {}
|
|
|
|
|
2013-02-19 17:49:31 -08:00
|
|
|
// Calculates bounds as smallest rect encompassing all points
|
|
|
|
// NOTE: requires at least 1 vertex, and doesn't account for stroke size (should be handled in
|
|
|
|
// subclass' constructor)
|
|
|
|
DrawBoundedOp(const float* points, int count, SkPaint* paint)
|
|
|
|
: DrawOp(paint), mLocalBounds(points[0], points[1], points[0], points[1]) {
|
|
|
|
for (int i = 2; i < count; i += 2) {
|
|
|
|
mLocalBounds.left = fminf(mLocalBounds.left, points[i]);
|
|
|
|
mLocalBounds.right = fmaxf(mLocalBounds.right, points[i]);
|
|
|
|
mLocalBounds.top = fminf(mLocalBounds.top, points[i + 1]);
|
|
|
|
mLocalBounds.bottom = fmaxf(mLocalBounds.bottom, points[i + 1]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// default empty constructor for bounds, to be overridden in child constructor body
|
2012-11-26 18:30:17 -08:00
|
|
|
DrawBoundedOp(SkPaint* paint)
|
|
|
|
: DrawOp(paint) {}
|
|
|
|
|
|
|
|
bool getLocalBounds(Rect& localBounds) {
|
|
|
|
localBounds.set(mLocalBounds);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
protected:
|
|
|
|
Rect mLocalBounds; // displayed area in LOCAL coord. doesn't incorporate stroke, so check paint
|
|
|
|
};
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// STATE OPERATIONS - these may affect the state of the canvas/renderer, but do
|
|
|
|
// not directly draw or alter output
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
class SaveOp : public StateOp {
|
2013-03-08 13:12:16 -08:00
|
|
|
friend class DisplayList; // give DisplayList private constructor/reinit access
|
2012-11-26 18:30:17 -08:00
|
|
|
public:
|
|
|
|
SaveOp(int flags)
|
|
|
|
: mFlags(flags) {}
|
|
|
|
|
2013-04-19 14:54:34 -07:00
|
|
|
virtual void defer(DeferStateStruct& deferStruct, int saveCount, int level,
|
|
|
|
bool useQuickReject) {
|
2013-03-08 13:12:16 -08:00
|
|
|
int newSaveCount = deferStruct.mRenderer.save(mFlags);
|
|
|
|
deferStruct.mDeferredList.addSave(deferStruct.mRenderer, this, newSaveCount);
|
|
|
|
}
|
|
|
|
|
2013-03-28 11:25:24 -07:00
|
|
|
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
renderer.save(mFlags);
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("Save flags %x", mFlags);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "Save"; }
|
|
|
|
|
2013-03-08 13:12:16 -08:00
|
|
|
int getFlags() const { return mFlags; }
|
2012-11-26 18:30:17 -08:00
|
|
|
private:
|
2013-03-08 13:12:16 -08:00
|
|
|
SaveOp() {}
|
|
|
|
DisplayListOp* reinit(int flags) {
|
|
|
|
mFlags = flags;
|
|
|
|
return this;
|
|
|
|
}
|
|
|
|
|
2012-11-26 18:30:17 -08:00
|
|
|
int mFlags;
|
|
|
|
};
|
|
|
|
|
|
|
|
class RestoreToCountOp : public StateOp {
|
2013-03-08 13:12:16 -08:00
|
|
|
friend class DisplayList; // give DisplayList private constructor/reinit access
|
2012-11-26 18:30:17 -08:00
|
|
|
public:
|
|
|
|
RestoreToCountOp(int count)
|
|
|
|
: mCount(count) {}
|
|
|
|
|
2013-04-19 14:54:34 -07:00
|
|
|
virtual void defer(DeferStateStruct& deferStruct, int saveCount, int level,
|
|
|
|
bool useQuickReject) {
|
2013-03-28 11:25:24 -07:00
|
|
|
deferStruct.mDeferredList.addRestoreToCount(deferStruct.mRenderer,
|
|
|
|
this, saveCount + mCount);
|
2013-03-08 13:12:16 -08:00
|
|
|
deferStruct.mRenderer.restoreToCount(saveCount + mCount);
|
|
|
|
}
|
|
|
|
|
2013-03-28 11:25:24 -07:00
|
|
|
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
renderer.restoreToCount(saveCount + mCount);
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("Restore to count %d", mCount);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "RestoreToCount"; }
|
|
|
|
|
|
|
|
private:
|
2013-03-08 13:12:16 -08:00
|
|
|
RestoreToCountOp() {}
|
|
|
|
DisplayListOp* reinit(int count) {
|
|
|
|
mCount = count;
|
|
|
|
return this;
|
|
|
|
}
|
|
|
|
|
2012-11-26 18:30:17 -08:00
|
|
|
int mCount;
|
|
|
|
};
|
|
|
|
|
|
|
|
class SaveLayerOp : public StateOp {
|
2013-03-08 13:12:16 -08:00
|
|
|
friend class DisplayList; // give DisplayList private constructor/reinit access
|
2012-11-26 18:30:17 -08:00
|
|
|
public:
|
2013-03-08 13:12:16 -08:00
|
|
|
SaveLayerOp(float left, float top, float right, float bottom,
|
|
|
|
int alpha, SkXfermode::Mode mode, int flags)
|
|
|
|
: mArea(left, top, right, bottom), mAlpha(alpha), mMode(mode), mFlags(flags) {}
|
2012-11-26 18:30:17 -08:00
|
|
|
|
2013-04-19 14:54:34 -07:00
|
|
|
virtual void defer(DeferStateStruct& deferStruct, int saveCount, int level,
|
|
|
|
bool useQuickReject) {
|
2013-03-08 13:12:16 -08:00
|
|
|
// NOTE: don't bother with actual saveLayer, instead issuing it at flush time
|
2013-03-19 15:03:48 -07:00
|
|
|
int newSaveCount = deferStruct.mRenderer.getSaveCount();
|
2013-03-08 13:12:16 -08:00
|
|
|
deferStruct.mDeferredList.addSaveLayer(deferStruct.mRenderer, this, newSaveCount);
|
2013-03-19 15:03:48 -07:00
|
|
|
|
|
|
|
// NOTE: don't issue full saveLayer, since that has side effects/is costly. instead just
|
|
|
|
// setup the snapshot for deferral, and re-issue the op at flush time
|
|
|
|
deferStruct.mRenderer.saveLayerDeferred(mArea.left, mArea.top, mArea.right, mArea.bottom,
|
|
|
|
mAlpha, mMode, mFlags);
|
2012-11-26 18:30:17 -08:00
|
|
|
}
|
|
|
|
|
2013-03-28 11:25:24 -07:00
|
|
|
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
|
2013-03-08 13:12:16 -08:00
|
|
|
renderer.saveLayer(mArea.left, mArea.top, mArea.right, mArea.bottom, mAlpha, mMode, mFlags);
|
2012-11-26 18:30:17 -08:00
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2013-03-08 13:12:16 -08:00
|
|
|
OP_LOG("SaveLayer%s of area " RECT_STRING,
|
|
|
|
(isSaveLayerAlpha() ? "Alpha" : ""),RECT_ARGS(mArea));
|
2012-11-26 18:30:17 -08:00
|
|
|
}
|
|
|
|
|
2013-03-08 13:12:16 -08:00
|
|
|
virtual const char* name() { return isSaveLayerAlpha() ? "SaveLayerAlpha" : "SaveLayer"; }
|
|
|
|
|
|
|
|
int getFlags() { return mFlags; }
|
2013-02-04 16:16:33 -08:00
|
|
|
|
2012-11-26 18:30:17 -08:00
|
|
|
private:
|
2013-03-08 13:12:16 -08:00
|
|
|
// Special case, reserved for direct DisplayList usage
|
|
|
|
SaveLayerOp() {}
|
|
|
|
DisplayListOp* reinit(float left, float top, float right, float bottom,
|
|
|
|
int alpha, SkXfermode::Mode mode, int flags) {
|
|
|
|
mArea.set(left, top, right, bottom);
|
|
|
|
mAlpha = alpha;
|
|
|
|
mMode = mode;
|
|
|
|
mFlags = flags;
|
|
|
|
return this;
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
bool isSaveLayerAlpha() const { return mAlpha < 255 && mMode == SkXfermode::kSrcOver_Mode; }
|
2012-11-26 18:30:17 -08:00
|
|
|
Rect mArea;
|
|
|
|
int mAlpha;
|
2013-03-08 13:12:16 -08:00
|
|
|
SkXfermode::Mode mMode;
|
2012-11-26 18:30:17 -08:00
|
|
|
int mFlags;
|
|
|
|
};
|
|
|
|
|
|
|
|
class TranslateOp : public StateOp {
|
|
|
|
public:
|
|
|
|
TranslateOp(float dx, float dy)
|
|
|
|
: mDx(dx), mDy(dy) {}
|
|
|
|
|
2013-03-28 11:25:24 -07:00
|
|
|
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
renderer.translate(mDx, mDy);
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("Translate by %f %f", mDx, mDy);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "Translate"; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
float mDx;
|
|
|
|
float mDy;
|
|
|
|
};
|
|
|
|
|
|
|
|
class RotateOp : public StateOp {
|
|
|
|
public:
|
|
|
|
RotateOp(float degrees)
|
|
|
|
: mDegrees(degrees) {}
|
|
|
|
|
2013-03-28 11:25:24 -07:00
|
|
|
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
renderer.rotate(mDegrees);
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("Rotate by %f degrees", mDegrees);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "Rotate"; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
float mDegrees;
|
|
|
|
};
|
|
|
|
|
|
|
|
class ScaleOp : public StateOp {
|
|
|
|
public:
|
|
|
|
ScaleOp(float sx, float sy)
|
|
|
|
: mSx(sx), mSy(sy) {}
|
|
|
|
|
2013-03-28 11:25:24 -07:00
|
|
|
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
renderer.scale(mSx, mSy);
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("Scale by %f %f", mSx, mSy);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "Scale"; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
float mSx;
|
|
|
|
float mSy;
|
|
|
|
};
|
|
|
|
|
|
|
|
class SkewOp : public StateOp {
|
|
|
|
public:
|
|
|
|
SkewOp(float sx, float sy)
|
|
|
|
: mSx(sx), mSy(sy) {}
|
|
|
|
|
2013-03-28 11:25:24 -07:00
|
|
|
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
renderer.skew(mSx, mSy);
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("Skew by %f %f", mSx, mSy);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "Skew"; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
float mSx;
|
|
|
|
float mSy;
|
|
|
|
};
|
|
|
|
|
|
|
|
class SetMatrixOp : public StateOp {
|
|
|
|
public:
|
|
|
|
SetMatrixOp(SkMatrix* matrix)
|
|
|
|
: mMatrix(matrix) {}
|
|
|
|
|
2013-03-28 11:25:24 -07:00
|
|
|
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
renderer.setMatrix(mMatrix);
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("SetMatrix " MATRIX_STRING, MATRIX_ARGS(mMatrix));
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "SetMatrix"; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
SkMatrix* mMatrix;
|
|
|
|
};
|
|
|
|
|
|
|
|
class ConcatMatrixOp : public StateOp {
|
|
|
|
public:
|
|
|
|
ConcatMatrixOp(SkMatrix* matrix)
|
|
|
|
: mMatrix(matrix) {}
|
|
|
|
|
2013-03-28 11:25:24 -07:00
|
|
|
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
renderer.concatMatrix(mMatrix);
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("ConcatMatrix " MATRIX_STRING, MATRIX_ARGS(mMatrix));
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "ConcatMatrix"; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
SkMatrix* mMatrix;
|
|
|
|
};
|
|
|
|
|
2013-03-08 13:12:16 -08:00
|
|
|
class ClipOp : public StateOp {
|
|
|
|
public:
|
|
|
|
ClipOp(SkRegion::Op op) : mOp(op) {}
|
|
|
|
|
2013-04-19 14:54:34 -07:00
|
|
|
virtual void defer(DeferStateStruct& deferStruct, int saveCount, int level,
|
|
|
|
bool useQuickReject) {
|
2013-03-08 13:12:16 -08:00
|
|
|
// NOTE: must defer op BEFORE applying state, since it may read clip
|
|
|
|
deferStruct.mDeferredList.addClip(deferStruct.mRenderer, this);
|
|
|
|
|
|
|
|
// TODO: Can we avoid applying complex clips at defer time?
|
|
|
|
applyState(deferStruct.mRenderer, saveCount);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool canCauseComplexClip() {
|
|
|
|
return ((mOp != SkRegion::kIntersect_Op) && (mOp != SkRegion::kReplace_Op)) || !isRect();
|
|
|
|
}
|
|
|
|
|
|
|
|
protected:
|
|
|
|
ClipOp() {}
|
|
|
|
virtual bool isRect() { return false; }
|
|
|
|
|
|
|
|
SkRegion::Op mOp;
|
|
|
|
};
|
|
|
|
|
|
|
|
class ClipRectOp : public ClipOp {
|
|
|
|
friend class DisplayList; // give DisplayList private constructor/reinit access
|
2012-11-26 18:30:17 -08:00
|
|
|
public:
|
|
|
|
ClipRectOp(float left, float top, float right, float bottom, SkRegion::Op op)
|
2013-03-08 13:12:16 -08:00
|
|
|
: ClipOp(op), mArea(left, top, right, bottom) {}
|
2012-11-26 18:30:17 -08:00
|
|
|
|
2013-03-28 11:25:24 -07:00
|
|
|
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
renderer.clipRect(mArea.left, mArea.top, mArea.right, mArea.bottom, mOp);
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("ClipRect " RECT_STRING, RECT_ARGS(mArea));
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "ClipRect"; }
|
|
|
|
|
2013-03-08 13:12:16 -08:00
|
|
|
protected:
|
|
|
|
virtual bool isRect() { return true; }
|
2013-02-21 11:30:22 -08:00
|
|
|
|
2012-11-26 18:30:17 -08:00
|
|
|
private:
|
2013-03-08 13:12:16 -08:00
|
|
|
ClipRectOp() {}
|
|
|
|
DisplayListOp* reinit(float left, float top, float right, float bottom, SkRegion::Op op) {
|
|
|
|
mOp = op;
|
|
|
|
mArea.set(left, top, right, bottom);
|
|
|
|
return this;
|
2013-02-21 11:30:22 -08:00
|
|
|
}
|
2013-03-08 13:12:16 -08:00
|
|
|
|
2012-11-26 18:30:17 -08:00
|
|
|
Rect mArea;
|
|
|
|
};
|
|
|
|
|
2013-03-08 13:12:16 -08:00
|
|
|
class ClipPathOp : public ClipOp {
|
2012-11-26 18:30:17 -08:00
|
|
|
public:
|
|
|
|
ClipPathOp(SkPath* path, SkRegion::Op op)
|
2013-03-08 13:12:16 -08:00
|
|
|
: ClipOp(op), mPath(path) {}
|
2012-11-26 18:30:17 -08:00
|
|
|
|
2013-03-28 11:25:24 -07:00
|
|
|
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
renderer.clipPath(mPath, mOp);
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
SkRect bounds = mPath->getBounds();
|
|
|
|
OP_LOG("ClipPath bounds " RECT_STRING,
|
|
|
|
bounds.left(), bounds.top(), bounds.right(), bounds.bottom());
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "ClipPath"; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
SkPath* mPath;
|
|
|
|
};
|
|
|
|
|
2013-03-08 13:12:16 -08:00
|
|
|
class ClipRegionOp : public ClipOp {
|
2012-11-26 18:30:17 -08:00
|
|
|
public:
|
|
|
|
ClipRegionOp(SkRegion* region, SkRegion::Op op)
|
2013-03-08 13:12:16 -08:00
|
|
|
: ClipOp(op), mRegion(region) {}
|
2012-11-26 18:30:17 -08:00
|
|
|
|
2013-03-28 11:25:24 -07:00
|
|
|
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
renderer.clipRegion(mRegion, mOp);
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
SkIRect bounds = mRegion->getBounds();
|
|
|
|
OP_LOG("ClipRegion bounds %d %d %d %d",
|
|
|
|
bounds.left(), bounds.top(), bounds.right(), bounds.bottom());
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "ClipRegion"; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
SkRegion* mRegion;
|
|
|
|
SkRegion::Op mOp;
|
|
|
|
};
|
|
|
|
|
|
|
|
class ResetShaderOp : public StateOp {
|
|
|
|
public:
|
2013-03-28 11:25:24 -07:00
|
|
|
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
renderer.resetShader();
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOGS("ResetShader");
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "ResetShader"; }
|
|
|
|
};
|
|
|
|
|
|
|
|
class SetupShaderOp : public StateOp {
|
|
|
|
public:
|
|
|
|
SetupShaderOp(SkiaShader* shader)
|
|
|
|
: mShader(shader) {}
|
2013-03-28 11:25:24 -07:00
|
|
|
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
renderer.setupShader(mShader);
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("SetupShader, shader %p", mShader);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "SetupShader"; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
SkiaShader* mShader;
|
|
|
|
};
|
|
|
|
|
|
|
|
class ResetColorFilterOp : public StateOp {
|
|
|
|
public:
|
2013-03-28 11:25:24 -07:00
|
|
|
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
renderer.resetColorFilter();
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOGS("ResetColorFilter");
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "ResetColorFilter"; }
|
|
|
|
};
|
|
|
|
|
|
|
|
class SetupColorFilterOp : public StateOp {
|
|
|
|
public:
|
|
|
|
SetupColorFilterOp(SkiaColorFilter* colorFilter)
|
|
|
|
: mColorFilter(colorFilter) {}
|
|
|
|
|
2013-03-28 11:25:24 -07:00
|
|
|
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
renderer.setupColorFilter(mColorFilter);
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("SetupColorFilter, filter %p", mColorFilter);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "SetupColorFilter"; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
SkiaColorFilter* mColorFilter;
|
|
|
|
};
|
|
|
|
|
|
|
|
class ResetShadowOp : public StateOp {
|
|
|
|
public:
|
2013-03-28 11:25:24 -07:00
|
|
|
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
renderer.resetShadow();
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOGS("ResetShadow");
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "ResetShadow"; }
|
|
|
|
};
|
|
|
|
|
|
|
|
class SetupShadowOp : public StateOp {
|
|
|
|
public:
|
|
|
|
SetupShadowOp(float radius, float dx, float dy, int color)
|
|
|
|
: mRadius(radius), mDx(dx), mDy(dy), mColor(color) {}
|
|
|
|
|
2013-03-28 11:25:24 -07:00
|
|
|
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
renderer.setupShadow(mRadius, mDx, mDy, mColor);
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("SetupShadow, radius %f, %f, %f, color %#x", mRadius, mDx, mDy, mColor);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "SetupShadow"; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
float mRadius;
|
|
|
|
float mDx;
|
|
|
|
float mDy;
|
|
|
|
int mColor;
|
|
|
|
};
|
|
|
|
|
|
|
|
class ResetPaintFilterOp : public StateOp {
|
|
|
|
public:
|
2013-03-28 11:25:24 -07:00
|
|
|
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
renderer.resetPaintFilter();
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOGS("ResetPaintFilter");
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "ResetPaintFilter"; }
|
|
|
|
};
|
|
|
|
|
|
|
|
class SetupPaintFilterOp : public StateOp {
|
|
|
|
public:
|
|
|
|
SetupPaintFilterOp(int clearBits, int setBits)
|
|
|
|
: mClearBits(clearBits), mSetBits(setBits) {}
|
|
|
|
|
2013-03-28 11:25:24 -07:00
|
|
|
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
renderer.setupPaintFilter(mClearBits, mSetBits);
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("SetupPaintFilter, clear %#x, set %#x", mClearBits, mSetBits);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "SetupPaintFilter"; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
int mClearBits;
|
|
|
|
int mSetBits;
|
|
|
|
};
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// DRAW OPERATIONS - these are operations that can draw to the canvas's device
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
class DrawBitmapOp : public DrawBoundedOp {
|
|
|
|
public:
|
|
|
|
DrawBitmapOp(SkBitmap* bitmap, float left, float top, SkPaint* paint)
|
Pack preloaded framework assets in a texture atlas
When the Android runtime starts, the system preloads a series of assets
in the Zygote process. These assets are shared across all processes.
Unfortunately, each one of these assets is later uploaded in its own
OpenGL texture, once per process. This wastes memory and generates
unnecessary OpenGL state changes.
This CL introduces an asset server that provides an atlas to all processes.
Note: bitmaps used by skia shaders are *not* sampled from the atlas.
It's an uncommon use case and would require extra texture transforms
in the GL shaders.
WHAT IS THE ASSETS ATLAS
The "assets atlas" is a single, shareable graphic buffer that contains
all the system's preloaded bitmap drawables (this includes 9-patches.)
The atlas is made of two distinct objects: the graphic buffer that
contains the actual pixels and the map which indicates where each
preloaded bitmap can be found in the atlas (essentially a pair of
x and y coordinates.)
HOW IS THE ASSETS ATLAS GENERATED
Because we need to support a wide variety of devices and because it
is easy to change the list of preloaded drawables, the atlas is
generated at runtime, during the startup phase of the system process.
There are several steps that lead to the atlas generation:
1. If the device is booting for the first time, or if the device was
updated, we need to find the best atlas configuration. To do so,
the atlas service tries a number of width, height and algorithm
variations that allows us to pack as many assets as possible while
using as little memory as possible. Once a best configuration is found,
it gets written to disk in /data/system/framework_atlas
2. Given a best configuration (algorithm variant, dimensions and
number of bitmaps that can be packed in the atlas), the atlas service
packs all the preloaded bitmaps into a single graphic buffer object.
3. The packing is done using Skia in a temporary native bitmap. The
Skia bitmap is then copied into the graphic buffer using OpenGL ES
to benefit from texture swizzling.
HOW PROCESSES USE THE ATLAS
Whenever a process' hardware renderer initializes its EGL context,
it queries the atlas service for the graphic buffer and the map.
It is important to remember that both the context and the map will
be valid for the lifetime of the hardware renderer (if the system
process goes down, all apps get killed as well.)
Every time the hardware renderer needs to render a bitmap, it first
checks whether the bitmap can be found in the assets atlas. When
the bitmap is part of the atlas, texture coordinates are remapped
appropriately before rendering.
Change-Id: I8eaecf53e7f6a33d90da3d0047c5ceec89ea3af0
2013-04-17 18:54:38 -07:00
|
|
|
: DrawBoundedOp(left, top, left + bitmap->width(), top + bitmap->height(), paint),
|
|
|
|
mBitmap(bitmap), mAtlasEntry(NULL) {
|
|
|
|
}
|
|
|
|
|
|
|
|
DrawBitmapOp(SkBitmap* bitmap, float left, float top, SkPaint* paint,
|
|
|
|
const AssetAtlas::Entry* entry)
|
|
|
|
: DrawBoundedOp(left, top, left + bitmap->width(), top + bitmap->height(), paint),
|
|
|
|
mBitmap(bitmap), mAtlasEntry(entry) {
|
|
|
|
if (entry) mUvMapper = entry->uvMapper;
|
|
|
|
}
|
2012-11-26 18:30:17 -08:00
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
|
2013-03-15 17:24:33 -07:00
|
|
|
return renderer.drawBitmap(mBitmap, mLocalBounds.left, mLocalBounds.top,
|
|
|
|
getPaint(renderer));
|
2012-11-26 18:30:17 -08:00
|
|
|
}
|
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
#define SET_TEXTURE(ptr, posRect, offsetRect, texCoordsRect, xDim, yDim) \
|
|
|
|
TextureVertex::set(ptr++, posRect.xDim - offsetRect.left, posRect.yDim - offsetRect.top, \
|
|
|
|
texCoordsRect.xDim, texCoordsRect.yDim)
|
|
|
|
|
|
|
|
virtual status_t multiDraw(OpenGLRenderer& renderer, Rect& dirty,
|
|
|
|
const Vector<DrawOp*>& ops, const Rect& bounds) {
|
|
|
|
renderer.restoreDisplayState(state, true); // restore all but the clip
|
|
|
|
TextureVertex vertices[6 * ops.size()];
|
|
|
|
TextureVertex* vertex = &vertices[0];
|
|
|
|
|
2013-05-21 15:29:59 -07:00
|
|
|
bool transformed = false;
|
|
|
|
|
Pack preloaded framework assets in a texture atlas
When the Android runtime starts, the system preloads a series of assets
in the Zygote process. These assets are shared across all processes.
Unfortunately, each one of these assets is later uploaded in its own
OpenGL texture, once per process. This wastes memory and generates
unnecessary OpenGL state changes.
This CL introduces an asset server that provides an atlas to all processes.
Note: bitmaps used by skia shaders are *not* sampled from the atlas.
It's an uncommon use case and would require extra texture transforms
in the GL shaders.
WHAT IS THE ASSETS ATLAS
The "assets atlas" is a single, shareable graphic buffer that contains
all the system's preloaded bitmap drawables (this includes 9-patches.)
The atlas is made of two distinct objects: the graphic buffer that
contains the actual pixels and the map which indicates where each
preloaded bitmap can be found in the atlas (essentially a pair of
x and y coordinates.)
HOW IS THE ASSETS ATLAS GENERATED
Because we need to support a wide variety of devices and because it
is easy to change the list of preloaded drawables, the atlas is
generated at runtime, during the startup phase of the system process.
There are several steps that lead to the atlas generation:
1. If the device is booting for the first time, or if the device was
updated, we need to find the best atlas configuration. To do so,
the atlas service tries a number of width, height and algorithm
variations that allows us to pack as many assets as possible while
using as little memory as possible. Once a best configuration is found,
it gets written to disk in /data/system/framework_atlas
2. Given a best configuration (algorithm variant, dimensions and
number of bitmaps that can be packed in the atlas), the atlas service
packs all the preloaded bitmaps into a single graphic buffer object.
3. The packing is done using Skia in a temporary native bitmap. The
Skia bitmap is then copied into the graphic buffer using OpenGL ES
to benefit from texture swizzling.
HOW PROCESSES USE THE ATLAS
Whenever a process' hardware renderer initializes its EGL context,
it queries the atlas service for the graphic buffer and the map.
It is important to remember that both the context and the map will
be valid for the lifetime of the hardware renderer (if the system
process goes down, all apps get killed as well.)
Every time the hardware renderer needs to render a bitmap, it first
checks whether the bitmap can be found in the assets atlas. When
the bitmap is part of the atlas, texture coordinates are remapped
appropriately before rendering.
Change-Id: I8eaecf53e7f6a33d90da3d0047c5ceec89ea3af0
2013-04-17 18:54:38 -07:00
|
|
|
// TODO: manually handle rect clip for bitmaps by adjusting texCoords per op,
|
|
|
|
// and allowing them to be merged in getBatchId()
|
2013-03-04 10:19:31 -08:00
|
|
|
for (unsigned int i = 0; i < ops.size(); i++) {
|
|
|
|
const Rect& opBounds = ops[i]->state.mBounds;
|
2013-05-21 15:29:59 -07:00
|
|
|
// When we reach multiDraw(), the matrix can be either
|
|
|
|
// pureTranslate or simple (translate and/or scale).
|
|
|
|
// If the matrix is not pureTranslate, then we have a scale
|
|
|
|
if (!ops[i]->state.mMatrix.isPureTranslate()) transformed = true;
|
Pack preloaded framework assets in a texture atlas
When the Android runtime starts, the system preloads a series of assets
in the Zygote process. These assets are shared across all processes.
Unfortunately, each one of these assets is later uploaded in its own
OpenGL texture, once per process. This wastes memory and generates
unnecessary OpenGL state changes.
This CL introduces an asset server that provides an atlas to all processes.
Note: bitmaps used by skia shaders are *not* sampled from the atlas.
It's an uncommon use case and would require extra texture transforms
in the GL shaders.
WHAT IS THE ASSETS ATLAS
The "assets atlas" is a single, shareable graphic buffer that contains
all the system's preloaded bitmap drawables (this includes 9-patches.)
The atlas is made of two distinct objects: the graphic buffer that
contains the actual pixels and the map which indicates where each
preloaded bitmap can be found in the atlas (essentially a pair of
x and y coordinates.)
HOW IS THE ASSETS ATLAS GENERATED
Because we need to support a wide variety of devices and because it
is easy to change the list of preloaded drawables, the atlas is
generated at runtime, during the startup phase of the system process.
There are several steps that lead to the atlas generation:
1. If the device is booting for the first time, or if the device was
updated, we need to find the best atlas configuration. To do so,
the atlas service tries a number of width, height and algorithm
variations that allows us to pack as many assets as possible while
using as little memory as possible. Once a best configuration is found,
it gets written to disk in /data/system/framework_atlas
2. Given a best configuration (algorithm variant, dimensions and
number of bitmaps that can be packed in the atlas), the atlas service
packs all the preloaded bitmaps into a single graphic buffer object.
3. The packing is done using Skia in a temporary native bitmap. The
Skia bitmap is then copied into the graphic buffer using OpenGL ES
to benefit from texture swizzling.
HOW PROCESSES USE THE ATLAS
Whenever a process' hardware renderer initializes its EGL context,
it queries the atlas service for the graphic buffer and the map.
It is important to remember that both the context and the map will
be valid for the lifetime of the hardware renderer (if the system
process goes down, all apps get killed as well.)
Every time the hardware renderer needs to render a bitmap, it first
checks whether the bitmap can be found in the assets atlas. When
the bitmap is part of the atlas, texture coordinates are remapped
appropriately before rendering.
Change-Id: I8eaecf53e7f6a33d90da3d0047c5ceec89ea3af0
2013-04-17 18:54:38 -07:00
|
|
|
|
|
|
|
Rect texCoords(0, 0, 1, 1);
|
|
|
|
((DrawBitmapOp*) ops[i])->mUvMapper.map(texCoords);
|
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
SET_TEXTURE(vertex, opBounds, bounds, texCoords, left, top);
|
|
|
|
SET_TEXTURE(vertex, opBounds, bounds, texCoords, right, top);
|
|
|
|
SET_TEXTURE(vertex, opBounds, bounds, texCoords, left, bottom);
|
|
|
|
|
|
|
|
SET_TEXTURE(vertex, opBounds, bounds, texCoords, left, bottom);
|
|
|
|
SET_TEXTURE(vertex, opBounds, bounds, texCoords, right, top);
|
|
|
|
SET_TEXTURE(vertex, opBounds, bounds, texCoords, right, bottom);
|
|
|
|
}
|
|
|
|
|
2013-05-21 15:29:59 -07:00
|
|
|
return renderer.drawBitmaps(mBitmap, ops.size(), &vertices[0],
|
|
|
|
transformed, bounds, mPaint);
|
2013-03-04 10:19:31 -08:00
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("Draw bitmap %p at %f %f", mBitmap, mLocalBounds.left, mLocalBounds.top);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "DrawBitmap"; }
|
2013-03-04 10:19:31 -08:00
|
|
|
|
2013-05-31 11:38:03 -07:00
|
|
|
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) {
|
|
|
|
deferInfo.batchId = DeferredDisplayList::kOpBatch_Bitmap;
|
|
|
|
deferInfo.mergeId = mAtlasEntry ? (mergeid_t) &mAtlasEntry->atlas : (mergeid_t) mBitmap;
|
2013-05-21 15:29:59 -07:00
|
|
|
|
2013-05-31 11:38:03 -07:00
|
|
|
// Don't merge A8 bitmaps - the paint's color isn't compared by mergeId, or in
|
|
|
|
// MergingDrawBatch::canMergeWith()
|
|
|
|
// TODO: support clipped bitmaps by handling them in SET_TEXTURE
|
|
|
|
deferInfo.mergeable = state.mMatrix.isSimple() && !state.mClipSideFlags &&
|
|
|
|
OpenGLRenderer::getXfermodeDirect(mPaint) == SkXfermode::kSrcOver_Mode &&
|
|
|
|
(mBitmap->getConfig() != SkBitmap::kA8_Config);
|
2013-02-04 16:16:33 -08:00
|
|
|
}
|
2012-11-26 18:30:17 -08:00
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
const SkBitmap* bitmap() { return mBitmap; }
|
2012-11-26 18:30:17 -08:00
|
|
|
protected:
|
|
|
|
SkBitmap* mBitmap;
|
Pack preloaded framework assets in a texture atlas
When the Android runtime starts, the system preloads a series of assets
in the Zygote process. These assets are shared across all processes.
Unfortunately, each one of these assets is later uploaded in its own
OpenGL texture, once per process. This wastes memory and generates
unnecessary OpenGL state changes.
This CL introduces an asset server that provides an atlas to all processes.
Note: bitmaps used by skia shaders are *not* sampled from the atlas.
It's an uncommon use case and would require extra texture transforms
in the GL shaders.
WHAT IS THE ASSETS ATLAS
The "assets atlas" is a single, shareable graphic buffer that contains
all the system's preloaded bitmap drawables (this includes 9-patches.)
The atlas is made of two distinct objects: the graphic buffer that
contains the actual pixels and the map which indicates where each
preloaded bitmap can be found in the atlas (essentially a pair of
x and y coordinates.)
HOW IS THE ASSETS ATLAS GENERATED
Because we need to support a wide variety of devices and because it
is easy to change the list of preloaded drawables, the atlas is
generated at runtime, during the startup phase of the system process.
There are several steps that lead to the atlas generation:
1. If the device is booting for the first time, or if the device was
updated, we need to find the best atlas configuration. To do so,
the atlas service tries a number of width, height and algorithm
variations that allows us to pack as many assets as possible while
using as little memory as possible. Once a best configuration is found,
it gets written to disk in /data/system/framework_atlas
2. Given a best configuration (algorithm variant, dimensions and
number of bitmaps that can be packed in the atlas), the atlas service
packs all the preloaded bitmaps into a single graphic buffer object.
3. The packing is done using Skia in a temporary native bitmap. The
Skia bitmap is then copied into the graphic buffer using OpenGL ES
to benefit from texture swizzling.
HOW PROCESSES USE THE ATLAS
Whenever a process' hardware renderer initializes its EGL context,
it queries the atlas service for the graphic buffer and the map.
It is important to remember that both the context and the map will
be valid for the lifetime of the hardware renderer (if the system
process goes down, all apps get killed as well.)
Every time the hardware renderer needs to render a bitmap, it first
checks whether the bitmap can be found in the assets atlas. When
the bitmap is part of the atlas, texture coordinates are remapped
appropriately before rendering.
Change-Id: I8eaecf53e7f6a33d90da3d0047c5ceec89ea3af0
2013-04-17 18:54:38 -07:00
|
|
|
const AssetAtlas::Entry* mAtlasEntry;
|
|
|
|
UvMapper mUvMapper;
|
2012-11-26 18:30:17 -08:00
|
|
|
};
|
|
|
|
|
|
|
|
class DrawBitmapMatrixOp : public DrawBoundedOp {
|
|
|
|
public:
|
|
|
|
DrawBitmapMatrixOp(SkBitmap* bitmap, SkMatrix* matrix, SkPaint* paint)
|
|
|
|
: DrawBoundedOp(paint), mBitmap(bitmap), mMatrix(matrix) {
|
|
|
|
mLocalBounds.set(0, 0, bitmap->width(), bitmap->height());
|
|
|
|
const mat4 transform(*matrix);
|
|
|
|
transform.mapRect(mLocalBounds);
|
|
|
|
}
|
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
|
2012-11-26 18:30:17 -08:00
|
|
|
return renderer.drawBitmap(mBitmap, mMatrix, getPaint(renderer));
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("Draw bitmap %p matrix " MATRIX_STRING, mBitmap, MATRIX_ARGS(mMatrix));
|
|
|
|
}
|
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
virtual const char* name() { return "DrawBitmapMatrix"; }
|
|
|
|
|
2013-05-31 11:38:03 -07:00
|
|
|
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) {
|
|
|
|
deferInfo.batchId = DeferredDisplayList::kOpBatch_Bitmap;
|
2013-02-04 16:16:33 -08:00
|
|
|
}
|
2012-11-26 18:30:17 -08:00
|
|
|
|
|
|
|
private:
|
|
|
|
SkBitmap* mBitmap;
|
|
|
|
SkMatrix* mMatrix;
|
|
|
|
};
|
|
|
|
|
|
|
|
class DrawBitmapRectOp : public DrawBoundedOp {
|
|
|
|
public:
|
|
|
|
DrawBitmapRectOp(SkBitmap* bitmap, float srcLeft, float srcTop, float srcRight, float srcBottom,
|
|
|
|
float dstLeft, float dstTop, float dstRight, float dstBottom, SkPaint* paint)
|
|
|
|
: DrawBoundedOp(dstLeft, dstTop, dstRight, dstBottom, paint),
|
|
|
|
mBitmap(bitmap), mSrc(srcLeft, srcTop, srcRight, srcBottom) {}
|
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
|
2012-11-26 18:30:17 -08:00
|
|
|
return renderer.drawBitmap(mBitmap, mSrc.left, mSrc.top, mSrc.right, mSrc.bottom,
|
|
|
|
mLocalBounds.left, mLocalBounds.top, mLocalBounds.right, mLocalBounds.bottom,
|
|
|
|
getPaint(renderer));
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("Draw bitmap %p src="RECT_STRING", dst="RECT_STRING,
|
|
|
|
mBitmap, RECT_ARGS(mSrc), RECT_ARGS(mLocalBounds));
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "DrawBitmapRect"; }
|
2013-03-04 10:19:31 -08:00
|
|
|
|
2013-05-31 11:38:03 -07:00
|
|
|
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) {
|
|
|
|
deferInfo.batchId = DeferredDisplayList::kOpBatch_Bitmap;
|
2013-02-04 16:16:33 -08:00
|
|
|
}
|
2012-11-26 18:30:17 -08:00
|
|
|
|
|
|
|
private:
|
|
|
|
SkBitmap* mBitmap;
|
|
|
|
Rect mSrc;
|
|
|
|
};
|
|
|
|
|
|
|
|
class DrawBitmapDataOp : public DrawBitmapOp {
|
|
|
|
public:
|
|
|
|
DrawBitmapDataOp(SkBitmap* bitmap, float left, float top, SkPaint* paint)
|
|
|
|
: DrawBitmapOp(bitmap, left, top, paint) {}
|
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
|
2012-11-26 18:30:17 -08:00
|
|
|
return renderer.drawBitmapData(mBitmap, mLocalBounds.left,
|
|
|
|
mLocalBounds.top, getPaint(renderer));
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("Draw bitmap %p", mBitmap);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "DrawBitmapData"; }
|
2013-03-04 10:19:31 -08:00
|
|
|
|
2013-05-31 11:38:03 -07:00
|
|
|
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) {
|
|
|
|
deferInfo.batchId = DeferredDisplayList::kOpBatch_Bitmap;
|
2013-02-04 16:16:33 -08:00
|
|
|
}
|
2012-11-26 18:30:17 -08:00
|
|
|
};
|
|
|
|
|
2013-02-19 17:49:31 -08:00
|
|
|
class DrawBitmapMeshOp : public DrawBoundedOp {
|
2012-11-26 18:30:17 -08:00
|
|
|
public:
|
|
|
|
DrawBitmapMeshOp(SkBitmap* bitmap, int meshWidth, int meshHeight,
|
|
|
|
float* vertices, int* colors, SkPaint* paint)
|
2013-02-19 17:49:31 -08:00
|
|
|
: DrawBoundedOp(vertices, 2 * (meshWidth + 1) * (meshHeight + 1), paint),
|
|
|
|
mBitmap(bitmap), mMeshWidth(meshWidth), mMeshHeight(meshHeight),
|
2012-11-26 18:30:17 -08:00
|
|
|
mVertices(vertices), mColors(colors) {}
|
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
|
2012-11-26 18:30:17 -08:00
|
|
|
return renderer.drawBitmapMesh(mBitmap, mMeshWidth, mMeshHeight,
|
|
|
|
mVertices, mColors, getPaint(renderer));
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("Draw bitmap %p mesh %d x %d", mBitmap, mMeshWidth, mMeshHeight);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "DrawBitmapMesh"; }
|
2013-03-04 10:19:31 -08:00
|
|
|
|
2013-05-31 11:38:03 -07:00
|
|
|
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) {
|
|
|
|
deferInfo.batchId = DeferredDisplayList::kOpBatch_Bitmap;
|
2013-02-04 16:16:33 -08:00
|
|
|
}
|
2012-11-26 18:30:17 -08:00
|
|
|
|
|
|
|
private:
|
|
|
|
SkBitmap* mBitmap;
|
|
|
|
int mMeshWidth;
|
|
|
|
int mMeshHeight;
|
|
|
|
float* mVertices;
|
|
|
|
int* mColors;
|
|
|
|
};
|
|
|
|
|
|
|
|
class DrawPatchOp : public DrawBoundedOp {
|
|
|
|
public:
|
Pack preloaded framework assets in a texture atlas
When the Android runtime starts, the system preloads a series of assets
in the Zygote process. These assets are shared across all processes.
Unfortunately, each one of these assets is later uploaded in its own
OpenGL texture, once per process. This wastes memory and generates
unnecessary OpenGL state changes.
This CL introduces an asset server that provides an atlas to all processes.
Note: bitmaps used by skia shaders are *not* sampled from the atlas.
It's an uncommon use case and would require extra texture transforms
in the GL shaders.
WHAT IS THE ASSETS ATLAS
The "assets atlas" is a single, shareable graphic buffer that contains
all the system's preloaded bitmap drawables (this includes 9-patches.)
The atlas is made of two distinct objects: the graphic buffer that
contains the actual pixels and the map which indicates where each
preloaded bitmap can be found in the atlas (essentially a pair of
x and y coordinates.)
HOW IS THE ASSETS ATLAS GENERATED
Because we need to support a wide variety of devices and because it
is easy to change the list of preloaded drawables, the atlas is
generated at runtime, during the startup phase of the system process.
There are several steps that lead to the atlas generation:
1. If the device is booting for the first time, or if the device was
updated, we need to find the best atlas configuration. To do so,
the atlas service tries a number of width, height and algorithm
variations that allows us to pack as many assets as possible while
using as little memory as possible. Once a best configuration is found,
it gets written to disk in /data/system/framework_atlas
2. Given a best configuration (algorithm variant, dimensions and
number of bitmaps that can be packed in the atlas), the atlas service
packs all the preloaded bitmaps into a single graphic buffer object.
3. The packing is done using Skia in a temporary native bitmap. The
Skia bitmap is then copied into the graphic buffer using OpenGL ES
to benefit from texture swizzling.
HOW PROCESSES USE THE ATLAS
Whenever a process' hardware renderer initializes its EGL context,
it queries the atlas service for the graphic buffer and the map.
It is important to remember that both the context and the map will
be valid for the lifetime of the hardware renderer (if the system
process goes down, all apps get killed as well.)
Every time the hardware renderer needs to render a bitmap, it first
checks whether the bitmap can be found in the assets atlas. When
the bitmap is part of the atlas, texture coordinates are remapped
appropriately before rendering.
Change-Id: I8eaecf53e7f6a33d90da3d0047c5ceec89ea3af0
2013-04-17 18:54:38 -07:00
|
|
|
DrawPatchOp(SkBitmap* bitmap, Res_png_9patch* patch,
|
|
|
|
float left, float top, float right, float bottom, int alpha, SkXfermode::Mode mode)
|
2012-11-26 18:30:17 -08:00
|
|
|
: DrawBoundedOp(left, top, right, bottom, 0),
|
2013-06-11 16:19:24 -07:00
|
|
|
mBitmap(bitmap), mPatch(patch), mAlpha(alpha), mMode(mode),
|
|
|
|
mGenerationId(0), mMesh(NULL) {
|
Pack preloaded framework assets in a texture atlas
When the Android runtime starts, the system preloads a series of assets
in the Zygote process. These assets are shared across all processes.
Unfortunately, each one of these assets is later uploaded in its own
OpenGL texture, once per process. This wastes memory and generates
unnecessary OpenGL state changes.
This CL introduces an asset server that provides an atlas to all processes.
Note: bitmaps used by skia shaders are *not* sampled from the atlas.
It's an uncommon use case and would require extra texture transforms
in the GL shaders.
WHAT IS THE ASSETS ATLAS
The "assets atlas" is a single, shareable graphic buffer that contains
all the system's preloaded bitmap drawables (this includes 9-patches.)
The atlas is made of two distinct objects: the graphic buffer that
contains the actual pixels and the map which indicates where each
preloaded bitmap can be found in the atlas (essentially a pair of
x and y coordinates.)
HOW IS THE ASSETS ATLAS GENERATED
Because we need to support a wide variety of devices and because it
is easy to change the list of preloaded drawables, the atlas is
generated at runtime, during the startup phase of the system process.
There are several steps that lead to the atlas generation:
1. If the device is booting for the first time, or if the device was
updated, we need to find the best atlas configuration. To do so,
the atlas service tries a number of width, height and algorithm
variations that allows us to pack as many assets as possible while
using as little memory as possible. Once a best configuration is found,
it gets written to disk in /data/system/framework_atlas
2. Given a best configuration (algorithm variant, dimensions and
number of bitmaps that can be packed in the atlas), the atlas service
packs all the preloaded bitmaps into a single graphic buffer object.
3. The packing is done using Skia in a temporary native bitmap. The
Skia bitmap is then copied into the graphic buffer using OpenGL ES
to benefit from texture swizzling.
HOW PROCESSES USE THE ATLAS
Whenever a process' hardware renderer initializes its EGL context,
it queries the atlas service for the graphic buffer and the map.
It is important to remember that both the context and the map will
be valid for the lifetime of the hardware renderer (if the system
process goes down, all apps get killed as well.)
Every time the hardware renderer needs to render a bitmap, it first
checks whether the bitmap can be found in the assets atlas. When
the bitmap is part of the atlas, texture coordinates are remapped
appropriately before rendering.
Change-Id: I8eaecf53e7f6a33d90da3d0047c5ceec89ea3af0
2013-04-17 18:54:38 -07:00
|
|
|
mEntry = Caches::getInstance().assetAtlas.getEntry(bitmap);
|
|
|
|
};
|
2012-11-26 18:30:17 -08:00
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
|
2013-06-11 16:19:24 -07:00
|
|
|
if (!mMesh || renderer.getCaches().patchCache.getGenerationId() != mGenerationId) {
|
|
|
|
PatchCache& cache = renderer.getCaches().patchCache;
|
|
|
|
mMesh = cache.get(mEntry, mBitmap->width(), mBitmap->height(),
|
|
|
|
mLocalBounds.right - mLocalBounds.left, mLocalBounds.bottom - mLocalBounds.top,
|
|
|
|
mPatch);
|
|
|
|
mGenerationId = cache.getGenerationId();
|
|
|
|
}
|
|
|
|
// We're not calling the public variant of drawPatch() here
|
|
|
|
// This method won't perform the quickReject() since we've already done it at this point
|
|
|
|
return renderer.drawPatch(mBitmap, mMesh, mEntry, mLocalBounds.left, mLocalBounds.top,
|
2012-11-26 18:30:17 -08:00
|
|
|
mLocalBounds.right, mLocalBounds.bottom, mAlpha, mMode);
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("Draw patch "RECT_STRING, RECT_ARGS(mLocalBounds));
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "DrawPatch"; }
|
2013-03-04 10:19:31 -08:00
|
|
|
|
2013-05-31 11:38:03 -07:00
|
|
|
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) {
|
|
|
|
deferInfo.batchId = DeferredDisplayList::kOpBatch_Patch;
|
2013-06-14 16:31:37 -07:00
|
|
|
deferInfo.mergeId = mEntry ? (mergeid_t) &mEntry->atlas : (mergeid_t) mBitmap;
|
2013-05-31 11:38:03 -07:00
|
|
|
deferInfo.mergeable = true;
|
2013-06-14 16:31:37 -07:00
|
|
|
deferInfo.opaqueOverBounds = isOpaqueOverBounds() && mBitmap->isOpaque();
|
2013-02-04 16:16:33 -08:00
|
|
|
}
|
2012-11-26 18:30:17 -08:00
|
|
|
|
|
|
|
private:
|
|
|
|
SkBitmap* mBitmap;
|
Pack preloaded framework assets in a texture atlas
When the Android runtime starts, the system preloads a series of assets
in the Zygote process. These assets are shared across all processes.
Unfortunately, each one of these assets is later uploaded in its own
OpenGL texture, once per process. This wastes memory and generates
unnecessary OpenGL state changes.
This CL introduces an asset server that provides an atlas to all processes.
Note: bitmaps used by skia shaders are *not* sampled from the atlas.
It's an uncommon use case and would require extra texture transforms
in the GL shaders.
WHAT IS THE ASSETS ATLAS
The "assets atlas" is a single, shareable graphic buffer that contains
all the system's preloaded bitmap drawables (this includes 9-patches.)
The atlas is made of two distinct objects: the graphic buffer that
contains the actual pixels and the map which indicates where each
preloaded bitmap can be found in the atlas (essentially a pair of
x and y coordinates.)
HOW IS THE ASSETS ATLAS GENERATED
Because we need to support a wide variety of devices and because it
is easy to change the list of preloaded drawables, the atlas is
generated at runtime, during the startup phase of the system process.
There are several steps that lead to the atlas generation:
1. If the device is booting for the first time, or if the device was
updated, we need to find the best atlas configuration. To do so,
the atlas service tries a number of width, height and algorithm
variations that allows us to pack as many assets as possible while
using as little memory as possible. Once a best configuration is found,
it gets written to disk in /data/system/framework_atlas
2. Given a best configuration (algorithm variant, dimensions and
number of bitmaps that can be packed in the atlas), the atlas service
packs all the preloaded bitmaps into a single graphic buffer object.
3. The packing is done using Skia in a temporary native bitmap. The
Skia bitmap is then copied into the graphic buffer using OpenGL ES
to benefit from texture swizzling.
HOW PROCESSES USE THE ATLAS
Whenever a process' hardware renderer initializes its EGL context,
it queries the atlas service for the graphic buffer and the map.
It is important to remember that both the context and the map will
be valid for the lifetime of the hardware renderer (if the system
process goes down, all apps get killed as well.)
Every time the hardware renderer needs to render a bitmap, it first
checks whether the bitmap can be found in the assets atlas. When
the bitmap is part of the atlas, texture coordinates are remapped
appropriately before rendering.
Change-Id: I8eaecf53e7f6a33d90da3d0047c5ceec89ea3af0
2013-04-17 18:54:38 -07:00
|
|
|
Res_png_9patch* mPatch;
|
2013-06-11 16:19:24 -07:00
|
|
|
|
2012-11-26 18:30:17 -08:00
|
|
|
int mAlpha;
|
|
|
|
SkXfermode::Mode mMode;
|
2013-06-11 16:19:24 -07:00
|
|
|
|
|
|
|
uint32_t mGenerationId;
|
|
|
|
const Patch* mMesh;
|
Pack preloaded framework assets in a texture atlas
When the Android runtime starts, the system preloads a series of assets
in the Zygote process. These assets are shared across all processes.
Unfortunately, each one of these assets is later uploaded in its own
OpenGL texture, once per process. This wastes memory and generates
unnecessary OpenGL state changes.
This CL introduces an asset server that provides an atlas to all processes.
Note: bitmaps used by skia shaders are *not* sampled from the atlas.
It's an uncommon use case and would require extra texture transforms
in the GL shaders.
WHAT IS THE ASSETS ATLAS
The "assets atlas" is a single, shareable graphic buffer that contains
all the system's preloaded bitmap drawables (this includes 9-patches.)
The atlas is made of two distinct objects: the graphic buffer that
contains the actual pixels and the map which indicates where each
preloaded bitmap can be found in the atlas (essentially a pair of
x and y coordinates.)
HOW IS THE ASSETS ATLAS GENERATED
Because we need to support a wide variety of devices and because it
is easy to change the list of preloaded drawables, the atlas is
generated at runtime, during the startup phase of the system process.
There are several steps that lead to the atlas generation:
1. If the device is booting for the first time, or if the device was
updated, we need to find the best atlas configuration. To do so,
the atlas service tries a number of width, height and algorithm
variations that allows us to pack as many assets as possible while
using as little memory as possible. Once a best configuration is found,
it gets written to disk in /data/system/framework_atlas
2. Given a best configuration (algorithm variant, dimensions and
number of bitmaps that can be packed in the atlas), the atlas service
packs all the preloaded bitmaps into a single graphic buffer object.
3. The packing is done using Skia in a temporary native bitmap. The
Skia bitmap is then copied into the graphic buffer using OpenGL ES
to benefit from texture swizzling.
HOW PROCESSES USE THE ATLAS
Whenever a process' hardware renderer initializes its EGL context,
it queries the atlas service for the graphic buffer and the map.
It is important to remember that both the context and the map will
be valid for the lifetime of the hardware renderer (if the system
process goes down, all apps get killed as well.)
Every time the hardware renderer needs to render a bitmap, it first
checks whether the bitmap can be found in the assets atlas. When
the bitmap is part of the atlas, texture coordinates are remapped
appropriately before rendering.
Change-Id: I8eaecf53e7f6a33d90da3d0047c5ceec89ea3af0
2013-04-17 18:54:38 -07:00
|
|
|
AssetAtlas::Entry* mEntry;
|
2012-11-26 18:30:17 -08:00
|
|
|
};
|
|
|
|
|
|
|
|
class DrawColorOp : public DrawOp {
|
|
|
|
public:
|
|
|
|
DrawColorOp(int color, SkXfermode::Mode mode)
|
|
|
|
: DrawOp(0), mColor(color), mMode(mode) {};
|
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
|
2012-11-26 18:30:17 -08:00
|
|
|
return renderer.drawColor(mColor, mMode);
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("Draw color %#x, mode %d", mColor, mMode);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "DrawColor"; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
int mColor;
|
|
|
|
SkXfermode::Mode mMode;
|
|
|
|
};
|
|
|
|
|
|
|
|
class DrawStrokableOp : public DrawBoundedOp {
|
|
|
|
public:
|
|
|
|
DrawStrokableOp(float left, float top, float right, float bottom, SkPaint* paint)
|
|
|
|
: DrawBoundedOp(left, top, right, bottom, paint) {};
|
|
|
|
|
|
|
|
bool getLocalBounds(Rect& localBounds) {
|
2013-02-04 16:16:33 -08:00
|
|
|
localBounds.set(mLocalBounds);
|
2012-11-26 18:30:17 -08:00
|
|
|
if (mPaint && mPaint->getStyle() != SkPaint::kFill_Style) {
|
2013-02-04 16:16:33 -08:00
|
|
|
localBounds.outset(strokeWidthOutset());
|
2012-11-26 18:30:17 -08:00
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
2013-02-04 16:16:33 -08:00
|
|
|
|
2013-05-31 11:38:03 -07:00
|
|
|
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) {
|
2013-02-04 16:16:33 -08:00
|
|
|
if (mPaint->getPathEffect()) {
|
2013-05-31 11:38:03 -07:00
|
|
|
deferInfo.batchId = DeferredDisplayList::kOpBatch_AlphaMaskTexture;
|
2013-03-04 10:19:31 -08:00
|
|
|
} else {
|
2013-05-31 11:38:03 -07:00
|
|
|
deferInfo.batchId = mPaint->isAntiAlias() ?
|
2013-03-04 10:19:31 -08:00
|
|
|
DeferredDisplayList::kOpBatch_AlphaVertices :
|
|
|
|
DeferredDisplayList::kOpBatch_Vertices;
|
2013-02-04 16:16:33 -08:00
|
|
|
}
|
|
|
|
}
|
2012-11-26 18:30:17 -08:00
|
|
|
};
|
|
|
|
|
|
|
|
class DrawRectOp : public DrawStrokableOp {
|
|
|
|
public:
|
|
|
|
DrawRectOp(float left, float top, float right, float bottom, SkPaint* paint)
|
|
|
|
: DrawStrokableOp(left, top, right, bottom, paint) {}
|
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
|
2012-11-26 18:30:17 -08:00
|
|
|
return renderer.drawRect(mLocalBounds.left, mLocalBounds.top,
|
|
|
|
mLocalBounds.right, mLocalBounds.bottom, getPaint(renderer));
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("Draw Rect "RECT_STRING, RECT_ARGS(mLocalBounds));
|
|
|
|
}
|
|
|
|
|
2013-05-31 11:38:03 -07:00
|
|
|
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) {
|
|
|
|
DrawStrokableOp::onDefer(renderer, deferInfo);
|
|
|
|
deferInfo.opaqueOverBounds = isOpaqueOverBounds() &&
|
|
|
|
mPaint->getStyle() == SkPaint::kFill_Style;
|
|
|
|
}
|
|
|
|
|
2012-11-26 18:30:17 -08:00
|
|
|
virtual const char* name() { return "DrawRect"; }
|
|
|
|
};
|
|
|
|
|
2013-02-19 17:49:31 -08:00
|
|
|
class DrawRectsOp : public DrawBoundedOp {
|
2012-11-26 18:30:17 -08:00
|
|
|
public:
|
|
|
|
DrawRectsOp(const float* rects, int count, SkPaint* paint)
|
2013-02-19 17:49:31 -08:00
|
|
|
: DrawBoundedOp(rects, count, paint),
|
|
|
|
mRects(rects), mCount(count) {}
|
2012-11-26 18:30:17 -08:00
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
|
2012-11-26 18:30:17 -08:00
|
|
|
return renderer.drawRects(mRects, mCount, getPaint(renderer));
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("Draw Rects count %d", mCount);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "DrawRects"; }
|
|
|
|
|
2013-05-31 11:38:03 -07:00
|
|
|
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) {
|
|
|
|
deferInfo.batchId = DeferredDisplayList::kOpBatch_Vertices;
|
2013-02-04 16:16:33 -08:00
|
|
|
}
|
|
|
|
|
2012-11-26 18:30:17 -08:00
|
|
|
private:
|
|
|
|
const float* mRects;
|
|
|
|
int mCount;
|
|
|
|
};
|
|
|
|
|
|
|
|
class DrawRoundRectOp : public DrawStrokableOp {
|
|
|
|
public:
|
|
|
|
DrawRoundRectOp(float left, float top, float right, float bottom,
|
|
|
|
float rx, float ry, SkPaint* paint)
|
|
|
|
: DrawStrokableOp(left, top, right, bottom, paint), mRx(rx), mRy(ry) {}
|
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
|
2012-11-26 18:30:17 -08:00
|
|
|
return renderer.drawRoundRect(mLocalBounds.left, mLocalBounds.top,
|
|
|
|
mLocalBounds.right, mLocalBounds.bottom, mRx, mRy, getPaint(renderer));
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("Draw RoundRect "RECT_STRING", rx %f, ry %f", RECT_ARGS(mLocalBounds), mRx, mRy);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "DrawRoundRect"; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
float mRx;
|
|
|
|
float mRy;
|
|
|
|
};
|
|
|
|
|
|
|
|
class DrawCircleOp : public DrawStrokableOp {
|
|
|
|
public:
|
|
|
|
DrawCircleOp(float x, float y, float radius, SkPaint* paint)
|
|
|
|
: DrawStrokableOp(x - radius, y - radius, x + radius, y + radius, paint),
|
|
|
|
mX(x), mY(y), mRadius(radius) {}
|
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
|
2012-11-26 18:30:17 -08:00
|
|
|
return renderer.drawCircle(mX, mY, mRadius, getPaint(renderer));
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("Draw Circle x %f, y %f, r %f", mX, mY, mRadius);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "DrawCircle"; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
float mX;
|
|
|
|
float mY;
|
|
|
|
float mRadius;
|
|
|
|
};
|
|
|
|
|
|
|
|
class DrawOvalOp : public DrawStrokableOp {
|
|
|
|
public:
|
|
|
|
DrawOvalOp(float left, float top, float right, float bottom, SkPaint* paint)
|
|
|
|
: DrawStrokableOp(left, top, right, bottom, paint) {}
|
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
|
2012-11-26 18:30:17 -08:00
|
|
|
return renderer.drawOval(mLocalBounds.left, mLocalBounds.top,
|
|
|
|
mLocalBounds.right, mLocalBounds.bottom, getPaint(renderer));
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("Draw Oval "RECT_STRING, RECT_ARGS(mLocalBounds));
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "DrawOval"; }
|
|
|
|
};
|
|
|
|
|
|
|
|
class DrawArcOp : public DrawStrokableOp {
|
|
|
|
public:
|
|
|
|
DrawArcOp(float left, float top, float right, float bottom,
|
|
|
|
float startAngle, float sweepAngle, bool useCenter, SkPaint* paint)
|
|
|
|
: DrawStrokableOp(left, top, right, bottom, paint),
|
|
|
|
mStartAngle(startAngle), mSweepAngle(sweepAngle), mUseCenter(useCenter) {}
|
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
|
2012-11-26 18:30:17 -08:00
|
|
|
return renderer.drawArc(mLocalBounds.left, mLocalBounds.top,
|
|
|
|
mLocalBounds.right, mLocalBounds.bottom,
|
|
|
|
mStartAngle, mSweepAngle, mUseCenter, getPaint(renderer));
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("Draw Arc "RECT_STRING", start %f, sweep %f, useCenter %d",
|
|
|
|
RECT_ARGS(mLocalBounds), mStartAngle, mSweepAngle, mUseCenter);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "DrawArc"; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
float mStartAngle;
|
|
|
|
float mSweepAngle;
|
|
|
|
bool mUseCenter;
|
|
|
|
};
|
|
|
|
|
|
|
|
class DrawPathOp : public DrawBoundedOp {
|
|
|
|
public:
|
|
|
|
DrawPathOp(SkPath* path, SkPaint* paint)
|
|
|
|
: DrawBoundedOp(paint), mPath(path) {
|
|
|
|
float left, top, offset;
|
|
|
|
uint32_t width, height;
|
2013-03-08 17:44:20 -08:00
|
|
|
PathCache::computePathBounds(path, paint, left, top, offset, width, height);
|
2012-11-26 18:30:17 -08:00
|
|
|
left -= offset;
|
|
|
|
top -= offset;
|
|
|
|
mLocalBounds.set(left, top, left + width, top + height);
|
|
|
|
}
|
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
|
2012-11-26 18:30:17 -08:00
|
|
|
return renderer.drawPath(mPath, getPaint(renderer));
|
|
|
|
}
|
|
|
|
|
2013-05-31 11:38:03 -07:00
|
|
|
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) {
|
2013-03-08 17:44:20 -08:00
|
|
|
SkPaint* paint = getPaint(renderer);
|
|
|
|
renderer.getCaches().pathCache.precache(mPath, paint);
|
2013-03-04 10:19:31 -08:00
|
|
|
|
2013-05-31 11:38:03 -07:00
|
|
|
deferInfo.batchId = DeferredDisplayList::kOpBatch_AlphaMaskTexture;
|
2013-03-08 17:44:20 -08:00
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("Draw Path %p in "RECT_STRING, mPath, RECT_ARGS(mLocalBounds));
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "DrawPath"; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
SkPath* mPath;
|
|
|
|
};
|
|
|
|
|
2013-02-04 16:16:33 -08:00
|
|
|
class DrawLinesOp : public DrawBoundedOp {
|
2012-11-26 18:30:17 -08:00
|
|
|
public:
|
|
|
|
DrawLinesOp(float* points, int count, SkPaint* paint)
|
2013-02-19 17:49:31 -08:00
|
|
|
: DrawBoundedOp(points, count, paint),
|
|
|
|
mPoints(points), mCount(count) {
|
2013-02-04 16:16:33 -08:00
|
|
|
mLocalBounds.outset(strokeWidthOutset());
|
2012-11-26 18:30:17 -08:00
|
|
|
}
|
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
|
2012-11-26 18:30:17 -08:00
|
|
|
return renderer.drawLines(mPoints, mCount, getPaint(renderer));
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("Draw Lines count %d", mCount);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "DrawLines"; }
|
|
|
|
|
2013-05-31 11:38:03 -07:00
|
|
|
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) {
|
|
|
|
deferInfo.batchId = mPaint->isAntiAlias() ?
|
2013-02-04 16:16:33 -08:00
|
|
|
DeferredDisplayList::kOpBatch_AlphaVertices :
|
|
|
|
DeferredDisplayList::kOpBatch_Vertices;
|
|
|
|
}
|
|
|
|
|
2012-11-26 18:30:17 -08:00
|
|
|
protected:
|
|
|
|
float* mPoints;
|
|
|
|
int mCount;
|
|
|
|
};
|
|
|
|
|
|
|
|
class DrawPointsOp : public DrawLinesOp {
|
|
|
|
public:
|
|
|
|
DrawPointsOp(float* points, int count, SkPaint* paint)
|
|
|
|
: DrawLinesOp(points, count, paint) {}
|
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
|
2012-11-26 18:30:17 -08:00
|
|
|
return renderer.drawPoints(mPoints, mCount, getPaint(renderer));
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("Draw Points count %d", mCount);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "DrawPoints"; }
|
|
|
|
};
|
|
|
|
|
|
|
|
class DrawSomeTextOp : public DrawOp {
|
|
|
|
public:
|
|
|
|
DrawSomeTextOp(const char* text, int bytesCount, int count, SkPaint* paint)
|
|
|
|
: DrawOp(paint), mText(text), mBytesCount(bytesCount), mCount(count) {};
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("Draw some text, %d bytes", mBytesCount);
|
|
|
|
}
|
2013-02-04 16:16:33 -08:00
|
|
|
|
2013-05-31 11:38:03 -07:00
|
|
|
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) {
|
2013-03-01 14:31:04 -08:00
|
|
|
SkPaint* paint = getPaint(renderer);
|
|
|
|
FontRenderer& fontRenderer = renderer.getCaches().fontRenderer->getFontRenderer(paint);
|
|
|
|
fontRenderer.precache(paint, mText, mCount, mat4::identity());
|
|
|
|
|
2013-05-31 11:38:03 -07:00
|
|
|
deferInfo.batchId = mPaint->getColor() == 0xff000000 ?
|
2013-02-04 16:16:33 -08:00
|
|
|
DeferredDisplayList::kOpBatch_Text :
|
|
|
|
DeferredDisplayList::kOpBatch_ColorText;
|
|
|
|
}
|
2013-03-04 10:19:31 -08:00
|
|
|
|
2012-11-26 18:30:17 -08:00
|
|
|
protected:
|
|
|
|
const char* mText;
|
|
|
|
int mBytesCount;
|
|
|
|
int mCount;
|
|
|
|
};
|
|
|
|
|
|
|
|
class DrawTextOnPathOp : public DrawSomeTextOp {
|
|
|
|
public:
|
|
|
|
DrawTextOnPathOp(const char* text, int bytesCount, int count,
|
|
|
|
SkPath* path, float hOffset, float vOffset, SkPaint* paint)
|
|
|
|
: DrawSomeTextOp(text, bytesCount, count, paint),
|
|
|
|
mPath(path), mHOffset(hOffset), mVOffset(vOffset) {
|
|
|
|
/* TODO: inherit from DrawBounded and init mLocalBounds */
|
|
|
|
}
|
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
|
2012-11-26 18:30:17 -08:00
|
|
|
return renderer.drawTextOnPath(mText, mBytesCount, mCount, mPath,
|
|
|
|
mHOffset, mVOffset, getPaint(renderer));
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "DrawTextOnPath"; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
SkPath* mPath;
|
|
|
|
float mHOffset;
|
|
|
|
float mVOffset;
|
|
|
|
};
|
|
|
|
|
|
|
|
class DrawPosTextOp : public DrawSomeTextOp {
|
|
|
|
public:
|
|
|
|
DrawPosTextOp(const char* text, int bytesCount, int count,
|
|
|
|
const float* positions, SkPaint* paint)
|
|
|
|
: DrawSomeTextOp(text, bytesCount, count, paint), mPositions(positions) {
|
|
|
|
/* TODO: inherit from DrawBounded and init mLocalBounds */
|
|
|
|
}
|
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
|
2012-11-26 18:30:17 -08:00
|
|
|
return renderer.drawPosText(mText, mBytesCount, mCount, mPositions, getPaint(renderer));
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "DrawPosText"; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
const float* mPositions;
|
|
|
|
};
|
|
|
|
|
|
|
|
class DrawTextOp : public DrawBoundedOp {
|
|
|
|
public:
|
|
|
|
DrawTextOp(const char* text, int bytesCount, int count, float x, float y,
|
2013-05-03 16:35:54 -07:00
|
|
|
const float* positions, SkPaint* paint, float totalAdvance, const Rect& bounds)
|
|
|
|
: DrawBoundedOp(bounds, paint), mText(text), mBytesCount(bytesCount), mCount(count),
|
|
|
|
mX(x), mY(y), mPositions(positions), mTotalAdvance(totalAdvance) {
|
2013-03-13 16:14:47 -07:00
|
|
|
memset(&mPrecacheTransform.data[0], 0xff, 16 * sizeof(float));
|
2012-11-26 18:30:17 -08:00
|
|
|
}
|
|
|
|
|
2013-05-31 11:38:03 -07:00
|
|
|
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) {
|
2013-03-01 14:31:04 -08:00
|
|
|
SkPaint* paint = getPaint(renderer);
|
|
|
|
FontRenderer& fontRenderer = renderer.getCaches().fontRenderer->getFontRenderer(paint);
|
2013-03-13 16:14:47 -07:00
|
|
|
const mat4& transform = renderer.findBestFontTransform(state.mMatrix);
|
|
|
|
if (mPrecacheTransform != transform) {
|
|
|
|
fontRenderer.precache(paint, mText, mCount, transform);
|
|
|
|
mPrecacheTransform = transform;
|
|
|
|
}
|
2013-05-31 11:38:03 -07:00
|
|
|
deferInfo.batchId = mPaint->getColor() == 0xff000000 ?
|
2013-03-04 10:19:31 -08:00
|
|
|
DeferredDisplayList::kOpBatch_Text :
|
|
|
|
DeferredDisplayList::kOpBatch_ColorText;
|
|
|
|
|
2013-05-31 11:38:03 -07:00
|
|
|
deferInfo.mergeId = (mergeid_t)mPaint->getColor();
|
2013-03-04 10:19:31 -08:00
|
|
|
|
|
|
|
// don't merge decorated text - the decorations won't draw in order
|
|
|
|
bool noDecorations = !(mPaint->getFlags() & (SkPaint::kUnderlineText_Flag |
|
|
|
|
SkPaint::kStrikeThruText_Flag));
|
2013-05-31 11:38:03 -07:00
|
|
|
deferInfo.mergeable = state.mMatrix.isPureTranslate() && noDecorations &&
|
|
|
|
OpenGLRenderer::getXfermodeDirect(mPaint) == SkXfermode::kSrcOver_Mode;
|
2013-03-01 14:31:04 -08:00
|
|
|
}
|
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
|
2012-11-26 18:30:17 -08:00
|
|
|
return renderer.drawText(mText, mBytesCount, mCount, mX, mY,
|
2013-05-03 16:35:54 -07:00
|
|
|
mPositions, getPaint(renderer), mTotalAdvance, mLocalBounds);
|
2012-11-26 18:30:17 -08:00
|
|
|
}
|
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
virtual status_t multiDraw(OpenGLRenderer& renderer, Rect& dirty,
|
|
|
|
const Vector<DrawOp*>& ops, const Rect& bounds) {
|
|
|
|
status_t status = DrawGlInfo::kStatusDone;
|
|
|
|
for (unsigned int i = 0; i < ops.size(); i++) {
|
|
|
|
DrawOpMode drawOpMode = (i == ops.size() - 1) ? kDrawOpMode_Flush : kDrawOpMode_Defer;
|
|
|
|
renderer.restoreDisplayState(ops[i]->state, true); // restore all but the clip
|
|
|
|
|
|
|
|
DrawTextOp& op = *((DrawTextOp*)ops[i]);
|
|
|
|
status |= renderer.drawText(op.mText, op.mBytesCount, op.mCount, op.mX, op.mY,
|
2013-05-03 16:35:54 -07:00
|
|
|
op.mPositions, op.getPaint(renderer), op.mTotalAdvance, op.mLocalBounds,
|
|
|
|
drawOpMode);
|
2013-03-04 10:19:31 -08:00
|
|
|
}
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("Draw Text of count %d, bytes %d", mCount, mBytesCount);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "DrawText"; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
const char* mText;
|
|
|
|
int mBytesCount;
|
|
|
|
int mCount;
|
|
|
|
float mX;
|
|
|
|
float mY;
|
|
|
|
const float* mPositions;
|
2013-05-03 16:35:54 -07:00
|
|
|
float mTotalAdvance;
|
2013-03-13 16:14:47 -07:00
|
|
|
mat4 mPrecacheTransform;
|
2012-11-26 18:30:17 -08:00
|
|
|
};
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// SPECIAL DRAW OPERATIONS
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
class DrawFunctorOp : public DrawOp {
|
|
|
|
public:
|
|
|
|
DrawFunctorOp(Functor* functor)
|
|
|
|
: DrawOp(0), mFunctor(functor) {}
|
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
|
2012-11-26 18:30:17 -08:00
|
|
|
renderer.startMark("GL functor");
|
|
|
|
status_t ret = renderer.callDrawGLFunction(mFunctor, dirty);
|
|
|
|
renderer.endMark();
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("Draw Functor %p", mFunctor);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "DrawFunctor"; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
Functor* mFunctor;
|
|
|
|
};
|
|
|
|
|
2013-02-19 17:49:31 -08:00
|
|
|
class DrawDisplayListOp : public DrawBoundedOp {
|
2012-11-26 18:30:17 -08:00
|
|
|
public:
|
|
|
|
DrawDisplayListOp(DisplayList* displayList, int flags)
|
2013-02-19 17:49:31 -08:00
|
|
|
: DrawBoundedOp(0, 0, displayList->getWidth(), displayList->getHeight(), 0),
|
|
|
|
mDisplayList(displayList), mFlags(flags) {}
|
2013-02-04 16:16:33 -08:00
|
|
|
|
2013-04-19 14:54:34 -07:00
|
|
|
virtual void defer(DeferStateStruct& deferStruct, int saveCount, int level,
|
|
|
|
bool useQuickReject) {
|
2013-03-08 13:12:16 -08:00
|
|
|
if (mDisplayList && mDisplayList->isRenderable()) {
|
|
|
|
mDisplayList->defer(deferStruct, level + 1);
|
|
|
|
}
|
|
|
|
}
|
2013-04-19 14:54:34 -07:00
|
|
|
virtual void replay(ReplayStateStruct& replayStruct, int saveCount, int level,
|
|
|
|
bool useQuickReject) {
|
2013-02-04 16:16:33 -08:00
|
|
|
if (mDisplayList && mDisplayList->isRenderable()) {
|
2013-03-08 13:12:16 -08:00
|
|
|
mDisplayList->replay(replayStruct, level + 1);
|
2013-02-04 16:16:33 -08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-03-15 17:24:33 -07:00
|
|
|
// NOT USED since replay() is overridden
|
2013-03-04 10:19:31 -08:00
|
|
|
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
|
2013-03-15 17:24:33 -07:00
|
|
|
return DrawGlInfo::kStatusDone;
|
|
|
|
}
|
2012-11-26 18:30:17 -08:00
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("Draw Display List %p, flags %#x", mDisplayList, mFlags);
|
2013-03-08 13:12:16 -08:00
|
|
|
if (mDisplayList && (logFlags & kOpLogFlag_Recurse)) {
|
2012-11-26 18:30:17 -08:00
|
|
|
mDisplayList->output(level + 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "DrawDisplayList"; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
DisplayList* mDisplayList;
|
|
|
|
int mFlags;
|
|
|
|
};
|
|
|
|
|
|
|
|
class DrawLayerOp : public DrawOp {
|
|
|
|
public:
|
2013-03-15 17:24:33 -07:00
|
|
|
DrawLayerOp(Layer* layer, float x, float y)
|
|
|
|
: DrawOp(0), mLayer(layer), mX(x), mY(y) {}
|
2012-11-26 18:30:17 -08:00
|
|
|
|
2013-03-04 10:19:31 -08:00
|
|
|
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
|
2013-03-15 17:24:33 -07:00
|
|
|
return renderer.drawLayer(mLayer, mX, mY);
|
2012-11-26 18:30:17 -08:00
|
|
|
}
|
|
|
|
|
2013-06-19 16:58:58 -07:00
|
|
|
virtual void output(int level, uint32_t logFlags) const {
|
2012-11-26 18:30:17 -08:00
|
|
|
OP_LOG("Draw Layer %p at %f %f", mLayer, mX, mY);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual const char* name() { return "DrawLayer"; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
Layer* mLayer;
|
|
|
|
float mX;
|
|
|
|
float mY;
|
|
|
|
};
|
|
|
|
|
|
|
|
}; // namespace uirenderer
|
|
|
|
}; // namespace android
|
|
|
|
|
|
|
|
#endif // ANDROID_HWUI_DISPLAY_OPERATION_H
|